

FCC RADIO TEST REPORT

FCC ID	: UZ7RSBT5	
Equipment	: Bar Code Scanner	
Brand Name	: Zebra	
Model Name	: RSBT5	
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 1174	12
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 1174	42
Standard	: FCC Part 15 Subpart C §15.247	

The product was received on Oct. 07, 2022 and testing was performed from Oct. 18, 2022 to Nov. 02, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Lunis Win

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number: 1 of 28Issue Date: Nov. 21, 2022Report Version: 01

Table of Contents

His	tory o	f this test report	3
Sur	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	8
	2.4	EUT Operation Test Setup	9
	2.5	Measurement Results Explanation Example	9
3	Test	Result	10
	3.1	6dB and 99% Bandwidth Measurement	10
	3.2	Output Power Measurement	13
	3.3	Power Spectral Density Measurement	14
	3.4	Conducted Band Edges and Spurious Emission Measurement	17
	3.5	Radiated Band Edges and Spurious Emission Measurement	21
	3.6	Antenna Requirements	25
4	List c	of Measuring Equipment	26
5	Unce	rtainty of Evaluation	28
Арр	pendix	A. Conducted Test Results	
Арр	pendix	B. Radiated Spurious Emission	
Арр	pendix	C. Radiated Spurious Emission Plots	

- Appendix D. Duty Cycle Plots
- Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR292018B	01	Initial issue of report	Nov. 21, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission Pass		-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	6.61 dB under the limit at 23 <u>16.195 MHz</u>
-	15.207	AC Conducted Emission	Not Required	-
3.6	15.203	Antenna Requirement	Pass	-

Note: Not required means after assessing, test items are not necessary to carry out.

Declaration of Conformity:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards, if measurement
 - It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Doris Chen

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Information
Equipment	Bar Code Scanner
Brand Name	Zebra
Model Name	RSBT5
Sample 1	RSBT5 with scanner (SE4710)
Sample 2	RSBT5 with scanner (SE4770)
EUT supports Radios application	NFC tag (passive) Bluetooth BR/EDR/LE
HW Version	EV
FW Version	F83
MFD	09SEP22
EUT Stage	Identical Prototype

Remark: The EUT's information above is declared by manufacturer.

Specification of Accessories									
Battery 1	Brand Name	Zebra	Model Name	BT-000397					
Battery 2 (Extended)	Brand Name	Zebra	Model Name	BT-000398					
Power supply (50W)	Brand Name	Zebra	Part Number	PWR-BGA12V50W0WW					
DC Line Cable (50W)	Brand Name	Zebra	Model Name	CBL-DC-388A1-01					
Single Trigger	Brand Name	Zebra	Part Number	SG-RS51-TRGSS-01					
Double Trigger	Brand Name	Zebra	Part Number	SG-RS51-TRGDU-01					
Lanyard	Brand Name	Zebra	Part Number	SG-RS5X6-LNYD-01					
Double Side Trigger with Vibrator	Brand Name	Zebra	Part Number	SG-RS51-TRGDV-01					
Double Side Trigger (USBC with charge pad)	Brand Name	Zebra	Part Number	SG-RS51-TRGDU-01					
Double Side Trigger (USBC without charge pad)	Brand Name	Zebra	Part Number	SG-RS51-TRGDU-CN					
Back of the hand mount	Brand Name	Zebra	Part Number	SG-RS5X6-BHMT-01					

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard						
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz					
Number of Channels	40					
Carrier Frequency of Each Channel	40 Channel (37 hopping + 3 advertising channel)					
Maximum Output Power to Antenna	6.65 dBm / 0.0046 W					
99% Occupied Bandwidth	1.051 MHz					
Antenna Type / Gain	PIFA Antenna type with gain 1.7dBi					
Type of Modulation	GFSK					

Note: The EUT's information above is declared by manufacturer. Please refer to Comments and

Explanations in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory						
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855						
Test Site No.	Sporton Site No. TH05-HY, 03CH13-HY						

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases										
Test Item	Data Rate / Modulation									
	Bluetooth – LE / GFSK									
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz									
Test Cases	Mode 2: Bluetooth Tx CH19_2440 MHz									
	Mode 3: Bluetooth Tx CH39_2480 MHz									
Padiatod	Mode 1: Bluetooth Tx CH00_2402 MHz									
	Mode 2: Bluetooth Tx CH19_2440 MHz									
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz									
Remark: For Ra	diated Test Cases, the tests were performed with Battery 1 and Sample 1.									

2.3 Connection Diagram of Test System

2.4 EUT Operation Test Setup

The RF test items, utility "BT Regulatory TestApp:2.1.0.2" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

<1Mbps>

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

PSD 100kHz Plot on Channel 00	PSD 100kHz Plot on Channel 19									
Spectrum 🕎	♥ Spectrum									
RefLevel 30.00 dBm Offset 30.65 dB RBW 100 kHz	RefLevel 30.00 dBm Offset 30.65 dB RBW 100 kHz Att 10 dB SWT 1 ms VBW 300 kHz Mode Sweep									
HPK Max M1[1] 6.23 dBm 2.401773020 GHz										
20 dBm	20 dBm									
10 dBm 11	10 dBm									
0 dBm	0 dam									
-10 d8m-	-10 dBm									
-20 d8m-	-20 dBm-									
-30 dBm-	-30 dBm-									
-40 d8m-	-40 dBm-									
-50 dBm-	-50 d8m-									
-60 dBm-	-60 dBm-									
CF 2.402 GHz 1001 pts Span 765.0 kHz	CF 2.44 GHz 1001 pts Span 771.0 kHz									
Date: 2.NOV.2022 20;31:17	Date: 2.NOV.2022 20:34:01									
PSD 100kHz Plot on Channel 39	N/A									
Spectrum										
Ref Level 30.00 dBm Offset 30.65 dB RBW 100 kHz Att 10 dB SWT 1 ms VBW 300 kHz										
1Pk Max M1[1] 5.20 dBm										
20 dBm										
10 dBmM1										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm										
-40 dBm-										
-50 dBm										
-60 d8m-										
CF 2.48 GHz 1001 pts Span 762.0 kHz										
Nafe: 7'WAA'7A77 7A:30:72										

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

<1Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

Low Band Edge Plot on Channel 00						High Band Edge Plot on Channel 39												
Spectrum	Spectrum (₩						l] Spectrum 🕎											
Ref Level Att	30.00 dBm 20 dB	Offset 3 SWT	30.65 dB 👄 8 ms 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Sweep			Ref Leve Att	l 30.00 dBn 20 dB	Offset	30.65 dB 👄 8 ms 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Sweep			
1Pk Max]	1Pk Max									
					M	1[1]	 2.37	-38.89 dBm 578930 GHz						M	1[1]		2.495	37.54 dBm 79680 GHz
20 dBm							_		20 dBm									
10 dBm									10 dBm									
0 dBm							_	M	0 dBm	M								
-10 dBm									-10 dBm	-(
-20 dBm	-01 -23 770	dBro							-20 dBm			-						
-30 dBm	51 -25.770							V V	-30 dBm	01 -24.800	dBm							
M1							- I 🖌 -	11		. 1	ι.					t		
ate dem	And some the state	what No the In	-	and the state of the	al theory than it pro	the starting so that	 ini M	-	A BARRAN	M	MANAGAN	a shirt water			and here and	And states in the second	and the second second	with the product
-50 dBm							_		-50 dBm									
-60 dBm									-60 dBm									
							F1				F1							
Start 2.375 GHz 8001 pts Stop 2.405 GHz				Start 2.47	5 GHz			800	1 pts			Stop 2	.505 GHz					
Measuring][Measur		1 1						
Date: 2.NOV	7.2022 20	31:35							Date: 2.NO	7.2022 20	:36:38							

3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>

	Con	ducted	Spuriou	s Emissi	on Plot o	n	С	onducte	ed Spurio	us Emissi	on Plot o	on
	Blue	tooth l	E 1Mbps	s GFSK C	hannel C	00	В	luetooth	ו LE 1Mb	ps GFSK C	hannel	00
Spectru Ref Lev	im el 20.00 dBm	Offset 30.65	5 dB 👄 RBW 100 kH	łz			Spectrum Ref Level 20.0	0 dBm Offset 3	30.65 dB 👄 RBW 10	0 kHz		
Att 1Pk View	v 10 dB	SWI 29.7	ms 🖶 VBW 300 KH	.z Mode Sweep			Att 1Pk View	10 dB SWI	230 ms 🖶 VBW 30	JKHZ Mode Sweep		
				M1[1]		6.15 dBm				M1[1]		0.24 dBm 2 3900 GHz
10 dBm				M2[1]	MI	-49.11 dBm	10 dBm			M2[1]		-39.05 dBm
				1	1	1.38460 GHz	M1				1 1	24.5640 GHz
0 dBm							0 dBm					
-10 dBm—	_				+		-10 dBm		<u> </u>			
-20 dBm-	D1 -23.770	dBm					-20 dBm	23,770 dBm				_
-30 dBm-							-30 dBm					
												M2
-40 dBm-					+		-10 dBm			and new ful share of	monster	a have a h
-50 dBm-			M2		Len and	all shares and	and the warm	mentander	munition	which a second		
a mound	burburburburbu	himand	manun	Trees and a former			, co abiii					
-60 dBm—					+		-60 dBm		<u> </u>			
20.10												
-70 dBm-							-70 dBm					
Pt aut 20	0 MU 3		501.			Stop 2 D CHz	Start 2.0 CHz		<u> </u>	01 ptc		Ptop 25 0 CHz
atart 30.			501	Measu	and the second second		atart 2.0 GH2		5	Measu		
Date: 2.NO	ov.2022 20:	:31:49					Date: 2.NOV.202	2 20:32:04				
	Con	ducted	Spuriou	s Emissi	on Plot o	n	С	onducte	ed Spurio	ous Emissio	on Plot o	on
	Blue	tooth I	E 1Mbos	s GFSK (hannel 1	19	в	luetooth	LE 1Mb	os GFSK C	hannel	19
Spectru						- -	Spectrum)				 -
Ref Lev	el 20.00 dBm	Offset 30.6	5 dB 👄 RBW 100 kH	łz	-	(•)	Ref Level 20.0	0 dBm Offset ?	30.65 dB 👄 RBW 10	0 kHz		(~)
Att	10 dB	SWT 29.7	ms 👄 VBW 300 kH	Iz Mode Sweep			Att The Minute	10 dB SWT	230 ms 👄 VBW 30	0 kHz Mode Sweep		
DIPK VIBW	v			M1[1]		2.69.dBm	The Alem					
10 dBm-						0.00 0011				M1[1]		1.30 dBm
20 0.0111				M2[1]		2.43980 GHz -47.36 dBm	10 dBm			M1[1]		1.30 dBm 2.4360 GHz -40.26 dBm
				M2[1]	M1	2.43980 GHz -47.36 dBm 2.69470 GHz	10 dBm			M1[1] M2[1]		1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm				M2[1]	M1	2.43980 GHz -47.36 dBm 2.69470 GHz	10 dBm			M1[1] M2[1]	+ +	1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm				M2[1]	M1	2.43980 GHz -47.36 dBm 2.69470 GHz	10 dBm			M1[1] M2[1]		1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm				M2[1]	M1	2.43980 GHz -47.36 dBm 2.69470 GHz	10 dBm			M1[1] M2[1]		1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm				M2[1]	M1	2.43980 GHz -47.36 dBm 2.69470 GHz	10 dBm			M1[1] M2[1]		1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm	-01 -24.210	dBm			M1	2.43980 GHz -47.36 dBm 2.69470 GHz	10 dBm M1 0 dBm -10 dBm -20 dBm 01 -3	:4.210 dBm		M1[1] M2[1] 		1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm	-01 -24.210	dBm				2.43980 GHz -47.36 dBm 2.69470 GHz	10 dBm M1 0 dBm -10 dBm -20 dBm 01 -2 -30 dBm			M1[1] 		1.30 dBm 2.4560 GHz 40.26 dBm 19.8350 GHz
0 dBm	-01 -24.210	dBm				2.43980 GHz -47.36 dBm 2.69470 GHz	10 dBm M1 0 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm	24.210 d8m		M1[1] 	M2	1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	-01 -24.210	d8m			M1	2.43980 GHz -47.36 dBm 2.69470 GHz	10 d8m M1 0 d8m -10 d8m -20 d8m -20 d8m -30 d8m -0 d8m	24.210 dBm		M1[1] 	M2 M2	1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm	-01 -24.210	dBm		M2[1]	M1	2.43990 GHz -47.36 dBm 2.69470 GHz 2.69470 GHz MD MD MD	10 dBm M1 0 dBm -10 dBm -20 dBm -20 dBm -0 dBm -0 dBm -0 dBm	24.210 dBm-	www.manhhman	M1[1] 	M2 M2	1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm	-D1 -24.210	dBm			M1 V V V V V V V V V V V V V	2.43980 GHz -47.36 dBm 2.69470 GHz 2.69470 GHz 4.69470	10 dBm M1 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -0 dBm -0 dBm	24.210 dBm	por por contraction of the second sec	M1[1] M2	M2 M2	1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm	-D1 -24.210	dBm			M1 	2.4900 CH2 	10 dBm 11 0 dBm -10 dBm -20 dBm -20 dBm -0 dBm -0 dBm -60 dBm	24.210 dBm-	Municipal Contraction of the second s	M1[1] 	M2 M2	1.30 dBm 2.4360 GHz -40,26 dBm 19.8950 GHz
0 dBm	01 -24.210	dBm			M1 	2.49909 CH2 17.26 dBm 2.69470 GH2 2.69470 GH2	10 d8m 11 0 d8m -10 d8m -20 d8m -30 d8m -0 d8m -60 d8m -70 d8m	24.210 dBm		M1[1] M2	MZ	1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm	01 -24.210	dBm		M2[1]	M1 	2.49900 CH2 -47.36 dBm 2.69470 CH2 	10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm -60 dBm -70 dBm	24.210 d8m		M1[1] M2[1] M2[1] M42[1] M42[1] M42 M42 M42 M42 M42 M42 M42 M42	M2 M2	1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm	01 -24.210	d8m	501		M1	2.49909 CH2 -47.36 dBm 2.69470 CH2 2.69470 CH2	10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -70 dBm -70 dBm -70 dBm	24.210 dBm		M1[1] M2		1.30 dBm 2.4360 GHz -40.26 dBm 19.9350 GHz
0 dBm	-01 -24-210	dBm	501			2.43090 CHz -47.36 dBm 2.69470 CHz 2.69470 CHz 2.69470 CHz 3.69470 CHz 3.69470 CHz	10 dBm M1 0 dBm -10 dBm -20 dBm -20 dBm -0 dBm -60 dBm -70 dBm -70 dBm Start 2.0 GHz	24.210 dBm		M1[1] M2		1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz
0 dBm	D1 -24.210	dBm				2.4900 CH2 -47.56 dHm 2.69470 CH2 	10 dBm M1 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -60 dBm -70 dBm Stort 2.0 GHz Date: 2.NOV.202	24.210 dBm		M1[1] M2		1.30 dBm 2.4360 GHz -40.26 dBm 19.8350 GHz

Conducted Spurious Emission Plot on	Conducted Spurious Emission Plot on					
Bluetooth LE 1Mbps GFSK Channel 39	Bluetooth LE 1Mbps GFSK Channel 39					
Spectrum Image: Constraint of the second secon	Spectrum Image: Construct of the second					
Start 30.0 MHz S01 pts Stop 3.0 GHz	Start 2.0 GHz Stop 25.0 GHz Stop 25.0 GHz					
Date: 2.NOV.2022 20:36:56	Date: 2.NOV.2022 20:37:07					

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz

Metal Full Soldered Ground Plane

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.6 Antenna Requirements

3.6.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	May 13, 2022	Oct. 27, 2022~ Oct. 28, 2022	May 12, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 10, 2022	Oct. 27, 2022~ Oct. 28, 2022	Mar. 09, 2023	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 24, 2021	Oct. 27, 2022~ Oct. 28, 2022	Dec. 23, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Feb. 21, 2022	Oct. 27, 2022~ Oct. 28, 2022	Feb. 20, 2023	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303B	TP200722	N/A	Mar. 22, 2022	Oct. 27, 2022~ Oct. 28, 2022	Mar. 21, 2023	Radiation (03CH13-HY)
Amplifier	SONOMA	310N	187282	9kHz~1GHz	Dec. 15, 2021	Oct. 27, 2022~ Oct. 28, 2022	Dec. 14, 2022	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	40103 & 07	30MHz~1GHz	Apr. 24, 2022	Oct. 27, 2022~ Oct. 28, 2022	Apr. 23, 2023	Radiation (03CH13-HY)
Horn Antenna	Ina SCHWARZBE BBHA 9120		9120D-1241	1GHz~18GHz	Jul. 25, 2022	Oct. 27, 2022~ Oct. 28, 2022	Jul. 24, 2023	Radiation (03CH13-HY)
Preamplifier	MITEQ	MITEQ AMF-7D-0010 1800-30-10P		1GHz~18GHz	May 17, 2022 Oct. 27, 2022- Oct. 28, 2022		May 16, 2023	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Oct. 25, 2022	Oct. 27, 2022~ Oct. 28, 2022	Oct. 24, 2023	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Mar. 18, 2022	Oct. 27, 2022~ Oct. 28, 2022	Mar. 17, 2023	Radiation (03CH13-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN12	1.53GHz Low Pass Filter	Sep. 13, 2022	Oct. 27, 2022~ Oct. 28, 2022	Sep. 12, 2023	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN2	3GHz High Pass Filter	Jul. 11, 2022	Oct. 27, 2022~ Oct. 28, 2022	Jul. 10, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30MHz~18GHz	Feb. 09, 2022	Oct. 27, 2022~ Oct. 28, 2022	Feb. 08, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30MHz~18GHz	Feb. 09, 2022	Oct. 27, 2022~ Oct. 28, 2022	Feb. 08, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30MHz~18GHz	Feb. 09, 2022	Oct. 27, 2022~ Oct. 28, 2022	Feb. 08, 2023	Radiation (03CH13-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Oct. 27, 2022~ Oct. 28, 2022	N/A	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Oct. 27, 2022~ Oct. 28, 2022	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Oct. 27, 2022~ Oct. 28, 2022	N/A	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00994	18GHz-40GHz	Nov. 04, 2021	Oct. 27, 2022~ Oct. 28, 2022	Nov. 03, 2022	Radiation (03CH13-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16, 2021	Oct. 18, 2022~ Nov. 02, 2022	Nov. 15, 2022	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Dec. 29, 2021	Oct. 18, 2022~ Nov. 02, 2022	Dec. 28, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz (amp)	Aug. 03, 2022	Oct. 18, 2022~ Nov. 02, 2022	Aug. 02, 2023	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6 50 dP
of 95% (U = 2Uc(y))	0.00 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4 40 dP
of 95% (U = 2Uc(y))	4.40 UB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.80 dB
0195%(0-20C(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5 30 dB
of 95% (U = 2Uc(y))	5:30 dB

Report Number : FR292018B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Junyu Jhou	Temperature:	21~25	°C
Test Date:	2022/10/18~2022/11/2	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
- F			_							1	
	Mod.	Data Rate	NTX	СН.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
	BLE	1Mbps	1	0	2402	1.051	0.510	0.50	Pass		
	BLE	1Mbps	1	19	2440	1.051	0.514	0.50	Pass		
	BLE	1Mbps	1	39	2480	1.051	0.508	0.50	Pass		

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
BLE	1Mbps	1	0	2402	6.65	30.00	1.70	8.35	36.00	Pass		
BLE	1Mbps	1	19	2440	6.55	30.00	1.70	8.25	36.00	Pass		
BLE	1Mbps	1	39	2480	5.65	30.00	1.70	7.35	36.00	Pass		

						<u>TEST F</u> <u>Peak</u>	<u>RESULTS</u> Power De	<u>DATA</u> ensity		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	6.23	-10.45	1.70	8.00	Pass	
BLE	1Mbps	1	19	2440	5.79	-10.91	1.70	8.00	Pass	
BLE	1Mbps	1	39	2480	5.20	-11.46	1.70	8.00	Pass	

Appendix B. Radiated Spurious Emission

Tost Engineer :	Pain Loo Jacky Hong and Manoy Chou	Temperature :	21.5~23.5°C
rest Engineer .	Rain Lee, Jacky Hong and Mancy Chou	Relative Humidity :	46.5~49.5%

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(8411-)			Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(110.0
		(MHZ)	(αθμν/m)	(ab)	(aBµv/m)	(dBµv)	(aB/m)	(ab)	(ab)	(cm)	(aeg)	(P/A)	(H/V)
		2375.31	54.51	-19.49	74	40.34	27.9	14.05	21.18	100	344	Р	п
		2385.915	47.2	-6.8	54	33.06	27.86	14.06	27.78	100	344	A	Н
	*	2402	100.2	-	-	86.1	27.8	14.07	27.77	100	344	Р	Н
	*	2402	99.2	-	-	85.1	27.8	14.07	27.77	100	344	Α	Н
DIE													Н
													Н
		2320.29	54.32	-19.68	74	40.06	28.06	14	27.8	107	153	Р	V
240211112		2316.195	47.39	-6.61	54	33.13	28.07	13.99	27.8	107	153	А	V
	*	2402	96.41	-	-	82.31	27.8	14.07	27.77	107	153	Р	V
	*	2402	96.03	-	-	81.93	27.8	14.07	27.77	107	153	А	V
													V
													V
		2310	54.26	-19.74	74	39.99	28.08	13.99	27.8	120	343	Ρ	Н
		2353.68	46.93	-7.07	54	32.7	27.99	14.03	27.79	120	343	А	Н
	*	2440	99.81	-	-	85.66	27.8	14.11	27.76	120	343	Р	Н
	*	2440	99.27	-	-	85.12	27.8	14.11	27.76	120	343	А	Н
		2494.61	54.6	-19.4	74	40.47	27.71	14.16	27.74	120	343	Р	Н
		2489.01	46.98	-7.02	54	32.85	27.72	14.15	27.74	120	343	А	Н
2440MHz		2327.92	54.69	-19.31	74	40.44	28.04	14.01	27.8	100	148	Р	V
244010112		2320.5	46.83	-7.17	54	32.57	28.06	14	27.8	100	148	А	V
	*	2440	96.83	-	-	82.68	27.8	14.11	27.76	100	148	Р	V
	*	2440	96.32	-	-	82.17	27.8	14.11	27.76	100	148	А	V
		2483.9	54.2	-19.8	74	40.07	27.73	14.15	27.75	100	148	Р	V
		2488.8	46.83	-7.17	54	32.7	27.72	14.15	27.74	100	148	А	V

	*	2400	00.00			04.70	07.74	4444	07.75	445	220	P	
		2480	98.92	-	-	84.79	27.74	14.14	21.15	115	338	Р	п
	*	2480	98.37	-	-	84.24	27.74	14.14	27.75	115	338	А	Н
		2483.6	55.81	-18.19	74	41.68	27.73	14.15	27.75	115	338	Р	Н
		2484.52	47.31	-6.69	54	33.18	27.73	14.15	27.75	115	338	Α	Н
													Н
													Н
2480MH7	*	2480	95.27	-	-	81.14	27.74	14.14	27.75	105	151	Р	V
240011112	*	2480	94.74	-	-	80.61	27.74	14.14	27.75	105	151	А	V
		2498.2	54.64	-19.36	74	40.52	27.7	14.16	27.74	105	151	Р	V
		2488.12	47.25	-6.75	54	33.12	27.72	14.15	27.74	105	151	А	V
													V
													V
	1. N	o other spurious	s found.										
Remark	2 1	I regulta ara DA	SS against l	Dook ond	Average lim	uit line							
	∠. AI	r results are PA	SS against i	-eak and	Average III	iit iirie.							

2.4GHz 2400~2483.5MHz

					1		,						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deq)	Avg. (P/A)	(H/V)
		4804	38.21	-35.79	74	57.38	31.4	6.77	57.34	-	-	P	Н
													Н
													н
													н
													н
													н
													н
													н
													н
													н
													н
BLE													н
CH 00		4804	38.68	-35.32	74	57.85	31.4	6.77	57.34	-	-	Р	V
2402MHz													V
													V
													V
													V
													V
													V
													V
													V
													v
													v
													·
				1							1	1	v

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	39.7	-34.3	74	58.66	31.46	6.8	57.22	-	-	Ρ	Н
		7320	44.46	-29.54	74	56.2	37	8.6	57.34	-	-	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
		4880	38.7	-35.3	74	57.66	31.46	6.8	57.22	-	-	Ρ	V
2440101112		7320	44.73	-29.27	74	56.47	37	8.6	57.34	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4960	39.6	-34.4	74	58.2	31.66	6.84	57.1	-	-	P	н
		7440	43.6	-30.4	74	55.51	36.98	8.63	57.52	-	-	Р	Н
													Н
													н
													Н
													Н
													н
													н
													н
													Н
													Н
BLE													Н
CH 39		4960	40.14	-33.86	74	58.74	31.66	6.84	57.1	-	-	Р	V
24801WIHZ		7440	43.78	-30.22	74	55.69	36.98	8.63	57.52	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against F	Peak and	Average lim	it line.							
	3. Th	e emission pos	ition marked	l as "-" m	eans no sus	pected emi	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											

Emission below 1GHz

							/						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		55.22	23.9	-16.1	40	42.72	12.65	0.87	32.34	-	-	Р	Н
		130.88	26.6	-16.9	43.5	40.27	17.48	1.14	32.29	-	-	Р	Н
		464.56	25.1	-20.9	46	31.68	23.6	1.98	32.16	-	-	Р	Н
		729.37	29.36	-16.64	46	31.74	27.45	2.33	32.16	-	-	Р	Н
		957.32	32.94	-13.06	46	30.48	30.94	2.57	31.05	-	-	Р	Н
		991.27	32.68	-21.32	54	30.42	30.36	2.63	30.73	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE													Н
LF		32.91	22.4	-17.6	40	30.89	23.14	0.73	32.36	-	-	Р	V
		129.91	27.57	-15.93	43.5	41.24	17.48	1.15	32.3	-	-	Р	V
		468.44	24.4	-21.6	46	30.93	23.64	1.99	32.16	-	-	Р	V
		561.56	26.5	-19.5	46	30.44	26.18	2.13	32.25	-	-	Р	V
		729.37	32.78	-13.22	46	35.16	27.45	2.33	32.16	-	-	Р	V
		987.39	32.44	-21.56	54	30.13	30.45	2.63	30.77	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
Remark	2. All	results are PA	ss against li	mit line.		no ata di a	viscies for	d ond a			t loost C		rair
	р. In	ie eniission pos		ias - M		pecied en	IISSION IOUN	u and em	IISSION IEVE	ernas a	1 18851 00	una no ma	igin
	ag		11155101115110		only.								

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- = 43.54(dBµV/m) 54(dBµV/m)
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission Plots

Tost Engineer :	Pain Loo, Jacky Hong and Manay Chau	Temperature :	21.5~23.5°C
rest Engineer .	Nam Lee, Jacky Hong and Mancy Chou	Relative Humidity :	46.5~49.5%

Note symbol

-L	Low channel location
-R	High channel location

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Emission below 1GHz

2.4GHz BLE (LF)

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth -LE	15.87	100	10.00	10kHz

