

Report No. : FR971801A

FCC RADIO TEST REPORT

FCC ID	:	UZ7RS5100
Equipment	:	Bar Code Scanner
Brand Name	:	Zebra
Model Name	:	RS5100
Applicant	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Jul. 18, 2019 and testing was started from Aug. 27, 2019 and completed on Oct. 24, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	11
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	12
	2.6	Measurement Results Explanation Example	12
3	Test	Result	13
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	15
	3.3	Dwell Time Measurement	22
	3.4	20dB and 99% Bandwidth Measurement	24
	3.5	Output Power Measurement	36
	3.6	Conducted Band Edges Measurement	
	3.7	Conducted Spurious Emission Measurement	46
	3.8	Radiated Band Edges and Spurious Emission Measurement	56
	3.9	AC Conducted Emission Measurement	60
		Antenna Requirements	
4		of Measuring Equipment	
5	Unce	rtainty of Evaluation	64
Арр	pendix	A. AC Conducted Emission Test Result	
Арр	pendix	B. Radiated Spurious Emission	
Арр	pendix	C. Radiated Spurious Emission Plots	
Арр	oendix	x D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR971801A	01	Initial issue of report	Oct. 28, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel		
3.4	15.247(a)(1)	20dB Bandwidth	dB Bandwidth Pass	
3.4	2.1049	99% Occupied Bandwidth	dth Reporting only	
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges		
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 6.90 dB at 729.370 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 20.11 dB at 0.157 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Dara Chiu

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature
Equipment	Bar Code Scanner
Brand Name	Zebra
Model Name	RS5100
FCC ID	UZ7RS5100
Sample 1	EV Sample
Sample 2	DV Sample
EUT supports Radios application	Bluetooth BR/EDR/LE
EOT Supports Radios application	NFC tag
HW Version	DV
FW Version	R00
MFD	27SEP19
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories						
Battery	Brand Name	Zebra	Model Name	BT-000397		
Power supply (50W)	Brand Name	Zebra	Part Number	PWR-BGA12V50W0WW		
DC Line Cable (50W)	Brand Name	Zebra	Model Name	CBL-DC-388A1-01		

Supported Unit Used in Test Configuration and System					
Terminal	Brand Name	Zebra	Model Name	WT6000	
Cradle	Brand Name	Zebra	Model Name	RS5100 4-Slot Ring Scanner Charger	

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
	Bluetooth BR(1Mbps) : 7.05 dBm (0.0051 W)			
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 9.49 dBm (0.0089 W)			
	Bluetooth EDR (3Mbps) : 10.04 dBm (0.0101 W)			
	Bluetooth BR(1Mbps) : 0.834MHz			
99% Occupied Bandwidth	Bluetooth EDR (2Mbps) : 1.190MHz			
	Bluetooth EDR (3Mbps) : 1.169MHz			
Antenna Type / Gain	PIFA Antenna with gain 1.73 dBi			
	Bluetooth BR (1Mbps) : GFSK			
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK			
	Bluetooth EDR (3Mbps) : 8-DPSK			

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Site No.TH05-HYCO05-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH16-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

		Blue	tooth Average Output Po	ower		
Channel	Frequency	GFSK / 1Mbps				
		DH1	DH3	DH5		
Ch00	2402MHz	<mark>7.01</mark> dBm	6.92 dBm	6.81 dBm		
Ch39	2441MHz	6.40 dBm	6.29 dBm	6.24 dBm		
Ch78	2480MHz	6.77 dBm	6.68 dBm	6.66 dBm		

		Blue	etooth Average Output Po	ower
Channel				
		2DH1	2DH3	2DH5
Ch00	2402MHz	<mark>6.93</mark> dBm	6.90 dBm	6.85 dBm
Ch39	2441MHz	6.34 dBm	6.29 dBm	6.24 dBm
Ch78	2480MHz	6.68 dBm	6.65 dBm	6.62 dBm

		Blue	tooth Average Output Po	ower				
Channel	Frequency	8-DPSK / 3Mbps						
		3DH1	3DH3	3DH5				
Ch00	2402MHz	<mark>7.03</mark> dBm	7.05 dBm	7.02 dBm				
Ch39	2441MHz	6.29 dBm	6.35 dBm	6.29 dBm				
Ch78	2480MHz	6.60 dBm	6.63 dBm	6.62 dBm				

		Blu	uetooth Peak Output Pov	ver		
Channel	Frequency	GFSK / 1Mbps				
		DH1	DH3	DH5		
Ch00	2402MHz	<mark>7.05</mark> dBm	7.04 dBm	7.03 dBm		
Ch39	2441MHz	6.36 dBm	6.35 dBm	6.33 dBm		
Ch78	2480MHz	6.67 dBm	6.66 dBm	6.65 dBm		

		Bluetooth Peak Output Power					
Channel	Frequency	π/4-DQPSK / 2Mbps					
		2DH1	2DH3	2DH5			
Ch00	2402MHz	<mark>9.49</mark> dBm	9.48 dBm	9.47 dBm			
Ch39	2441MHz	9.03 dBm	9.02 dBm	8.99 dBm			
Ch78	2480MHz	9.45 dBm	9.43 dBm	9.42 dBm			

		Blu	uetooth Peak Output Pov	ver		
Channel	Channel Frequency 8-DPSK / 3Mbps					
		3DH1	3DH3	3DH5		
Ch00	2402MHz	<mark>10.04</mark> dBm	10.02 dBm	10.01 dBm		
Ch39	2441MHz	9.61 dBm	9.60 dBm	9.59 dBm		
Ch78	2480MHz	10.04 dBm	10.01 dBm	10.00 dBm		

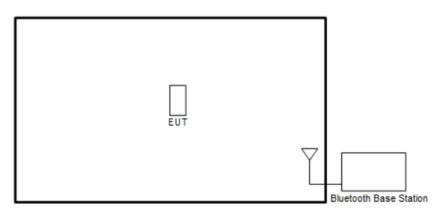
Remark: The data rate was set in 3Mbps for all the test items due to the highest RF output power.

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

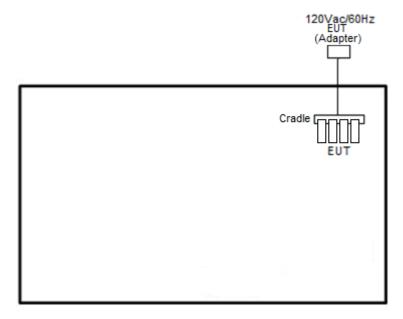
	Summary table of Test Cases							
	Data Rate / Modulation							
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps					
	GFSK	π /4-DQPSK	8-DPSK					
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz					
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz					
	Bluetooth EDR 3Mbps 8-DPSK							
Dedicted	Mode 1: CH00_2402 MHz with Scanner (SE4710)							
Radiated	Mode 2: CH39_2441 MHz with Scanner (SE4710)							
Test Cases	Mode 3: CH78_2480 MHz with Scanner (SE4710)							
	Mode 4: CH78_2480 MHz with Scanner (SE4770)							
AC	Mode 1: RS5100 4-Slot Ri	ing Scanner Charger + Scan	ner 1 (SE4710) with Single					
Conducted	trigger *2 + Scar	nner 2 (SE4770) with Single	e trigger *2 + AC Adapter					
Emission	(PWR-BGA12V50W0WW) for Sample 1							
Remark:	Remark:							
1. For radiate	d test cases, the worst mode	data rate 3Mbps was reported	ed only since the highest RF					
output power in the preliminary tests. The conducted spurious emissions and conducted band								

The following summary table is showing all test modes to demonstrate in compliance with the standard.

edge measurement for other data rates were not worse than 3Mbps, and no other significantly frequencies found in conducted spurious emission.


2. For Radiated Test Cases, the tests were performed with sample 2.

TEL : 886-3-327-3456	Page Number	: 10 of 64
FAX : 886-3-328-4978	Issued Date	: Oct. 28, 2019
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01



2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "BT Regulatory Test app" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

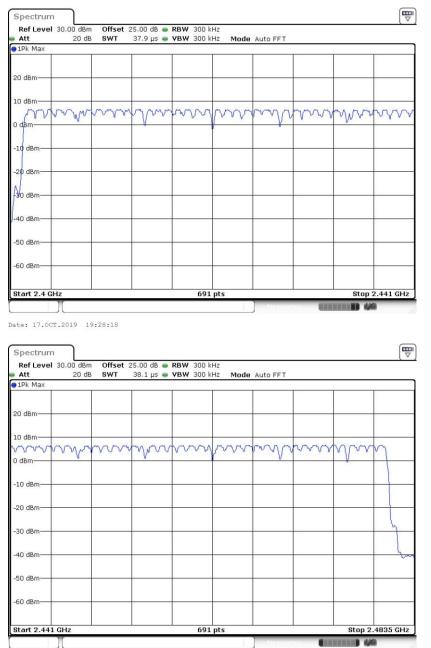
See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

Spectrum Analyzer


EUT

3.1.5 Test Result of Number of Hopping Frequency

Test Engineer :	Owen	Vang	mperature :	21~25 ℃	
Test Lingineer .	Owen Yang		lative Humidity :	51~54%	
Number of Hopping (Channel)		Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail	
79		20	> 15	Pass	

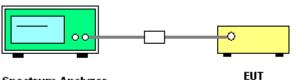
Number of Hopping Channel Plot on Channel 00 - 78

Date: 17.0CT.2019 19:29:48

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

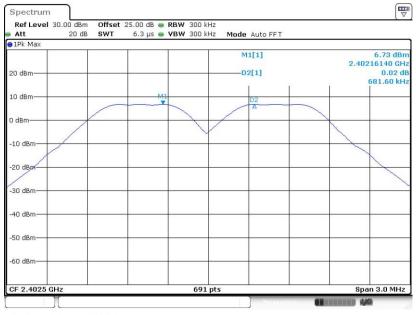
See list of measuring equipment of this test report.

3.2.3 Test Procedures

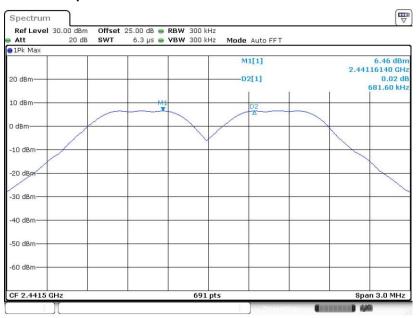
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; $RBW = 300kHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold.$
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

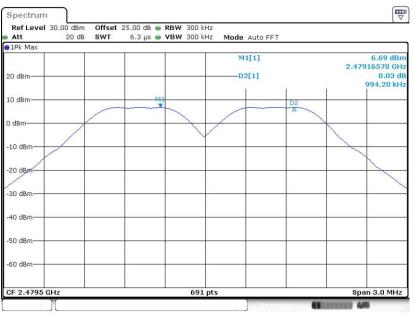
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Test Engineer : Owen Yang		-	Temperature : Relative Humidity :		21~25℃ 51~54%			
Mod.	Data Rate	Ντχ	CH.	Freq. (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping (Separa Measura Limit (ation ement	Pass/Fail
DH	1Mbps	1	0	2402	0.682	0.61	75	Pass
DH	1Mbps	1	39	2441	0.682	0.60	20	Pass
DH	1Mbps	1	78	2480	0.994	0.61	55	Pass
2DH	2Mbps	1	0	2402	0.994	0.87	70	Pass
2DH	2Mbps	1	39	2441	1.003	0.87	41	Pass
2DH	2Mbps	1	78	2480	0.994	0.87	70	Pass
3DH	3Mbps	1	0	2402	1.003	0.85	39	Pass
3DH	3Mbps	1	39	2441	0.999	0.85	39	Pass
3DH	3Mbps	1	78	2480	1.003	0.85	09	Pass

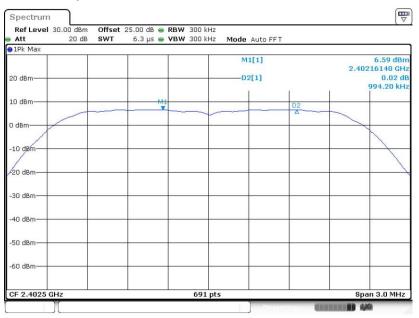

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 17.0CT.2019 19:50:13

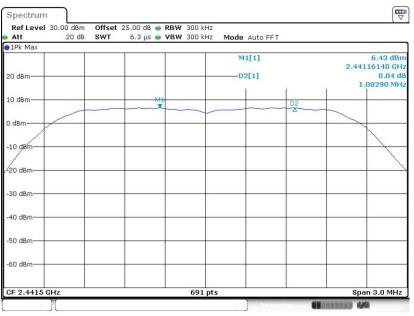
Channel Separation Plot on Channel 39 - 40

Date: 17.0CT.2019 18:48:18



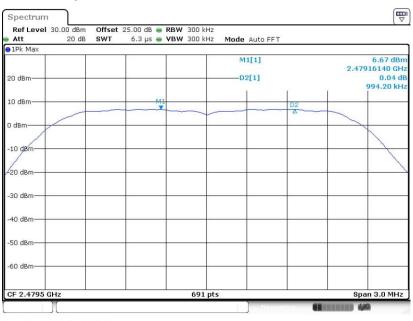
Channel Separation Plot on Channel 77 - 78

Date: 17.0CT.2019 18:52:27


<2Mbps>

Channel Separation Plot on Channel 00 - 01

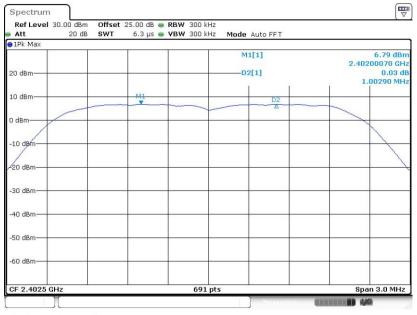
Date: 17.0CT.2019 19:44:33



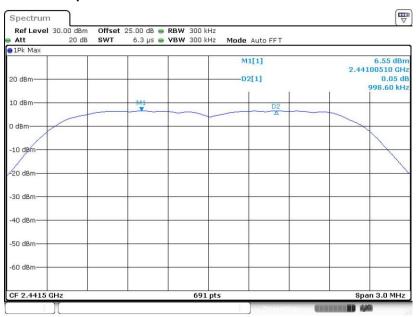
Channel Separation Plot on Channel 39 - 40

Date: 17.0CT.2019 19:04:13

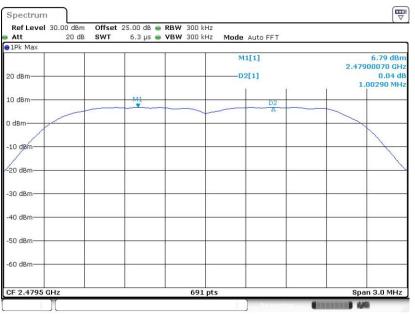
Channel Separation Plot on Channel 77 - 78



Date: 17.0CT.2019 18:59:15


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 17.0CT.2019 19:14:25

Channel Separation Plot on Channel 39 - 40

Date: 17.0CT.2019 19:18:39

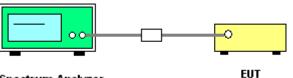
Channel Separation Plot on Channel 77 - 78

Date: 17.0CT.2019 19:22:36

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping 5. channel; RBW = 1 MHz; VBW \geq RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Test Eng	est Engineer : Owen Yang				Temperature : Relative Humidity :		21~25℃ 51~54%	
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec) (MHz)	Dwell Time (sec)			Pass/Fail	
Nomal	79	106.67	2.90	0.31		0.4	Pass	
AFH	20	53.33	2.90	0.15		0.4	Pass	

Package Transfer Time Plot RBW 1 MHz Marker 1 [1] YEW 1 MHZ Acker 1 [1] YEW 1 MHZ Acker 1 [1] YEW 1 MHZ Marker 1 [1] YEW 1 MHZ Acker 1 [1] YEW 1 MHZ Acker 1 [1] YEW 1 MHZ Acker 1 [1] O OFFRET 13 dB Delta [[1] J dd I dd J dd <th colspan="

Date: 11.0CT.2019 16:34:20

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer


3.4.5 Test Result of 20dB Bandwidth

Test Engineer : Owen Yang Temperature : 21~25°C					-	
	Relative Humidity : 51~54%					
Mod.	Data Rate	Nтх	CH.	Freq. (MHz)	20db BW (MH	lz) Pass/Fail
DH	1Mbps	1	0	2402	0.926	Pass
DH	1Mbps	1	39	2441	0.903	Pass
DH	1Mbps	1	78	2480	0.923	Pass
2DH	2Mbps	1	0	2402	1.316	Pass
2DH	2Mbps	1	39	2441	1.311	Pass
2DH	2Mbps	1	78	2480	1.316	Pass
3DH	3Mbps	1	0	2402	1.281	Pass
3DH	3Mbps	1	39	2441	1.281	Pass
3DH	3Mbps	1	78	2480	1.276	Pass

<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 17.0CT.2019 18:45:03

20 dB Bandwidth Plot on Channel 39

Date: 17.0CT.2019 18:49:40

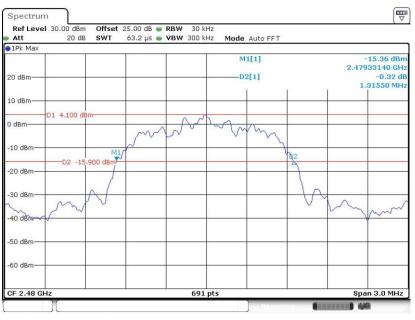
20 dB Bandwidth Plot on Channel 78

Date: 17.0CT.2019 18:53:48

<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 17.0CT.2019 19:11:16



20 dB Bandwidth Plot on Channel 39

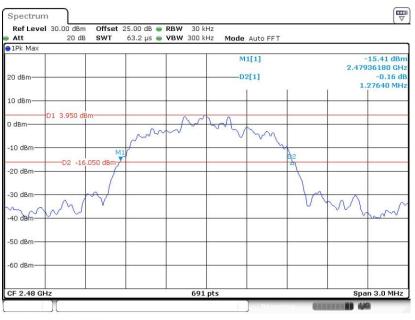
Date: 17.0CT.2019 19:05:38

20 dB Bandwidth Plot on Channel 78

Date: 17.0CT.2019 19:01:15

<3Mbps>

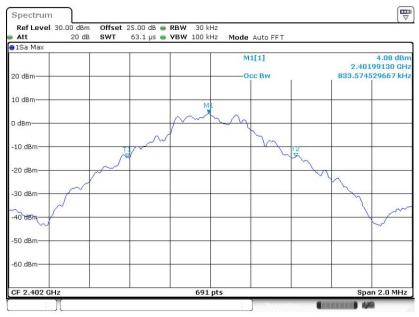
20 dB Bandwidth Plot on Channel 00


Date: 17.0CT.2019 19:15:55

20 dB Bandwidth Plot on Channel 39

Date: 17.0CT.2019 19:20:03

20 dB Bandwidth Plot on Channel 78


Date: 17.0CT.2019 19:24:21

3.4.6 Test Result of 99% Occupied Bandwidth

Test Engineer : Owen Yang					•	21~25℃ 51~54%	
Mod.	Data Rate	Νтх	CH.	Freq. (MHz)	99% Bandwidth (MHz)	Pass/Fail	
DH	1Mbps	1	0	2402	0.834	Pass	
DH	1Mbps	1	39	2441	0.831	Pass	
DH	1Mbps	1	78	2480	0.834	Pass	
2DH	2Mbps	1	0	2402	1.181	Pass	
2DH	2Mbps	1	39	2441	1.190	Pass	
2DH	2Mbps	1	78	2480	1.187	Pass	
3DH	3Mbps	1	0	2402	1.169	Pass	
3DH	3Mbps	1	39	2441	1.169	Pass	
3DH	3Mbps	1	78	2480	1.169	Pass	

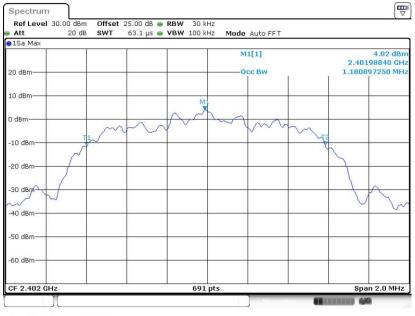
<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 17.0CT.2019 18:46:17

99% Occupied Bandwidth Plot on Channel 39

Date: 17.0CT.2019 18:50:12



Date: 17.0CT.2019 18:54:41

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 17.0CT.2019 19:12:24

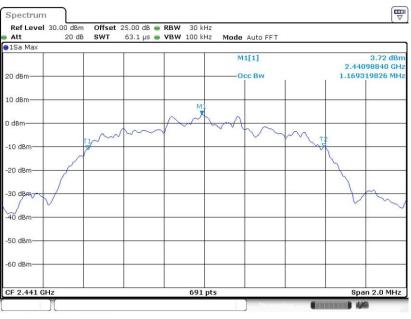
99% Occupied Bandwidth Plot on Channel 39

Date: 17.0CT.2019 19:06:13

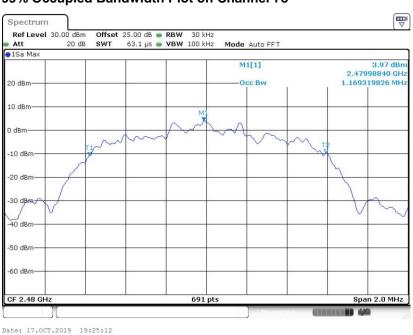


99% Occupied Bandwidth Plot on Channel 78

Date: 17.0CT.2019 19:02:09


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 17.0CT.2019 19:16:46

99% Occupied Bandwidth Plot on Channel 39

Date: 17.0CT.2019 19:20:38

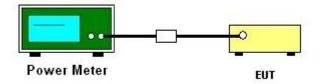
99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Test Engine	er: Ov	ven Yang	H	Cemperature : Relative Humidity :	21~25℃ 51~54%
			ľ		01-0470
DH	CH.	Ντχ	Peak Power (dBm)	Power Limit (dBm)) Test Result
	0	1	7.05	20.97	Pass
DH1	39 1		6.36	20.97	Pass
	78 1		6.67	20.97	Pass
2DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)) Test Result
	0	1	9.49	9.49 20.97	
2DH1	39	1	9.03 20.97		Pass
	78	1	9.45	20.97	Pass
3DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)) Test Result
	0	1	10.04	20.97	Pass
3DH1	39	1	9.61	20.97	Pass
	78	1	10.04	20.97	Pass

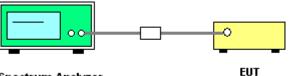
Test Engine	er :	Owen Yang	Temperat Relative	ture : Humidity :	21~25℃ 51~54%
DH	CH.	Νтх	Average Power (dBm)	Duty	/ Factor (dB)
	0	1	7.01		5.12
DH1	39	1	6.40	5.12	
	78	1	6.77	5.12	
2DH	CH.	Νтх	Average Power (dBm)	Duty	/ Factor (dB)
	0	1	6.93		5.07
2DH1	39	1	6.34		5.07
	78	1	6.68		5.07
3DH	CH.	Νтх	Average Power (dBm)	Duty	/ Factor (dB)
	0	1	7.05		5.03
3DH1	39	1	6.35		5.03
	78	1	6.63		5.03

3.5.6 Test Result of Average Output Power (Reporting Only)

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

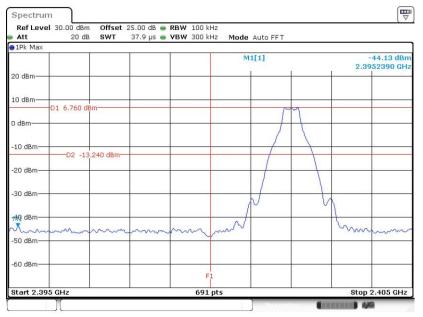
See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

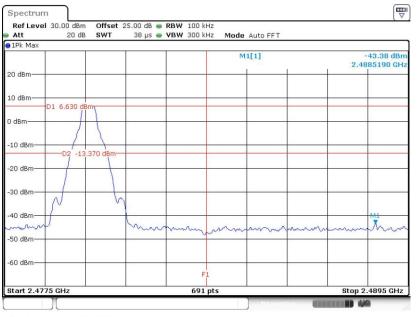
3.6.4 Test Setup

Spectrum Analyzer



3.6.5 Test Result of Conducted Band Edges

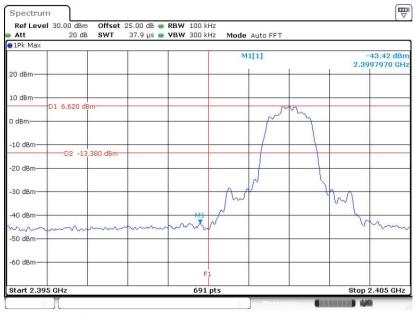
Teet Engineer .	Owen Yang	Temperature :	21~25 ℃
Test Engineer :		Relative Humidity :	51~54%


<1Mbps>

Low Band Edge Plot on Channel 00

Date: 17.0CT.2019 18:45:24

High Band Edge Plot on Channel 78



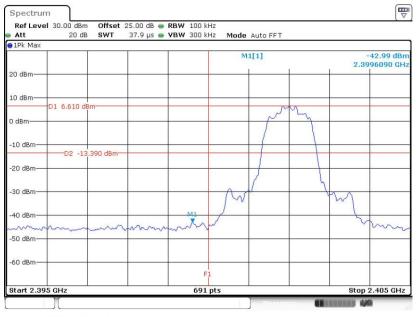
Date: 17.0CT.2019 18:54:06

<2Mbps>

Low Band Edge Plot on Channel 00

Date: 17.0CT.2019 19:11:51

High Band Edge Plot on Channel 78



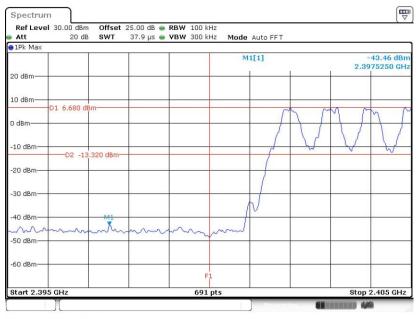
Date: 17.0CT.2019 19:01:35


<3Mbps>

Low Band Edge Plot on Channel 00

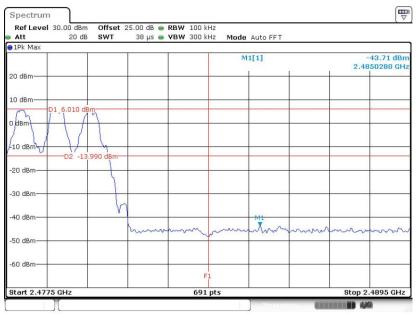
Date: 17.0CT.2019 19:16:13

High Band Edge Plot on Channel 78



Date: 17.0CT.2019 19:24:39

3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 17.0CT.2019 18:57:02

Hopping Mode High Band Edge Plot

Date: 17.0CT.2019 18:56:34

<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 17.0CT.2019 18:57:41

Hopping Mode High Band Edge Plot



Date: 17.0CT.2019 18:58:01

<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 17.0CT.2019 19:31:29

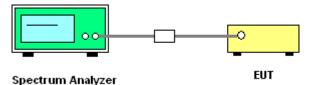
Hopping Mode High Band Edge Plot

Date: 17.0CT.2019 19:27:29

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

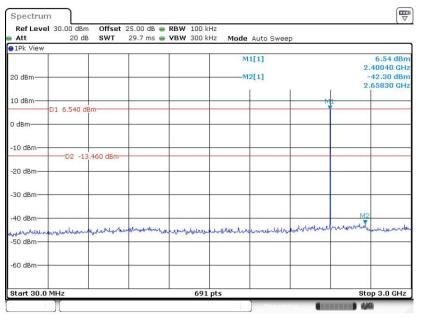
See list of measuring equipment of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

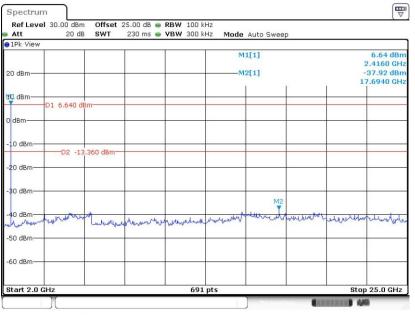
3.7.4 Test Setup

TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4



3.7.5 Test Result of Conducted Spurious Emission

Teet Engineer -	Owen Yang	Temperature :	21~25 ℃	
Ie	st Engineer :	Owen rang	Relative Humidity :	51~54%


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 17.0CT.2019 18:46:51

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 17.0CT.2019 18:47:17

Att	20 dB	SWT	29.7 ms 👄	VBW 300 k	Hz Mode	Auto Sweep			
1Pk View									
20 dBm						1[1] 2[1]	6.09 dB 2.43910 GF -42.41 dB 2.53800 GF		
10 dBm	D1 6.090 dB						M1		
0 dBm	01 0.090 ub								
-10 dBm		910 dBm							
-20 dBm	01 10	510 000						-	
-30 dBm									
-40 dBm		ы					M2	Murrender	
50 dBm-	arizenergikliste	endy Hulm	alle marked	huhuhuhuha	adoten Martillian Jersea	almetry at the stand of the sta	nonentreteration	- construction	
60 dBm									
Start 30.0				691				Stop 3.0 GHz	

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 17.0CT.2019 18:50:47

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 30.00	0 dBm Offset 20 dB SWT	25.00 dB 👄 I							
1Pk View	20 db Swi	230 ms 👄 '	BW 300 K	Hz Mode	Auto Sweep)			
20 dBm					1[1] 2[1]	-		6.15 dBm 2.4490 GHz -37.81 dBm 7.6940 GHz	
DdBm-D1 6.3	150 dBm								
10 dBm	2 -13.850 dBm-								
20 dBm						<u></u>			
0 dBm	Pour a	h k 10-	al Bhurn	m. walling	M2	which the	لمهمه المعلية	M. M. Acheron	
50 dBm	barran	a marine	Profference						
60 dBm									
Start 2.0 GHz	-	-	691	nts			Sto	p 25.0 GHz	

Date: 17.0CT.2019 18:51:14