

Report No.: FR3D0512C

FCC RADIO TEST REPORT

FCC ID : UZ7PS30JP

Equipment : Personal Shopper

Brand Name : ZEBRA Model Name : PS30JP

Applicant : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Manufacturer : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Standard : FCC Part 15 Subpart C §15.247

The product was received on Dec. 22, 2023 and testing was performed from Dec. 25, 2023 to Feb. 08, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Lunis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868 Page Number : 1 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

Table of Contents

Report No.: FR3D0512C

: 02

Hi	story c	of this test report	3
Sι	ımmar	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	9
	1.4	Testing Location	9
	1.5	Applicable Standards	9
2	Test (Configuration of Equipment Under Test	10
	2.1	Carrier Frequency and Channel	10
	2.2	Test Mode	11
	2.3	Connection Diagram of Test System	12
	2.4	Support Unit used in test configuration and system	13
	2.5	EUT Operation Test Setup	13
	2.6	Measurement Results Explanation Example	13
3	Test F	14	
	3.1	6dB and 99% Bandwidth Measurement	14
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Conducted Band Edges and Spurious Emission Measurement	17
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	
4	List o	f Measuring Equipment	25
5	Meas	urement Uncertainty	27
Αŗ	pendi	x A. Conducted Test Results	
Αŗ	pendi	x B. AC Conducted Emission Test Result	
Αŗ	pendi	x C. Radiated Spurious Emission	
•	•	x D. Radiated Spurious Emission Plots	
•	•	x E. Duty Cycle Plots	
Ar	pendi	x F. Setup Photographs	

TEL: 886-3-327-0868 Page Number : 2 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

History of this test report

Report No.: FR3D0512C

Report No.	Version	Description	Issue Date
FR3D0512C	01	Initial issue of report	Feb. 08, 2024
FR3D0512C	02	 Revise Testing Date Revise Product Specification of Equipment Under Test and Antenna Directional Gain Revise Product Specification is subject to this standard This report is an updated version, replacing the report issued on Feb. 08, 2024. 	Feb. 20, 2024

TEL: 886-3-327-0868 Page Number : 3 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

Summary of Test Result

Report No.: FR3D0512C

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark				
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-				
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-				
3.2	15.247(b)	Power Output Measurement	Pass	-				
3.3	15.247(e)	Power Spectral Density	Pass	-				
0.4	45.047(1)	45.047(1)	45.047(1)	45.047/ 0	45.047(1)	Conducted Band Edges	Pass	-
3.4 15.247(d)		Conducted Spurious Emission	Pass	-				
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	1.62 dB under the limit at 2483.52 MHz				
3.6	15.207	AC Conducted Emission	Pass	6.80 dB under the limit at 0.56 MHz				
3.7	15.203	Antenna Requirement	Pass	-				

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the
 regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who
 shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken
 into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng Report Producer: Wilda Wei

TEL: 886-3-327-0868 Page Number : 4 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature						
Equipment	Personal Shopper					
Brand Name	ZEBRA					
Model Name	PS30JP					
FCC ID	UZ7PS30JP					
EUT supports Radios application	NFC WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE					
HW Version	EV2					
SW Version	13-13-11.00-TG-U00-PRD-NEM-04					
FW Version	FUSION_QA_6_1.1.0.004_T					
MFD	13DEC23					
EUT Stage	Identical Prototype					

Report No.: FR3D0512C

Remark: The EUT's information above is declared by manufacturer.

Specification of Accessories					
Battery 1 Brand Name Zebra Part Number BT-000355-0020				BT-000355-0020	
Battery 2	Brand Name	Zebra	Part Number	BT-000355-5020	

Supported Unit Used in Test Configuration and System					
1-slot cradle	Brand Name	Zebra	Part Number	CRD-MC18-1SLOT-01	
Adapter	Brand Name	Zebra	Part Number	PWR-BGA12V108W0WW	
Programming USB cable	Brand Name	Zebra	Part Number	CBL-PS30-USBCHG-01	
Soft Holster	Brand Name	Zebra	Part Number	SG-PS20-SFTHLT-01	

TEL: 886-3-327-0868 Page Number : 5 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard				
Tx/Rx Frequency Range	2412 MHz ~ 2462 MHz			
Maximum Output Power to Antenna	MIMO <ant. 0+1=""> 802.11b: 24.31 dBm / 0.2698 W 802.11g: 25.26 dBm / 0.3357 W 802.11n HT20: 25.11 dBm / 0.3243 W 802.11n HT40: 23.66 dBm / 0.2323 W 802.11ax HE20: 25.31 dBm / 0.3396 W 802.11ax HE40: 23.86 dBm / 0.2432 W</ant.>			
99% Occupied Bandwidth	MIMO <ant. 0=""> 802.11b: 13.09 MHz 802.11g: 16.38 MHz 802.11n HT20: 17.53MHz 802.11n HT40: 36.06 MHz 802.11ax HE20: 18.93 MHz 802.11ax HE40: 37.76 MHz MIMO <ant. 1=""> 802.11b: 12.99 MHz 802.11g: 16.38 MHz 802.11n HT20: 17.53MHz 802.11n HT40: 36.16MHz 802.11ax HE20: 18.98 MHz 802.11ax HE40: 37.76 MHz</ant.></ant.>			
Antenna Type / Gain	<ant. 0="">: IFA Antenna with gain 1.50 dBi<ant. 1="">: IFA Antenna with gain 2.10 dBi</ant.></ant.>			
Type of Modulation	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ax: OFDMA (BPSK / QPSK / 16QAM / 64QAM / 256QAM / 1024QAM)			
Antenna Function Description	Ant. 0 Ant. 1 802.11 b/g/n/ax V V MIMO 802.11ax V V TXBF			

Report No.: FR3D0512C

Remark:

- MIMO Ant. 0+1 Directional Gain is a calculated result from MIMO Ant. 1 and MIMO Ant. 0. The formula used in calculation is documented in section 1.1.1.
- 2. Power of MIMO Ant. 1 + Ant. 0 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 0.
- 3. 802.11ax Support Tx Beamforming mode, and the manufacturer declares that Tx Beamforming power/EIRP is less than CDD mode 3dbm, so CDD mode cover Tx Beamforming mode.
- 4. The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

TEL: 886-3-327-0868 Page Number : 6 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

1.2.1 Antenna Directional Gain

<For CDD Mode>

Follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)ii)

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

 G_{ANT} is set equal to the gain of the antenna having the highest gain.

For PSD measurements, the directional gain calculation.

$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

Report No.: FR3D0512C

where

Each antenna is driven by no more than one spatial stream;

 $N_{\rm SS}$ = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the *k*th antenna is being fed by spatial stream *j*, or zero if it is not; G_k is the gain in dBi of the kth antenna.

As minimum N_{SS}=1 is supported by EUT, the formula can be simplified as:

Directional gain =
$$10*log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}] dBi$$

Where G1, G2....GN denote single antenna gain.

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 0	Ant 1	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
2.4GHz	1.50	2.10	2.10	4.82	0.00	0.00

Calculation example:

If a device has two antenna, G_{ANT0}= 1.50dBi; G_{ANT1}=2.10dBi

Directional gain of power measurement = max(1.50, 2.10) + 0 = 2.10 dBi

Directional gain of PSD derived from formula which is

10 x log { { [10^ (1.50 dBi / 20) + 10^ (2.10 dBi / 20)] ^ 2 } / 2 }

= 4.82 dBi

Power and PSD limit reduction = Composite gain -6dBi, (min = 0)

TEL: 886-3-327-0868 Page Number : 7 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

<TXBF Modes>

The EUT supports beamforming modes, then

Follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)e)ii)

Directional gain = GANT + 10 log(NANT/NSS) dBi,

where NSS = the number of independent spatial streams of data and GANT is the antenna gain in dBi

Report No.: FR3D0512C

$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

 N_{SS} = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not;

 G_k is the gain in dBi of the kth antenna.

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 0	Ant 1	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
2.4GHz	1.50	2.10	4.82	4.82	0.00	0.00

Calculation example:

Directional gain is derived from formula which is

10 x log { { [10^ (1.50 dBi / 20) + 10^ (2.10 dBi / 20)] ^ 2 } / 2 }

= 4.82 dBi

Power and PSD limit reduction = Composite gain -6dBi, (min = 0)

 TEL: 886-3-327-0868
 Page Number
 : 8 of 27

 FAX: 886-3-327-0855
 Issue Date
 : Feb. 20, 2024

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
Test Site NO.	TH05-HY, CO07-HY, 03CH11-HY

Report No.: FR3D0512C

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-0868 Page Number : 9 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

Report No.: FR3D0512C

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
0400 0400 F MILE	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437		

TEL: 886-3-327-0868 Page Number : 10 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

2.2 Test Mode

This device support 26/52/106/242/484-tone RU.

The PSD of partial RU is reduced to be smaller than full RU according to TCB workshop interim guidance Oct. 2018.

Report No.: FR3D0512C

The 802.11ax mode is investigated among different tones, full resource units (RU), partial resource units. The partial RU has no higher power than full RU's, thus the full RU is chosen as main test configuration.

The 242-tone RU is covered by 20MHz channel, 484-tone RU is covered by 40MHz channel.

The SISO mode conducted power is covered by MIMO mode per chain, so only the MIMO mode is tested.

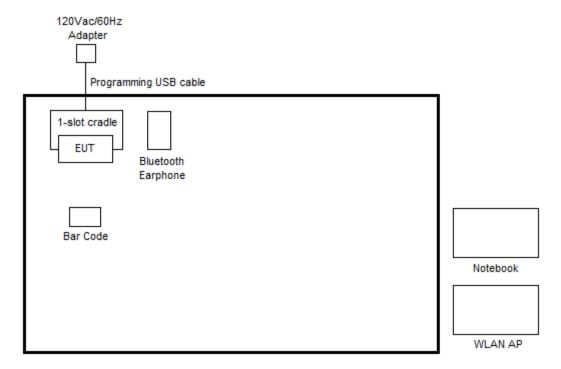
The final test modes include the worst data rates for each modulation shown in the table below.

MIMO Antenna

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ax HE20	MCS0
802.11ax HE40	MCS0

Remark: The conducted power level of each chain in MIMO mode is equal or higher than SISO mode.

	Test Cases					
AC	Mode 1 :WLAN (2.4GHz) Link + Bluetooth Link + NFC read + Scanner + AC Adapter					
Conducted	Conducted + Battery 1 + Programming USB cable + 1-slot cradle + Fast Charge Mode					
Emission @1.5AMP						
Remark: For Radiated Test Cases, the tests were performed with Battery 1.						


	2				
Ch. #	802.11b	802.11g	802.11n	802.11ax	802.11ax
			HT40	HE20	HE40
Low	01	01	-	01	03
Middle	06	06	06	06	06
High	11	11	-	11	09

Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.

TEL: 886-3-327-0868 Page Number : 11 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

Report No.: FR3D0512C

<WLAN Tx Mode>

TEL: 886-3-327-0868 Page Number : 12 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	2. WLAN AP ASUS RT-AC52		MSQ-RTAC4A00	N/A	Unshielded, 1.8 m	
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bar Code	N/A	N/A	N/A	N/A	N/A

Report No.: FR3D0512C

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Ver. 4.0.00206.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-0868 Page Number : 13 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

3 Test Result

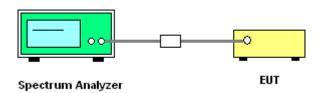
3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.

Report No.: FR3D0512C

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set
 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

Please refer to Appendix A.

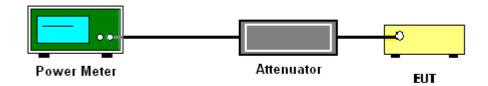
TEL: 886-3-327-0868 Page Number : 14 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna with directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR3D0512C


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 15 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

3.3 Power Spectral Density Measurement

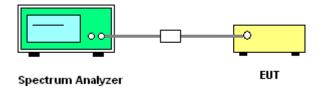
3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

Report No.: FR3D0512C

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (c): Measure and add 10 log(N_{ANT}) dB.

With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity $10 \log(N_{ANT})$ dB is added to each spectrum value before comparing to the emission limit. The addition of $10 \log(N_{ANT})$ dB serves to apportion the emission limit among the N_{ANT} outputs so that each output is permitted to contribute no more than $1/N_{ANT}$ th of the PSD limit .

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

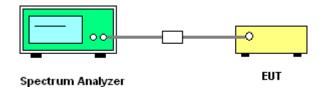
TEL: 886-3-327-0868 Page Number : 16 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement.

Report No.: FR3D0512C


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 17 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR3D0512C

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

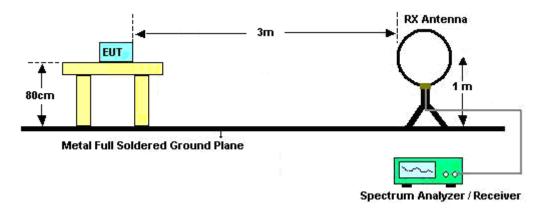
3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

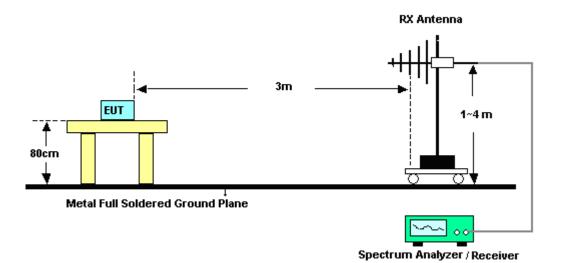
- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".

TEL: 886-3-327-0868 Page Number : 18 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024


7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Report No.: FR3D0512C

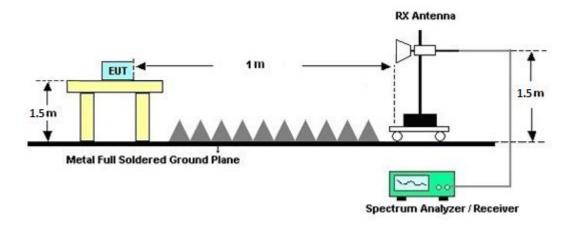
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3 MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.


3.5.4 Test Setup

For radiated emissions below 30MHz

TEL: 886-3-327-0868 Page Number : 19 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

For radiated emissions from 30MHz to 1GHz


Report No.: FR3D0512C

For radiated test from 1GHz to 18GHz

TEL: 886-3-327-0868 Page Number : 20 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

For radiated test above 18GHz

Report No.: FR3D0512C

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-0868 Page Number : 21 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

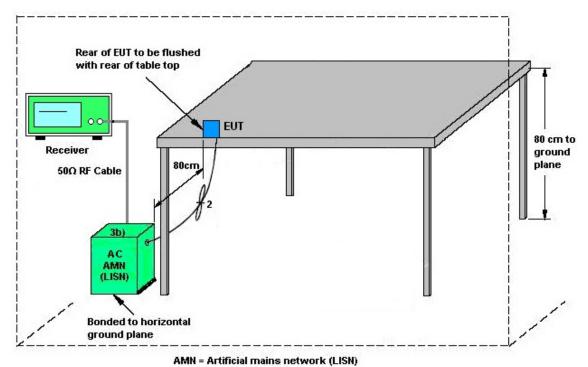
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR3D0512C

Frequency of Emission	Conducted Limit (dBµV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

TEL: 886-3-327-0868 Page Number : 22 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

3.6.4 Test Setup

Report No.: FR3D0512C

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-0868 Page Number : 23 of 27 FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR3D0512C

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

TEL: 886-3-327-0868 Page Number : 24 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 07, 2023	Jan. 08, 2024~ Jan. 28, 2024	Oct. 06, 2024	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 12, 2023	Jan. 08, 2024~ Jan. 28, 2024	Sep. 11, 2024	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Aug. 17, 2023	Jan. 08, 2024~ Jan. 28, 2024	Aug. 16, 2024	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1223	18GHz~40GHz	Jul. 10, 2023	Jan. 08, 2024~ Jan. 28, 2024	Jul. 09, 2024	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 08, 2023	Jan. 08, 2024~ Jan. 28, 2024	Dec. 07, 2024	(036011-01)
Preamplifier	E-INSTRUME NT TECH LTD.	ERA-10M-7000- MR	EC1900245	10MHz-7GHz	Jan. 10, 2023	Jan. 08, 2024	Jan. 09, 2024	Radiation (03CH11-HY)
Preamplifier	E-INSTRUME NT TECH LTD.	ERA-10M-7000- MR	EC1900245	10MHz-7GHz	Jan. 09, 2024	Jan. 09, 2024~ Jan. 28, 2024	Jan. 08, 2025	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-303	17100018000 55007	1GHz~18GHz	Jun. 14, 2023	Jan. 08, 2024~ Jan. 28, 2024	Jun. 13, 2024	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Jan. 08, 2024~ Jan. 28, 2024	Jun. 26, 2024	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 05, 2023	Jan. 08, 2024~ Jan. 28, 2024	Oct. 04, 2024	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Jan. 08, 2024~ Jan. 28, 2024	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Jan. 08, 2024~ Jan. 28, 2024	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Jan. 08, 2024~ Jan. 28, 2024	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Jan. 08, 2024~ Jan. 28, 2024	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY1595/2	30MHz~40GHz	Mar. 07, 2023	Jan. 08, 2024~ Jan. 28, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 07, 2023	Jan. 08, 2024~ Jan. 28, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 07, 2023	Jan. 08, 2024~ Jan. 28, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 07, 2023	Jan. 08, 2024~ Jan. 28, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-153 0-8000-40SS	SN11	1.53G Low Pass	Sep. 11, 2023	Jan. 08, 2024~ Jan. 28, 2024	Sep. 10, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700-3 000-18000-60SS	SN3	3GHz High Pass Filter	Sep. 11, 2023	Jan. 08, 2024~ Jan. 28, 2024	Sep. 10, 2024	Radiation (03CH11-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Jan. 08, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Jan. 08, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Jan. 08, 2024	Oct. 19, 2024	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 15, 2023	Jan. 08, 2024	Mar. 14, 2024	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 05, 2023	Jan. 08, 2024	Mar. 04, 2024	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 13, 2023	Jan. 08, 2024	Mar. 12, 2024	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 20, 2023	Jan. 08, 2024	Sep. 19, 2024	Conduction (CO07-HY)

Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : 25 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Dec. 25, 2023~	Nov. 06, 2024	Conducted
riygioinetei	TEOLEE	DTW-303A	11 201990	IV/A	140V. 07, 2023	Feb. 08, 2024	140V. 00, 2024	(TH05-HY)
Power Sensor	DARE	RPR3006W	17I00015SN	10MHz~6GHz	Aug. 23, 2023	Dec. 25, 2023~	Aug. 22, 2024	Conducted
Power Sensor	DAKE	KPK3006W	O36 (NO:35)	10101112~6GHZ Aug. 23, 202		Feb. 08, 2024	Aug. 22, 2024	(TH05-HY)
Cianal Analyzar	Rohde &	FS)/40	101566	10U= 10CU=	Aug 22 2022	Dec. 25, 2023~	A 22 2024	Conducted
Signal Analyzer	Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2023	Feb. 08, 2024	Aug. 22, 2024	(TH05-HY)

Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : 26 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

5 Measurement Uncertainty

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence	3.44 dB
of 95% (U = 2Uc(y))	3.44 UD

Report No.: FR3D0512C

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.10 dB
of 95% (U = 2Uc(y))	6. IV GB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.30 dB
of 95% (U = 2Uc(y))	4.30 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.30 dB
of 95% (U = 2Uc(y))	4.30 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.30 dB	
of 95% (U = 2Uc(y))	3.30 dB	

TEL: 886-3-327-0868 Page Number : 27 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 20, 2024

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Henry Ke	Temperature:	21~25	°C
Test Date:	2023/12/25~2024/02/08	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band MIMO													
Mod.	Mod. Data Rate	NTX	CH.	Freq. (MHz)	99% Occi (MI	•		BW Hz)	6dB BW Limit (MHz)	Pass/Fail				
					Ant0	Ant1	Ant0	Ant1						
11b	1Mbps	2	1	2412	13.09	12.99	8.10	7.60	0.50	Pass				
11b	1Mbps	2	6	2437	12.94	12.84	7.62	7.14	0.50	Pass				
11b	1Mbps	2	11	2462	12.94	12.89	7.14	7.14	0.50	Pass				
11g	6Mbps	2	1	2412	16.38	16.38	15.16	15.14	0.50	Pass				
11g	6Mbps	2	6	2437	16.33	16.33	15.34	15.14	0.50	Pass				
11g	6Mbps	2	11	2462	16.28	16.28	15.60	15.16	0.50	Pass				
HT20	MCS0	2	1	2412	17.48	17.53	15.18	15.74	0.50	Pass				
HT20	MCS0	2	6	2437	17.53	17.53	15.72	15.14	0.50	Pass				
HT20	MCS0	2	11	2462	17.43	17.48	15.04	13.84	0.50	Pass				
HT40	MCS0	2	3	2422	35.86	36.06	33.08	34.48	0.50	Pass				
HT40	MCS0	2	6	2437	36.06	36.06	35.12	34.56	0.50	Pass				
HT40	MCS0	2	9	2452	36.06	36.16	34.80	35.08	0.50	Pass				

TEST RESULTS DATA Average Output Power

	2.4GHz Band MIMO															
Mod.	Mod. Data Rate	Ntx	CH.	Freq. (MHz)		Average conducte Power (dBm)		Por Lir	ucted wer mit Bm)	D (dl	G Bi)	EIF Pov (dB	ver	Por Lir	RP wer mit Bm)	Pass /Fail
					Ant0	Ant1	SUM	Ant0	Ant1	Ant0	Ant1	Ant0	Ant1	Ant0	Ant1	
11b	1Mbps	2	1	2412	21.40	21.00	24.21	30.00		2.10		26.31		36.00		Pass
11b	1Mbps	2	6	2437	21.30	20.80	24.07	30.00		2.10		26.17		36.00		Pass
11b	1Mbps	2	11	2462	21.40	21.20	24.31	30.00		2.10		26.41		36.00		Pass
11g	6Mbps	2	1	2412	22.40	22.10	25.26	30	.00	2.10		27.36		36.00		Pass
11g	6Mbps	2	6	2437	22.20	21.80	25.01	30	.00	2.10		27.11		36.00		Pass
11g	6Mbps	2	11	2462	21.70	21.40	24.56	30	.00	2.	10	26.66		36.00		Pass
HT20	MCS0	2	1	2412	22.10	21.70	24.91	30	.00	2.	10	27.	01	36	.00	Pass
HT20	MCS0	2	6	2437	22.20	22.00	25.11	30	.00	2.	10	27.	21	36	.00	Pass
HT20	MCS0	2	11	2462	21.30	21.10	24.21	30	.00	2.	10	26.	31	36	.00	Pass
HT40	MCS0	2	3	2422	20.60	20.70	23.66	30	.00	2.	2.10 25.76		36.00		Pass	
HT40	MCS0	2	6	2437	14.70	15.20	17.97	30	.00	2.	2.10 20.07		07	36.00		Pass
HT40	MCS0	2	9	2452	15.90	16.10	19.01	30	.00	2.	10	21.11		36.00		Pass

Note: Measured power (dBm) has offset with cable loss.

<u>TEST RESULTS DATA</u> <u>Peak Power Spectral Density</u>

	2.4GHz Band MIMO													
Mod.	Data Rate	NTX	CH.	Freq.		Peak PSD (dBm/3kHz)			DG (dBi)		Peak PSD Limit (dBm/3kHz)			
	Nate			(IVIITIZ)	Ant0	Ant1	Worse + 3.01	Ant0	Ant1	Ant0	Ant1			
11b	1Mbps	2	1	2412	-2.88	-3.31	0.13	4.	4.82		8.00			
11b	1Mbps	2	6	2437	-2.42	-2.86	0.59	4.82		8.00		Pass		
11b	1Mbps	2	11	2462	-1.10	-1.47	1.91	4.82		8.00		Pass		
11g	6Mbps	2	1	2412	-3.90	-4.04	-0.89	4.82		8.00		Pass		
11g	6Mbps	2	6	2437	-4.16	-4.44	-1.15	4.	4.82		8.00			
11g	6Mbps	2	11	2462	-4.50	-4.67	-1.49	4.	4.82 8.00		00	Pass		
HT20	MCS0	2	1	2412	-3.63	-3.99	-0.62	4.	82	8.0	00	Pass		
HT20	MCS0	2	6	2437	-3.30	-3.44	-0.29	4.	82	8.	00	Pass		
HT20	MCS0	2	11	2462	-3.21	-4.04	-0.20	4.	82	8.	00	Pass		
HT40	MCS0	2	3	2422	-6.10	-6.25	-3.09	4.82		4.82 8.00		Pass		
HT40	MCS0	2	6	2437	-13.21	-12.51	-9.50	4.82		4.82 8.00		Pass		
HT40	MCS0	2	9	2452	-11.22	-10.99	-7.98	4.	82	8.	Pass			

Measured power density (dBm) has offset with cable loss.

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band MIMO												
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	RU Config	99% Occi (MI	upied BW Hz)	6dB (M	BW Hz)	6dB BW Limit (MHz)	Pass/Fail		
						Ant0	Ant1	Ant0	Ant1				
HE20	MCS0	2	1	2412	Full	18.93	18.93	15.80	17.93	0.50	Pass		
HE20	MCS0	2	6	2437	Full	18.93	18.98	16.25	16.90	0.50	Pass		
HE20	MCS0	2	11	2462	Full	18.83	18.78	17.73	18.18	0.50	Pass		
HE40	MCS0	2	3	2422	Full	37.56	37.56	34.56	35.48	0.50	Pass		
HE40	MCS0	2	6	2437	Full	37.76	37.76	37.12	36.08	0.50	Pass		
HE40	MCS0	2	9	2452	Full	37.76	37.76	37.84	35.16	0.50	Pass		

TEST RESULTS DATA Average Output Power

	2.4GHz Band MIMO																
Mod.	Mod. Data Rate	N TX	CH.	Freq. (MHz)	RU Config	Average Conducted Power (dBm)			Conducted Power Limit (dBm)		DG (dBi)		EIRP Power (dBm)		EIRP Power Limit (dBm)		Pass /Fail
						Ant0	Ant1	SUM	Ant0	Ant1	Ant0	Ant1	Ant0	Ant1	Ant0	Ant1	
HE20	MCS0	2	1	2412	Full	22.30	21.90	25.11	30	.00	2.	10	27	21	36	.00	Pass
HE20	MCS0	2	1	2412	26/0	15.20	15.50	18.36	30	.00	2.	10	20	46	36	.00	Pass
HE20	MCS0	2	1	2412	52/37	17.80	18.00	20.91	30	.00	2.10		23	.01	36.00		Pass
HE20	MCS0	2	1	2412	106/53	20.80	21.10	23.96	30	.00	2.	2.10		26.06		36.00	
HE20	MCS0	2	6	2437	Full	22.40	22.20	25.31	30	.00	2.10		27.41		36.00		Pass
HE20	MCS0	2	6	2437	26/4	14.80	15.10	17.96	30	30.00		2.10		20.06		36.00	
HE20	MCS0	2	6	2437	52/38	17.10	17.60	20.37	30	.00	2.10		22.47		36.00		Pass
HE20	MCS0	2	6	2437	106/53	20.90	21.00	23.96	30	.00	2.10		26.06		36.00		Pass
HE20	MCS0	2	11	2462	Full	21.50	21.30	24.41	30	.00	2.	2.10 26.51		.51	36.00		Pass
HE20	MCS0	2	11	2462	26/8	13.90	14.80	17.38	30	.00	2.	10	19	48	36	.00	Pass
HE20	MCS0	2	11	2462	52/40	16.70	17.30	20.02	30	.00	2.	10	22	.12	36	.00	Pass
HE20	MCS0	2	11	2462	106/54	19.80	20.30	23.07	30	.00	2.	10	25.	.17	36	.00	Pass
HE40	MCS0	2	3	2422	Full	20.80	20.90	23.86	30	.00	2.	10	25.	.96	36	.00	Pass
HE40	MCS0	2	3	2422	242/61	20.10	20.30	23.21	30	.00	2.	10	25.	.31	36	.00	Pass
HE40	MCS0	2	6	2437	Full	14.90	15.40	18.17	30	.00	2.	10	20.	.27	36	.00	Pass
HE40	MCS0	2	6	2437	242/61	13.70	13.30	16.51	30	.00	2.	2.10 18.61		61	36	.00	Pass
HE40	MCS0	2	9	2452	Full	16.10	16.30	19.21	30	.00	2.10 21.31		31	36	.00	Pass	
HE40	MCS0	2	9	2452	242/62	15.50	15.90	18.71	30	.00	2.	10	20.81		36.00		Pass

Note: Measured power (dBm) has offset with cable loss.

<u>TEST RESULTS DATA</u> <u>Peak Power Spectral Density</u>

	2.4GHz Band MIMO												
Mod.	Data Rate	NTX	тх СН.	Freq.	RU Config		Peak PSD (dBm/3kHz)		D (dl		Lir	Peak PSD Limit (dBm/3kHz)	
	rtaic			(1011 12)		Ant0	Ant1	Worse + 3.01	Ant0	Ant1	Ant0	Ant1	
HE20	MCS0	2	1	2412	Full	-3.21	-2.95	0.06	4.8	32	8.0	00	Pass
HE20	MCS0	2	1	2412	26/0	-3.25	-3.21	-0.20	4.8	32	8.0	00	Pass
HE20	MCS0	2	1	2412	52/37	-3.32	-3.02	-0.01	4.8	32	8.0	00	Pass
HE20	MCS0	2	1	2412	106/53	-3.22	-3.01	0.00	4.82		8.00		Pass
HE20	MCS0	2	6	2437	Full	-3.52	-2.74	0.27	4.82		8.00		Pass
HE20	MCS0	2	6	2437	26/4	-3.63	-3.18	-0.17	4.82		8.00		Pass
HE20	MCS0	2	6	2437	52/38	-3.57	-3.16	-0.15	4.8	32	8.00		Pass
HE20	MCS0	2	6	2437	106/53	-3.62	-2.82	0.19	4.8	4.82 8.00		00	Pass
HE20	MCS0	2	11	2462	Full	-3.74	-4.05	-0.73	4.8	32	8.0	00	Pass
HE20	MCS0	2	11	2462	26/8	-3.99	-4.35	-0.98	4.8	32	8.0	00	Pass
HE20	MCS0	2	11	2462	52/40	-3.92	-4.30	-0.91	4.8	32	8.0	00	Pass
HE20	MCS0	2	11	2462	106/54	-3.77	-4.07	-0.76	4.8	32	8.0	00	Pass
HE40	MCS0	2	3	2422	Full	-7.13	-7.47	-4.12	4.8	32	8.0	00	Pass
HE40	MCS0	2	3	2422	242/61	-7.24	-7.64	-4.23	4.8	32	8.0	00	Pass
HE40	MCS0	2	6	2437	Full	-13.55	-13.16	-10.15	4.8	32	8.0	00	Pass
HE40	MCS0	2	6	2437	242/61	-13.75	-13.18	-10.17	4.8	4.82 8.00		00	Pass
HE40	MCS0	2	9	2452	Full	-12.02	-11.38	-8.37	4.8	4.82 8.00		Pass	
HE40	MCS0	2	9	2452	242/62	-12.10	-11.43	-8.42	4.8	32	8.0	00	Pass

Measured power density (dBm) has offset with cable loss.

6dB and 99% Occupied Bandwidth

<802.11b>

Report No.: FR3D0512C

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

<802.11g>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : A2-1 of 42

FAX: 886-3-327-0855

<802.11n HT20>

Report No.: FR3D0512C

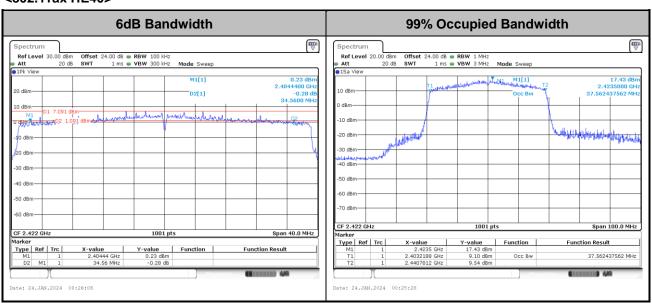
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

<802.11n HT40>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : A2-2 of 42

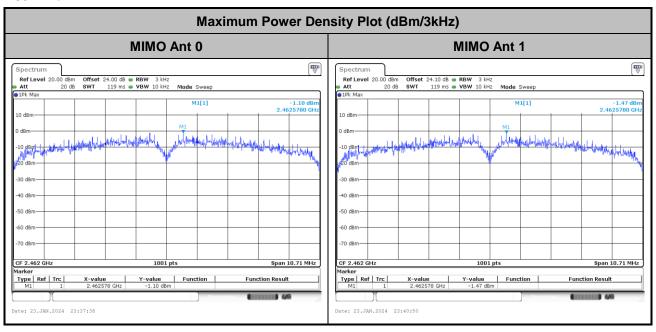
FAX: 886-3-327-0855


<802.11ax HE20>

Report No.: FR3D0512C

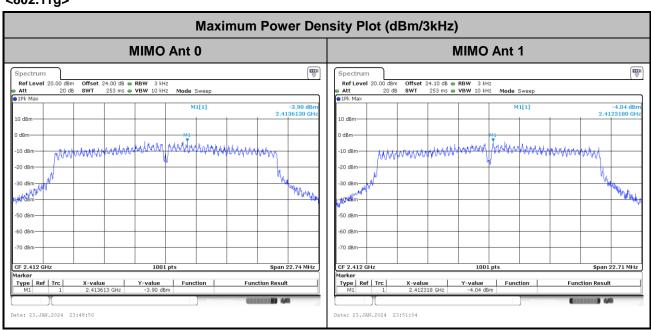
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

<802.11ax HE40>

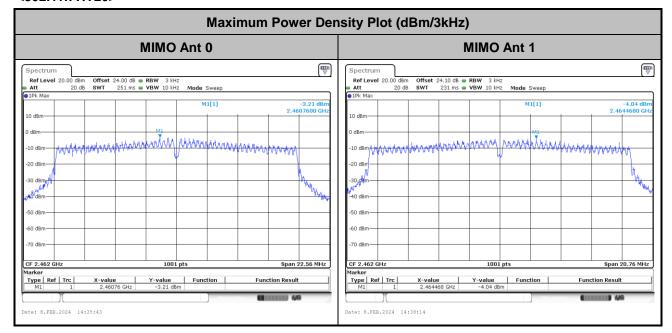


Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

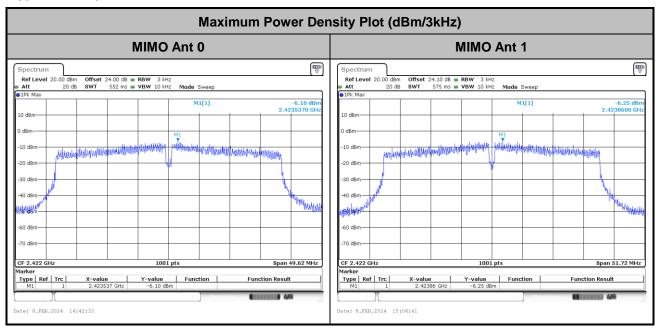
TEL: 886-3-327-0868 Page Number : A2-3 of 42


Power Spectral Density(dBm/3kHz)

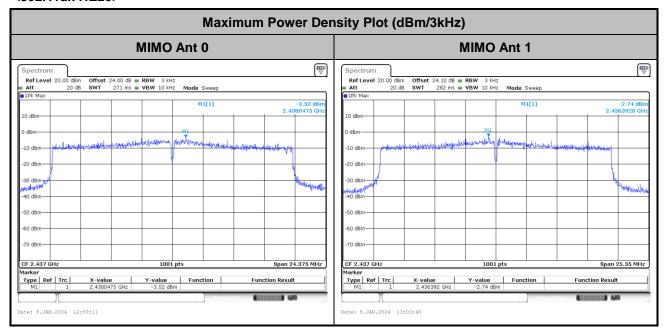
<802.11b>


Report No.: FR3D0512C

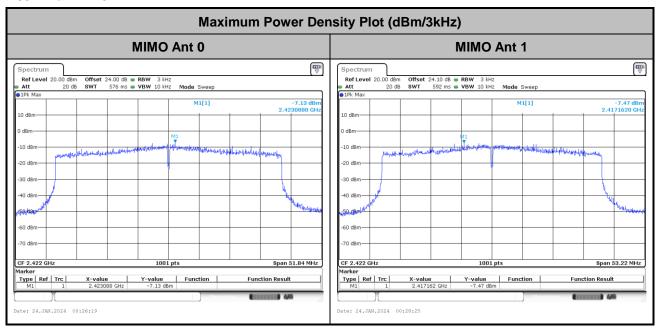
<802.11g>


TEL: 886-3-327-0868 Page Number : A2-4 of 42

<802.11n HT20>


Report No.: FR3D0512C

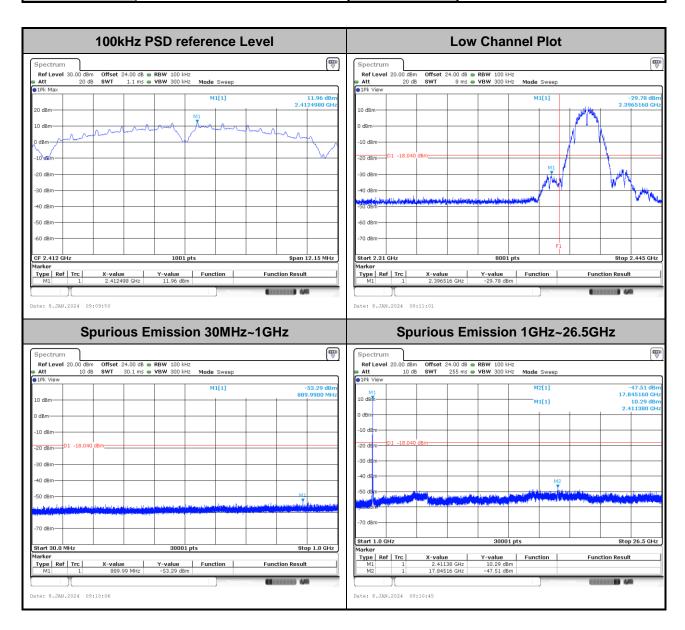
<802.11n HT40>


TEL: 886-3-327-0868 Page Number : A2-5 of 42

<802.11ax HE20>

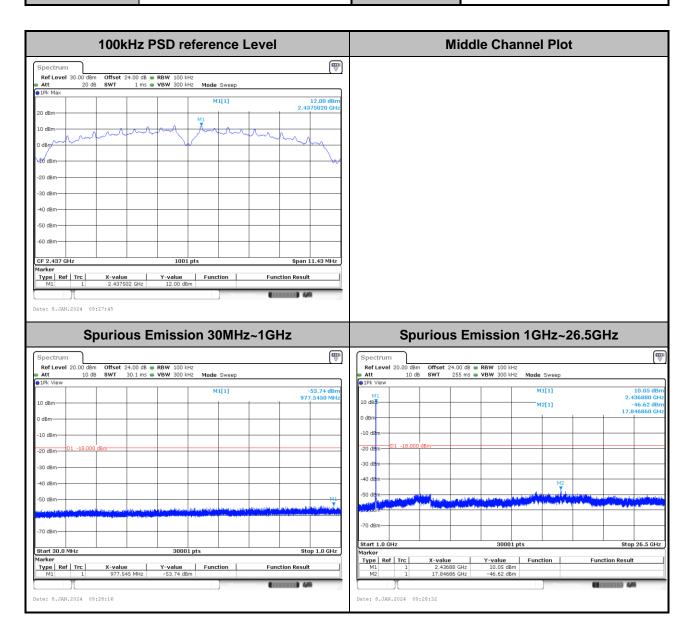
Report No.: FR3D0512C

<802.11ax HE40>

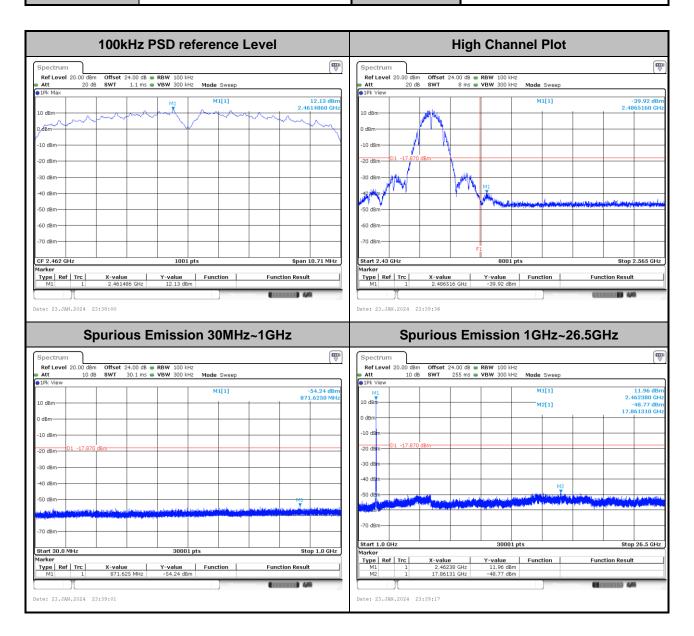

TEL: 886-3-327-0868 Page Number : A2-6 of 42

Band Edges and Spurious Emission

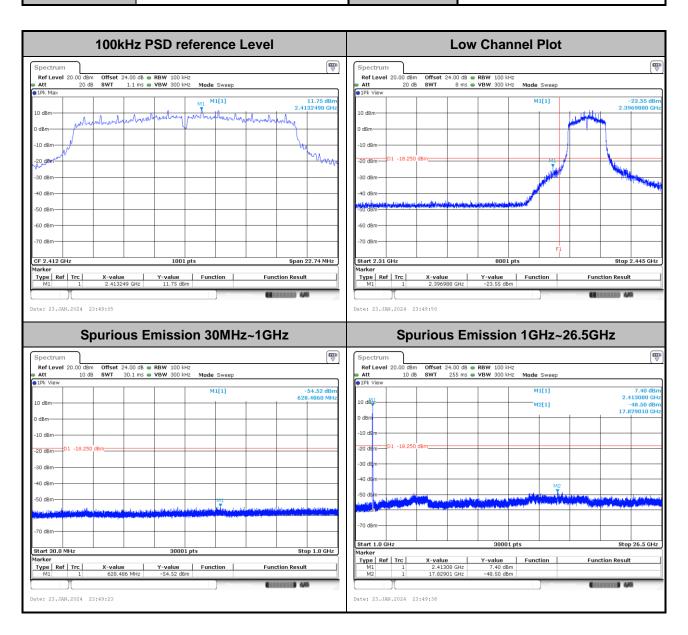
Number of TX = 2, Ant. 0 (Measured)


Test Mode: 802.11b Test Channel: 01

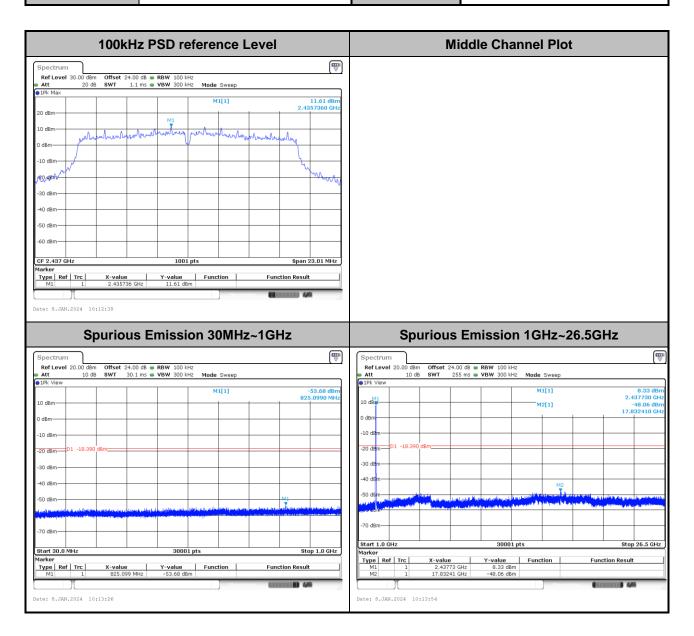
Report No.: FR3D0512C


TEL: 886-3-327-0868 Page Number : A2-7 of 42

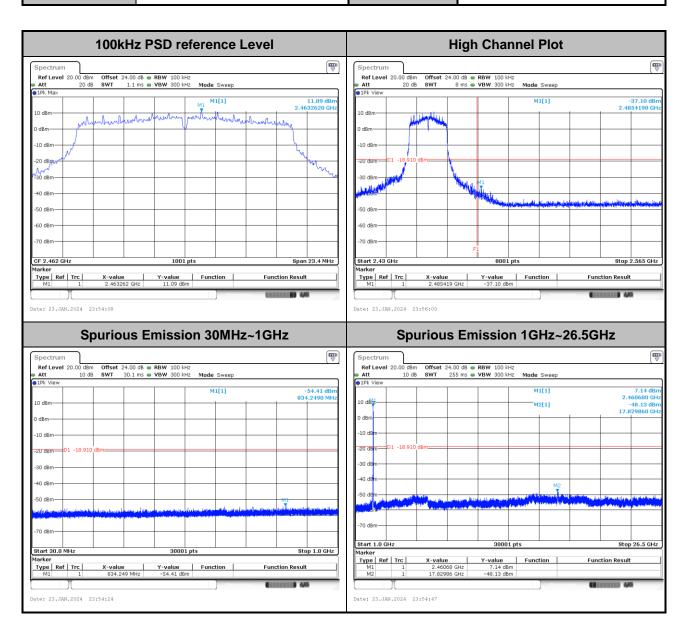
Report No.: FR3D0512C


TEL: 886-3-327-0868 Page Number : A2-8 of 42

Report No.: FR3D0512C

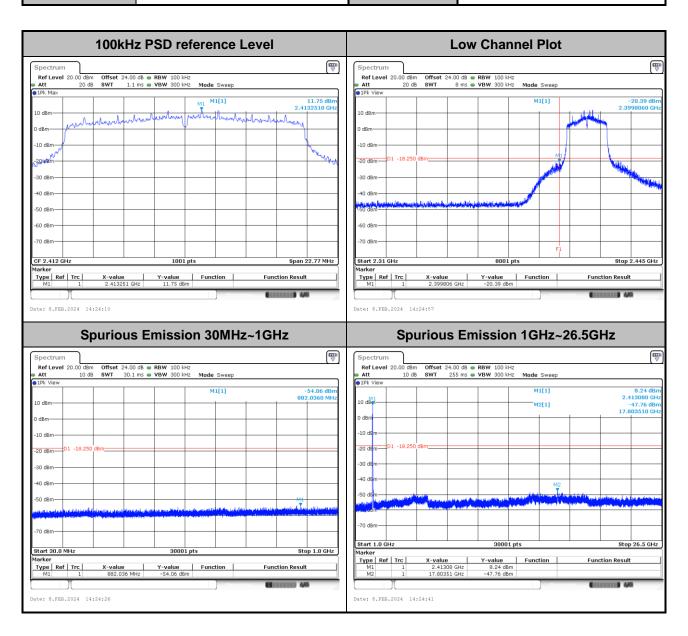

TEL: 886-3-327-0868 Page Number : A2-9 of 42

Report No.: FR3D0512C


TEL: 886-3-327-0868 Page Number : A2-10 of 42

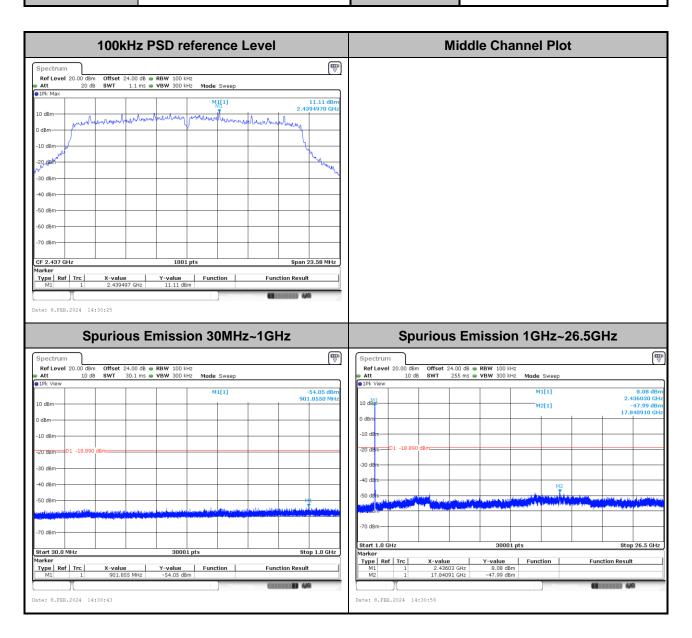
Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : A2-11 of 42

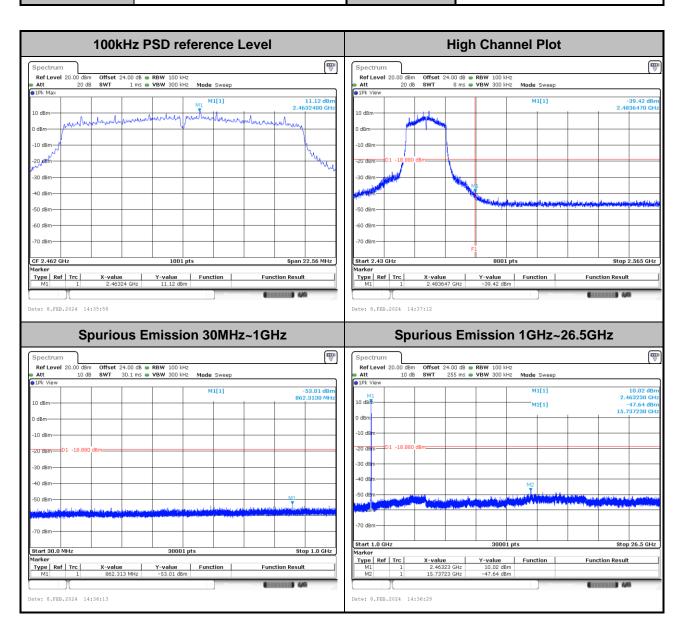

Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : A2-12 of 42

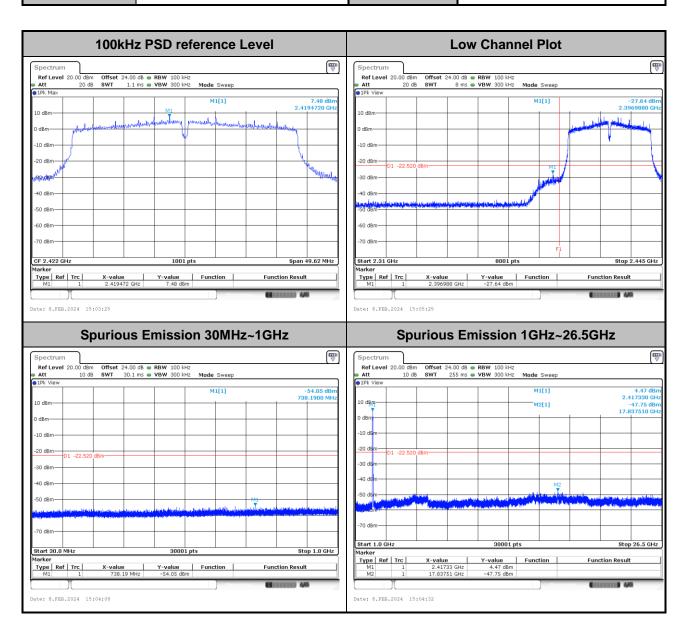
Test Mode: 802.11n HT20 Test Channel: 01


Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : A2-13 of 42

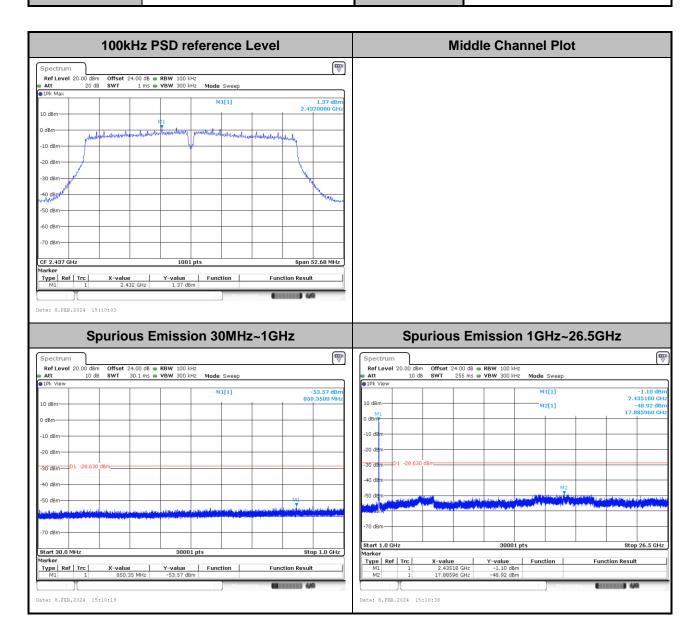

Test Mode : 802.11n HT20 **Test Channel :** 06

Report No.: FR3D0512C


TEL: 886-3-327-0868 Page Number : A2-14 of 42

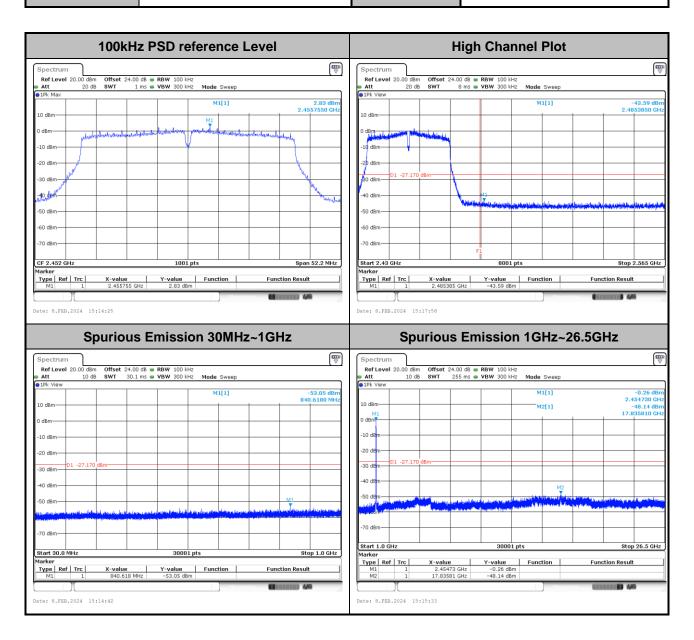
Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : A2-15 of 42


Report No.: FR3D0512C

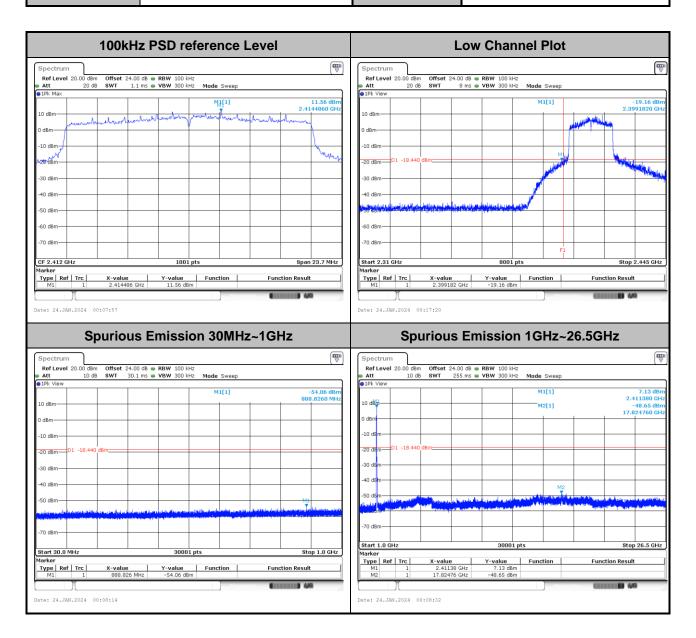
TEL: 886-3-327-0868 Page Number : A2-16 of 42

Test Mode: 802.11n HT40 Test Channel: 06


Report No.: FR3D0512C

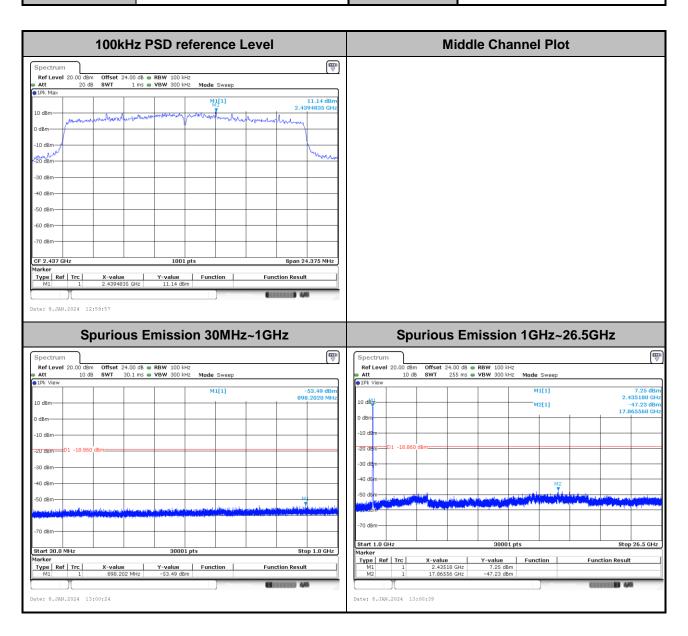
TEL: 886-3-327-0868 Page Number : A2-17 of 42

Test Mode: 802.11n HT40 Test Channel: 09


Report No.: FR3D0512C

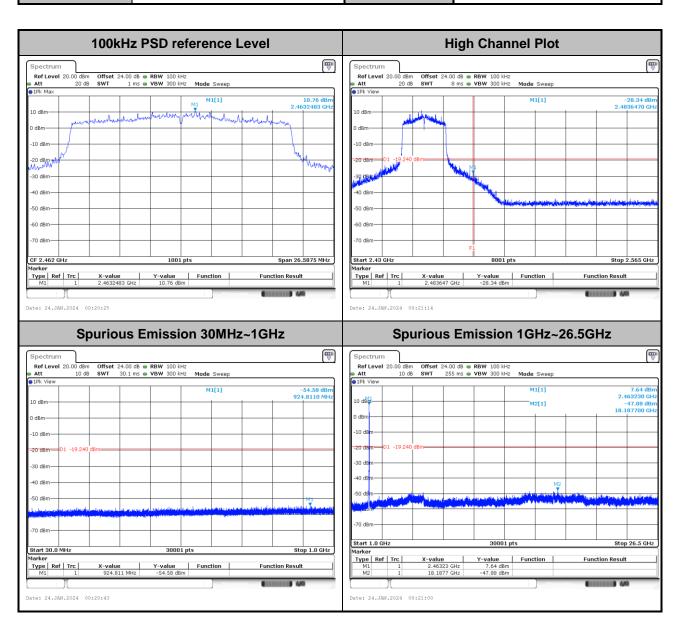
TEL: 886-3-327-0868 Page Number : A2-18 of 42

Test Mode: 802.11ax HE20_FullRU Test Channel: 01


Report No.: FR3D0512C

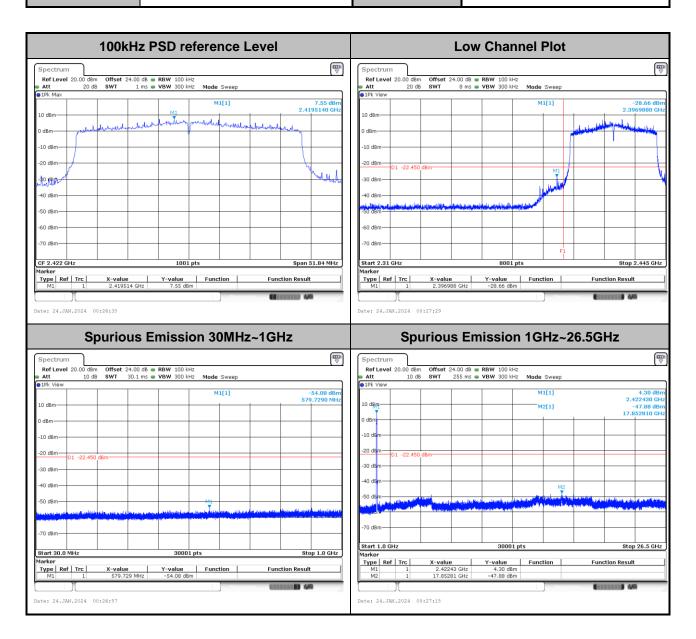
TEL: 886-3-327-0868 Page Number : A2-19 of 42

Test Mode: 802.11ax HE20_FullRU Test Channel: 06


Report No.: FR3D0512C

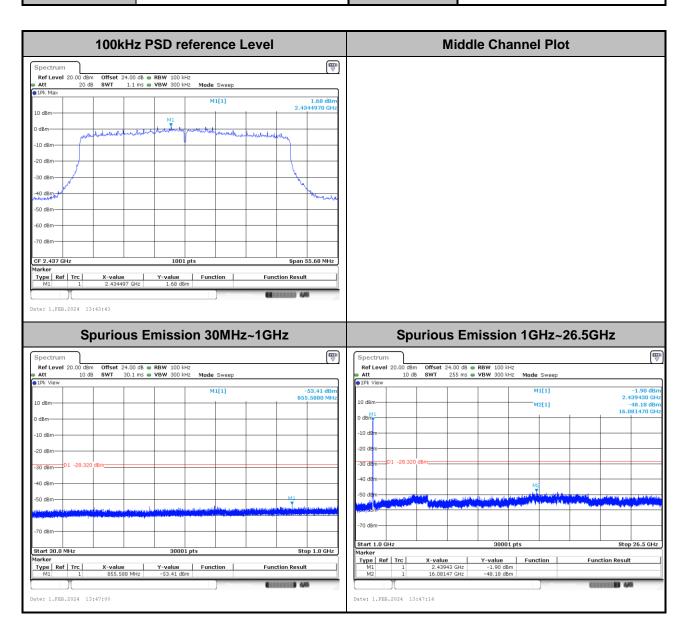
TEL: 886-3-327-0868 Page Number : A2-20 of 42

Test Mode: 802.11ax HE20_FullRU Test Channel: 11


Report No.: FR3D0512C

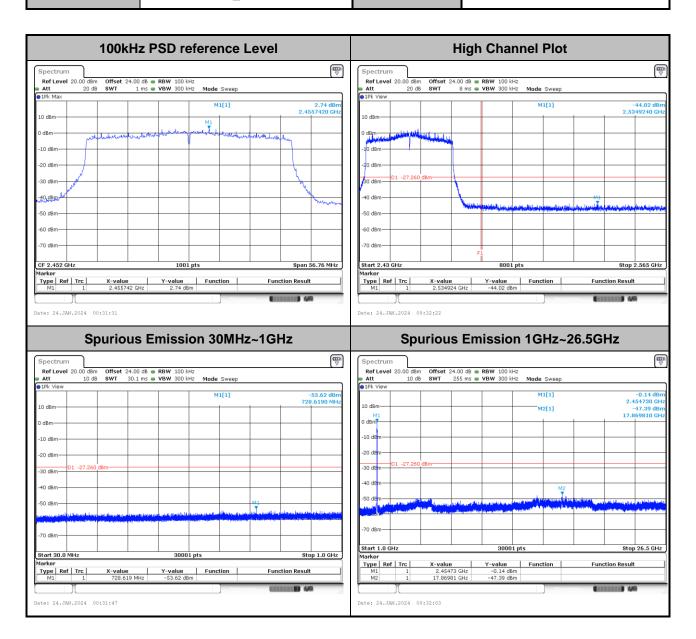
TEL: 886-3-327-0868 Page Number : A2-21 of 42

Test Mode: 802.11ax HE40_FullRU Test Channel: 03


Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : A2-22 of 42

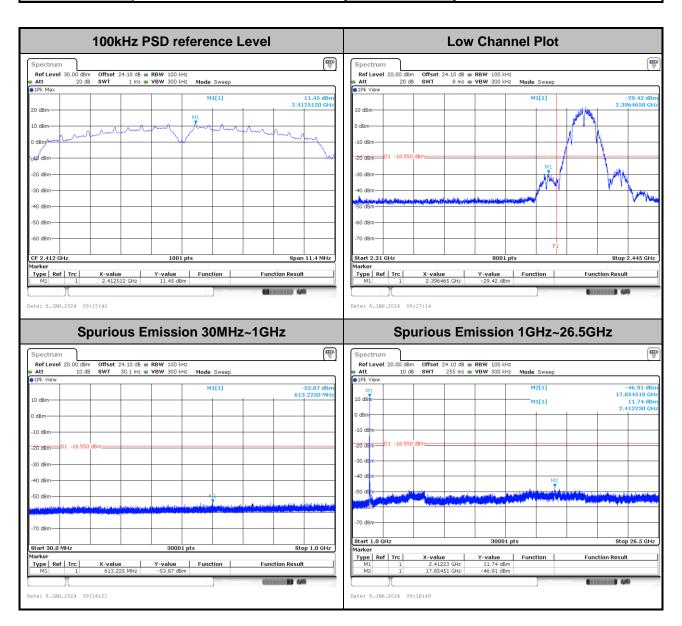
Test Mode: 802.11ax HE40_FullRU Test Channel: 06


Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : A2-23 of 42

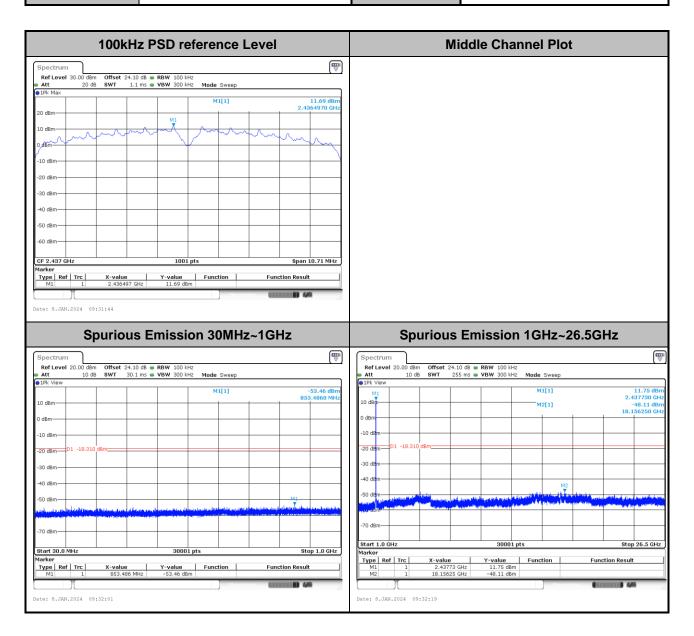
Test Mode: 802.11ax HE40_FullRU Test Channel: 09

Report No.: FR3D0512C

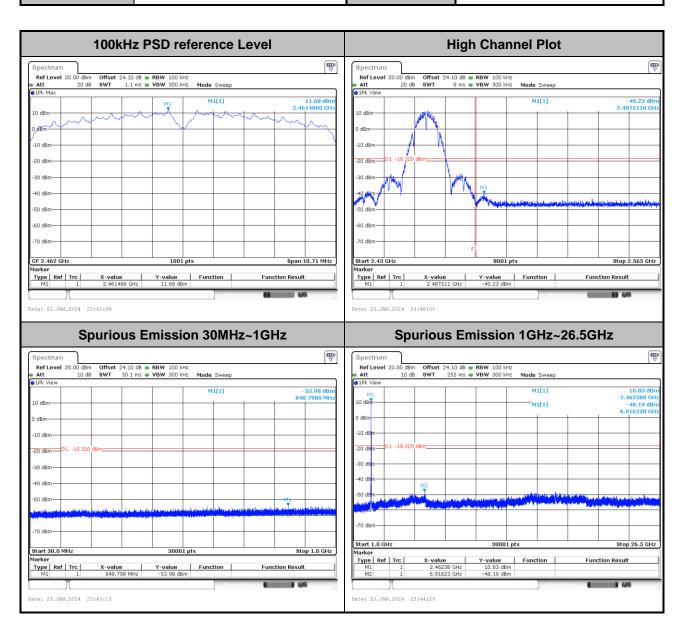


TEL: 886-3-327-0868 Page Number : A2-24 of 42

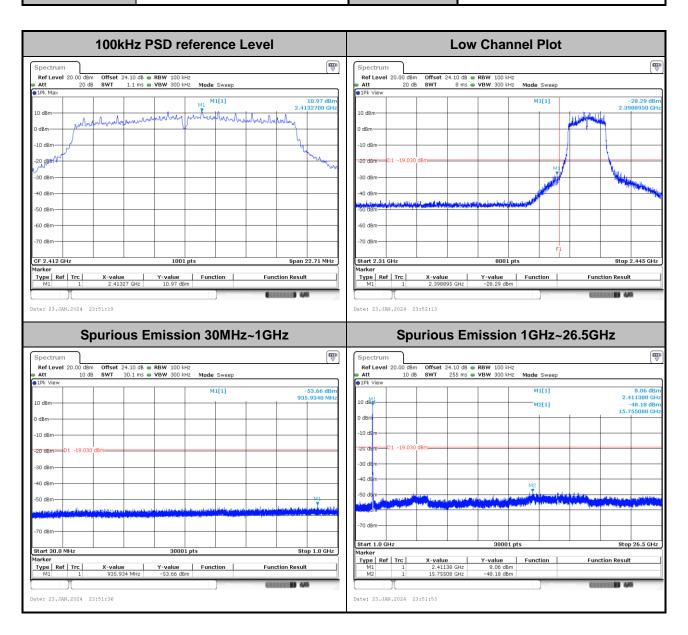
Number of TX = 2, Ant. 1 (Measured)


Test Mode: 802.11b Test Channel: 01

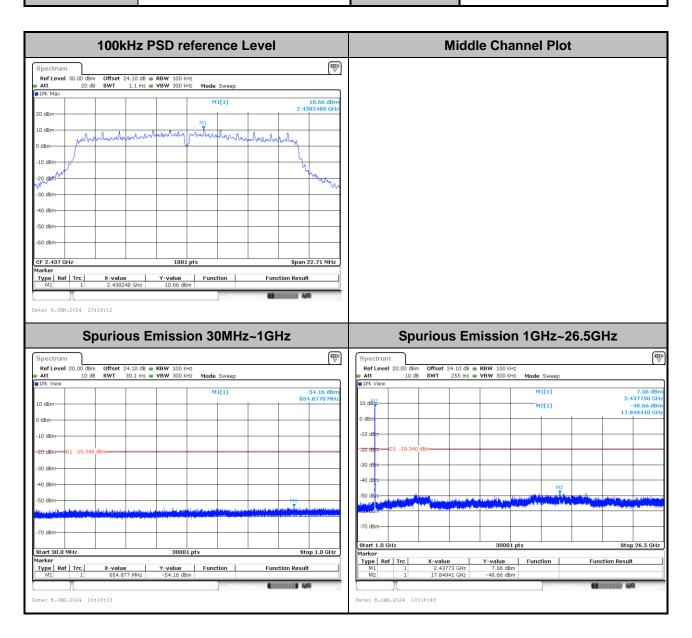
Report No.: FR3D0512C


TEL: 886-3-327-0868 Page Number : A2-25 of 42

Report No.: FR3D0512C


TEL: 886-3-327-0868 Page Number : A2-26 of 42

Report No.: FR3D0512C


TEL: 886-3-327-0868 Page Number : A2-27 of 42

Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : A2-28 of 42

Report No.: FR3D0512C

TEL: 886-3-327-0868 Page Number : A2-29 of 42