

FCC RADIO TEST REPORT

FCC ID	:	UZ7MC945B
Equipment	:	Mobile Computer
Brand Name	:	ZEBRA
Model Name	:	MC945B
Applicant	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Nov. 06, 2023 and testing was performed from Nov. 10, 2023 to Jan. 08, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Lunis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number: 1 of 25Issue Date: Jan. 29, 2024Report Version: 01

Table of Contents

His	tory o	f this test report	3
Sur	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	12
	2.6	Measurement Results Explanation Example	12
3	Test	Result	13
	3.1	6dB and 99% Bandwidth Measurement	13
	3.2	Output Power Measurement	14
	3.3	Power Spectral Density Measurement	15
	3.4	Conducted Band Edges and Spurious Emission Measurement	16
	3.5	Radiated Band Edges and Spurious Emission Measurement	17
	3.6	AC Conducted Emission Measurement	21
	3.7	Antenna Requirements	23
4	List o	of Measuring Equipment	24
5	Meas	urement Uncertainty	25
Арр	oendix	A. Conducted Test Results	
Арр	oendix	B. AC Conducted Emission Test Result	
Арр	oendix	C. Radiated Spurious Emission	
Арр	oendix	D. Radiated Spurious Emission Plots	
Арр	oendix	E. Duty Cycle Plots	

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR3N2803B	01	Initial issue of report	Jan. 29, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	11.46 dB under the limit at 33.78 MHz
3.6	15.207	AC Conducted Emission	Pass	8.37 dB under the limit at 0.43 MHz
3.7	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng Report Producer: Wilda Wei

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment Mobile Computer			
Brand Name	ZEBRA		
Model Name	MC945B		
FCC ID	UZ7MC945B		
Sample 1	SE5800 + with Camera		
Sample 2	SE4770 + without Camera		
EUT supports Radios application	WCDMA/LTE/5G NR/GNSS/NFC WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE		
HW Version	DV2		
SW Version	13-10-31.00-TN-U00-PRD-NEM-04		
FW Version	FUSION_QA_6_1.1.0.004_T		
MFD	10NOV23		
EUT Stage	Identical Prototype		

Remark: The EUT's information above is declared by manufacturer.

Specification of Accessories					
Adapter USB Wall Charger	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US	
Battery 1 Standard Battery (7000mAh)	Brand Name	Zebra	Model Number	BT-000370	
Battery 2 Standard Battery (7000mAh)	Brand Name	Zebra	Model Number	BT-000370B	
Earphone USB-C Audio Headset	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01	
USB Cable (Type C to Type A)	Brand Name	Zebra	Part Number	CBL-TC2X-USBC-01	
Holster	Brand Name	Zebra	Part Number	SG-MC9X-SHLSTG-01	
USB Cable (CUP)	Brand Name	Zebra	Part Number	CBL-MC93-USBCHG-01	

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel (37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	<pre><ant. 6=""> Bluetooth – LE (1Mbps): 2.30 dBm / 0.0017 W Bluetooth – LE (2Mbps): 2.20 dBm / 0.0017 W <ant. 7=""> Bluetooth – LE (1Mbps): 1.30 dBm / 0.0013 W Bluetooth – LE (2Mbps): 1.20 dBm / 0.0013 W</ant.></ant.></pre>			
99% Occupied Bandwidth	<ant. 6=""> 1.017 MHz for 1Mbps 2.002 MHz for 2Mbps <ant. 7=""> 1.019 MHz for 1Mbps 2.002 MHz for 2Mbps</ant.></ant.>			
Antenna Type / Gain	<ant. 6="">: PIFA with gain 1.95 dBi <ant. 7="">: PIFA with gain 2.51 dBi</ant.></ant.>			
Type of Modulation	Bluetooth LE: GFSK			

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.		
	TH05-HY, CO07-HY, 03CH21-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

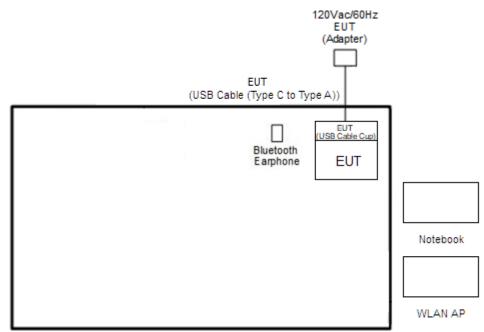
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

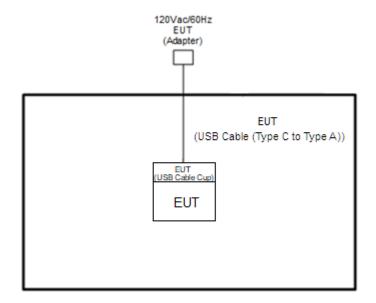
	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
	Bluetooth – LE / GFSK				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
	<ant. 6=""></ant.>				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
Radiated	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
Test Cases	<ant. 7=""></ant.>				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				

The following summary table is showing all test modes to demonstrate in compliance with the standard.



	Summary table of Test Cases				
Test Item Data Rate / Modulation					
	Mode 1: Keypad + MP3 Play + WLAN (2.4GHz) Link + Bluetooth Link + Scan +				
AC Conducted	Battery 1 Standard Battery (7000mAh) + USB Cable (Type C to Type A)				
Emission	with USB Cable (CUP) (Charging from Adapter USB Wall Charger) for				
	Sample 1				
Remark:					
1. For Radiated Test Cases, the tests were performed with Battery 1 Standard Battery (7000mAh) and Sample 1.					

2. For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.


2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth-LE Tx Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC52	MSQ-RTAC4A00	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bar Code	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT v.4.0.211.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

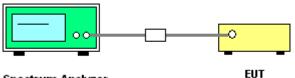
= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

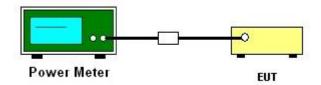
3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

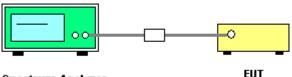
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

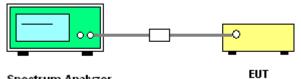
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of Conducted Band Edges Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

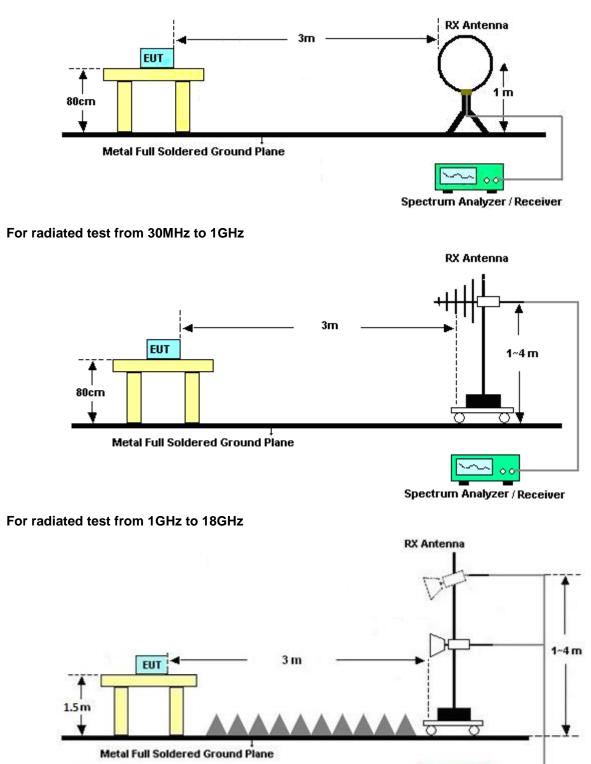
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

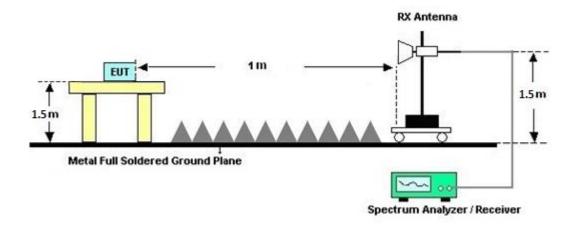
3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup


For radiated test below 30MHz

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

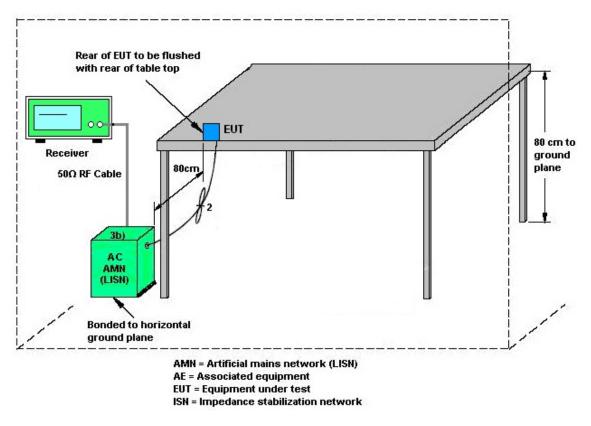
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of omission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
LOOP Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 12, 2023	Dec. 09, 2023~ Dec. 15, 2023	Sep. 11, 2024	Radiation (03CH21-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802N 1D01N-06	55606 & 08	30MHz~1GHz	Oct. 15, 2023	Dec. 09, 2023~ Dec. 15, 2023	Oct. 14, 2024	Radiation (03CH21-HY)
Double Ridged Guide Horn Antenna	RFSPIN	DRH18-E	LE2C03A18EN	1GHz~18GHz	Jul. 12, 2023	Dec. 09, 2023~ Dec. 15, 2023	Jul. 11, 2024	Radiation (03CH21-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1223	18GHz~40GHz	Jul. 10, 2023	Dec. 09, 2023~ Dec. 15, 2023	Jul. 09, 2024	Radiation (03CH21-HY)
Amplifier	SONOMA	310N	421580	30MHz~1GHz	Jul. 15, 2023	Dec. 09, 2023~ Dec. 15, 2023	Jul. 14, 2024	Radiation (03CH21-HY)
Amplifier	EMEC	EM01G18GA	060876	1GHz~18GHz	Sep. 28, 2023	Dec. 09, 2023~ Dec. 15, 2023	Sep. 27, 2024	Radiation (03CH21-HY)
Preamplifier	EMEC	EM18G40G	060871	18GHz~40GHz	Aug. 30, 2023	Dec. 09, 2023~ Dec. 15, 2023	Aug. 29, 2024	Radiation (03CH21-HY)
Spectrum Analyzer	Keysight	N9010B	MY62170358	10Hz~44GHz	Aug. 28, 2023	Dec. 09, 2023~ Dec. 15, 2023	Aug. 27, 2024	Radiation (03CH21-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 07, 2023	Dec. 09, 2023~ Dec. 15, 2023	Mar. 06, 2024	Radiation (03CH21-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804397/2,8046 12/2,804614/2	30MHz~40GHz	Oct. 24, 2023	Dec. 09, 2023~ Dec. 15, 2023	Oct. 23, 2024	Radiation (03CH21-HY)
Hygrometer	TECPEL	DTM-303A	TP211568	N/A	Oct. 30, 2022	Dec. 09, 2023~ Dec. 15, 2023	Oct. 29, 2024	Radiation (03CH21-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Dec. 09, 2023~ Dec. 15, 2023	N/A	Radiation (03CH21-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Dec. 09, 2023~ Dec. 15, 2023	N/A	Radiation (03CH21-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Dec. 09, 2023~ Dec. 15, 2023	N/A	Radiation (03CH21-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Dec. 09, 2023~ Dec. 15, 2023	N/A	Radiation (03CH21-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Dec. 20, 2023	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Dec. 20, 2023	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Dec. 20, 2023	Oct. 19, 2024	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 15, 2023	Dec. 20, 2023	Mar. 14, 2024	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 05, 2023	Dec. 20, 2023	Mar. 04, 2024	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 13, 2023	Dec. 20, 2023	Mar. 12, 2024	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 20, 2023	Dec. 20, 2023	Sep. 19, 2024	Conduction (CO07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Nov. 10, 2023~ Jan. 08, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	17I00015SNO3 6 (NO:35)	10MHz~6GHz	Aug. 23, 2023	Nov. 10, 2023~ Jan. 08, 2024	Aug. 22, 2024	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2023	Nov. 10, 2023~ Jan. 08, 2024	Aug. 22, 2024	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.44 dB
of 95% (U = 2Uc(y))	3.44 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.40 dB
of 95% (U = 2Uc(y))	0.40 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.60 dB
of 95% (U = 2Uc(y))	4.00 UB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.60 dB
of 95% (U = 2Uc(y))	4.00 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.50 dB
of 95% (U = 2Uc(y))	5.50 GB

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Mina Liu	Temperature:	21~25	°C
Test Date:	2023/11/10~2024/01/08	Relative Humidity:	51~54	%

<Ant.6>

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.017	0.676	0.50	Pass		
BLE	1Mbps	1	19	2440	1.017	0.680	0.50	Pass		
BLE	1Mbps	1	39	2480	1.017	0.674	0.50	Pass		

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u>									
Мос	d. Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	E 1Mbps	1	0	2402	2.00	30.00	1.95	3.95	36.00	Pass
BLE	E 1Mbps	1	19	2440	1.10	30.00	1.95	3.05	36.00	Pass
BLE	E 1Mbps	1	39	2480	2.30	30.00	1.95	4.25	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	0.65	-13.70	1.95	8.00	Pass	
BLE	1Mbps	1	19	2440	-0.32	-14.67	1.95	8.00	Pass	
BLE	1Mbps	1	39	2480	1.25	-13.15	1.95	8.00	Pass	

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
BLE	2Mbps	1	0	2402	1.994	1.168	0.50	Pass			
BLE	2Mbps	1	19	2440	2.002	1.168	0.50	Pass			
BLE	2Mbps	1	39	2480	1.994	1.168	0.50	Pass			

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	2.10	30.00	1.95	4.05	36.00	Pass
BLE	2Mbps	1	19	2440	1.10	30.00	1.95	3.05	36.00	Pass
BLE	2Mbps	1	39	2480	2.20	30.00	1.95	4.15	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>												
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail				
BLE	2Mbps	1	0	2402	0.70	-16.55	1.95	8.00	Pass				
BLE	2Mbps	1	19	2440	-0.27	-17.59	1.95	8.00	Pass				
BLE	2Mbps	1	39	2480	1.24	-16.02	1.95	8.00	Pass				

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

<Ant.7>

						RESULTS age Power					
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	1.30	30.00	2.51	3.81	36.00	Pass	
BLE	1Mbps	1	19	2440	0.10	30.00	2.51	2.61	36.00	Pass	
BLE	1Mbps	1	39	2480	0.90	30.00	2.51	3.41	36.00	Pass	

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BLE	1Mbps	1	0	2402	0.27	-14.07	2.51	8.00	Pass			
BLE	1Mbps	1	19	2440	-1.09	-15.40	2.51	8.00	Pass			
BLE	1Mbps	1	39	2480	-0.26	-14.62	2.51	8.00	Pass			

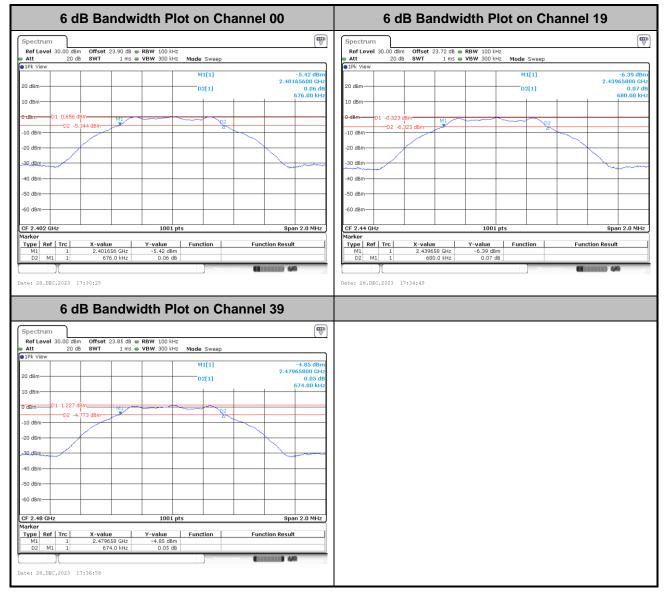
Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
	Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
	BLE	2Mbps	1	0	2402	1.998	1.148	0.50	Pass		
	BLE	2Mbps	1	19	2440	2.002	1.152	0.50	Pass		
ļ	BLE	2Mbps	1	39	2480	1.994	1.151	0.50	Pass		

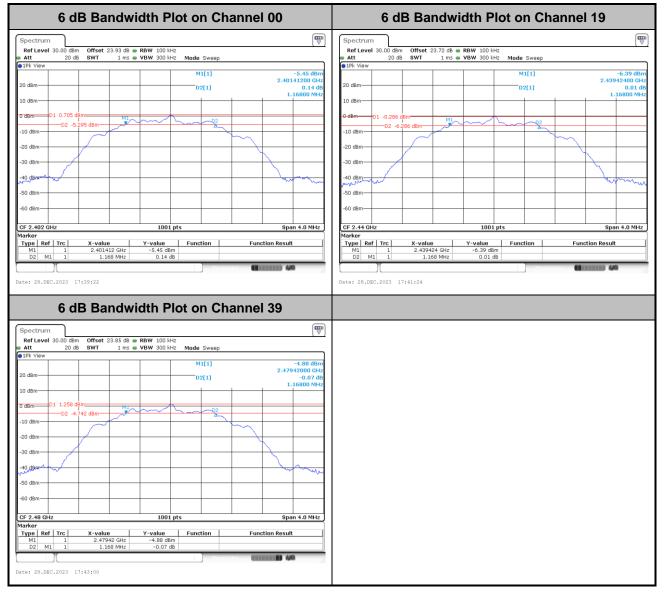
TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	1.20	30.00	2.51	3.71	36.00	Pass
BLE	2Mbps	1	19	2440	0.00	30.00	2.51	2.51	36.00	Pass
BLE	2Mbps	1	39	2480	0.80	30.00	2.51	3.31	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BLE	2Mbps	1	0	2402	0.31	-16.96	2.51	8.00	Pass			
BLE	2Mbps	1	19	2440	-1.08	-18.33	2.51	8.00	Pass			
BLE	2Mbps	1	39	2480	-0.22	-17.48	2.51	8.00	Pass			

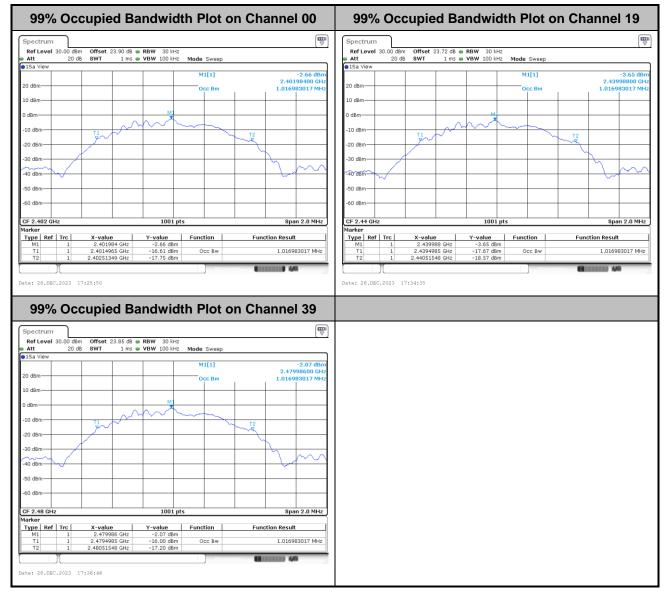

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

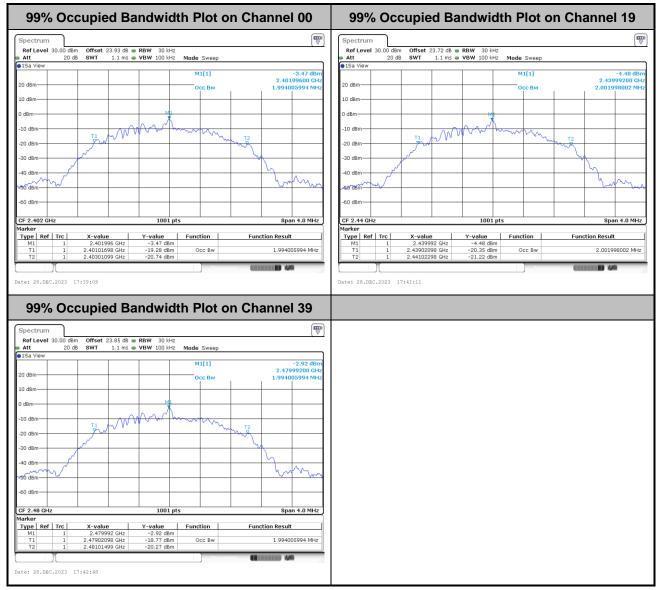
<Ant. 6>


6dB Bandwidth

<1Mbps>

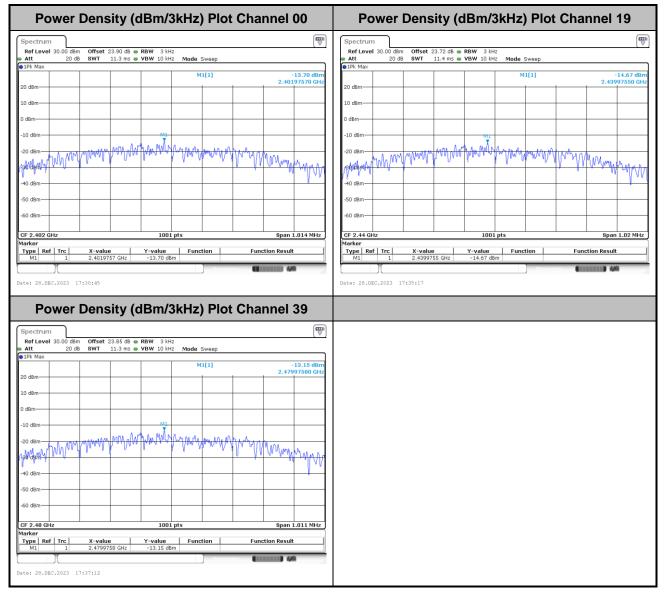
<2Mbps>

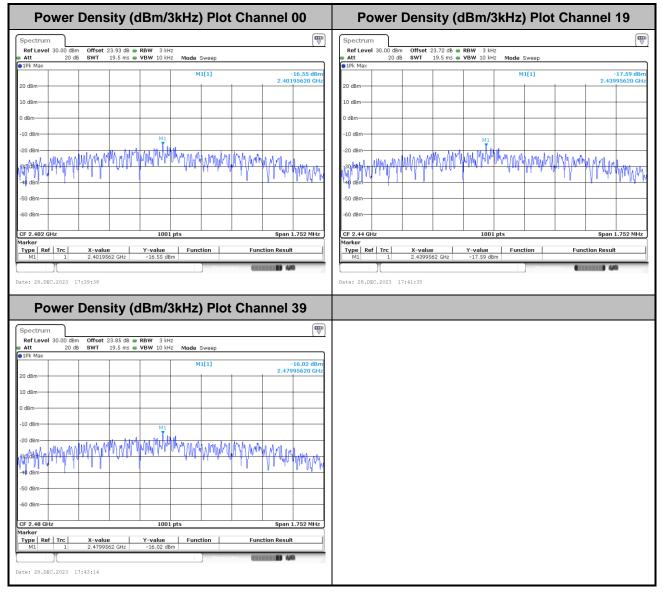




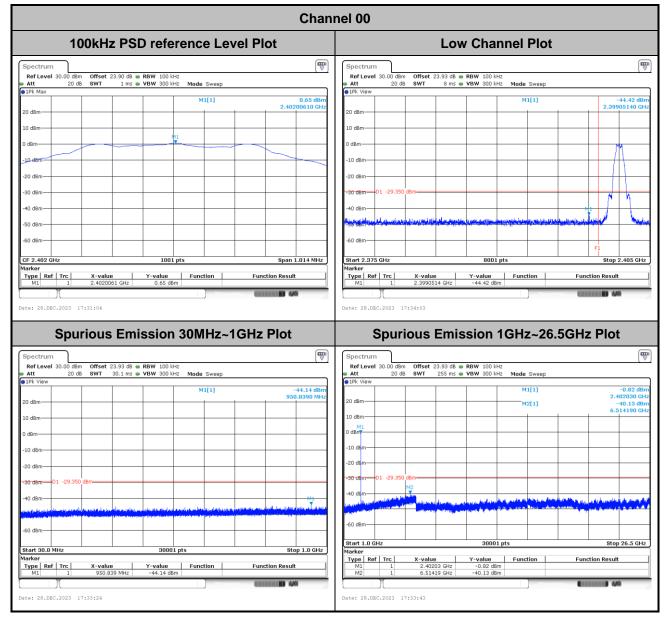
99% Occupied Bandwidth

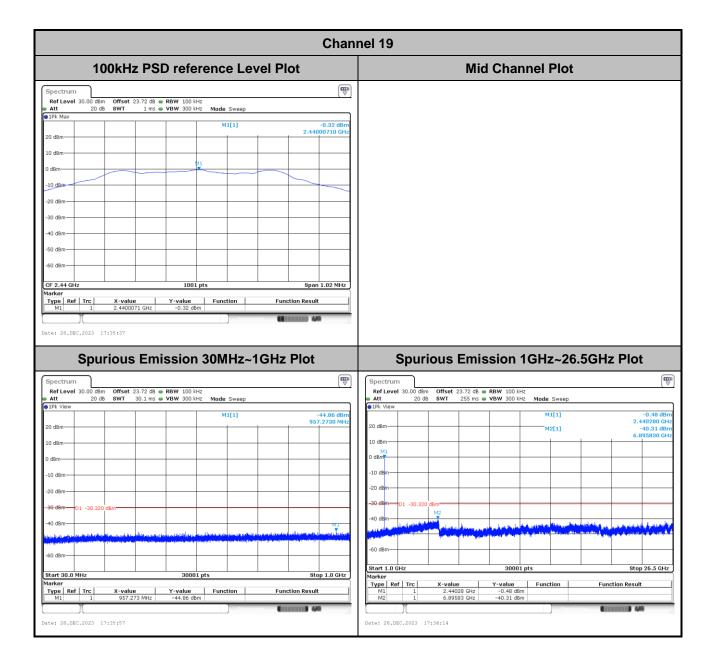
<1Mbps>


<2Mbps>


Power Spectral Density (dBm/3kHz)

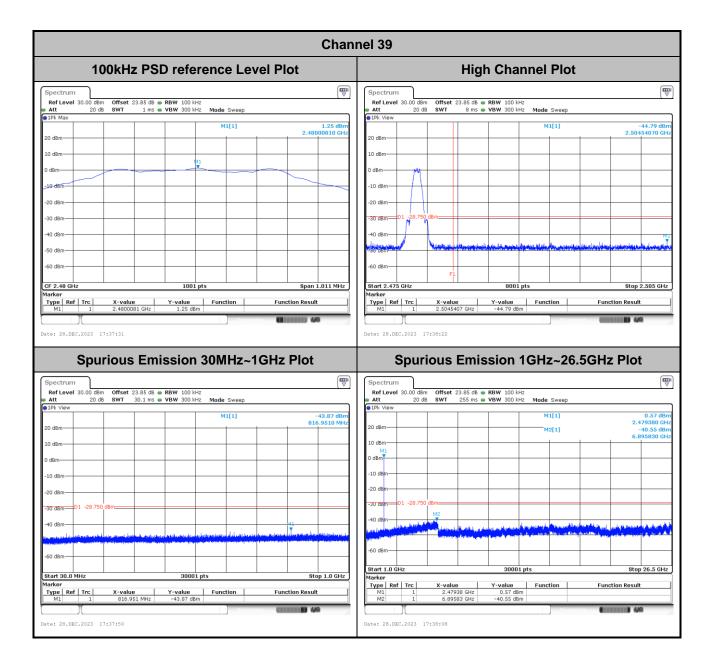
<1Mbps>

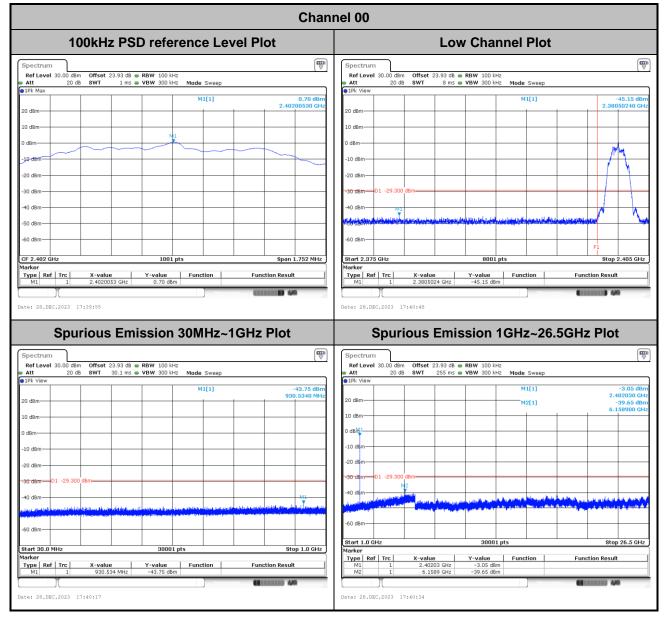

<2Mbps>

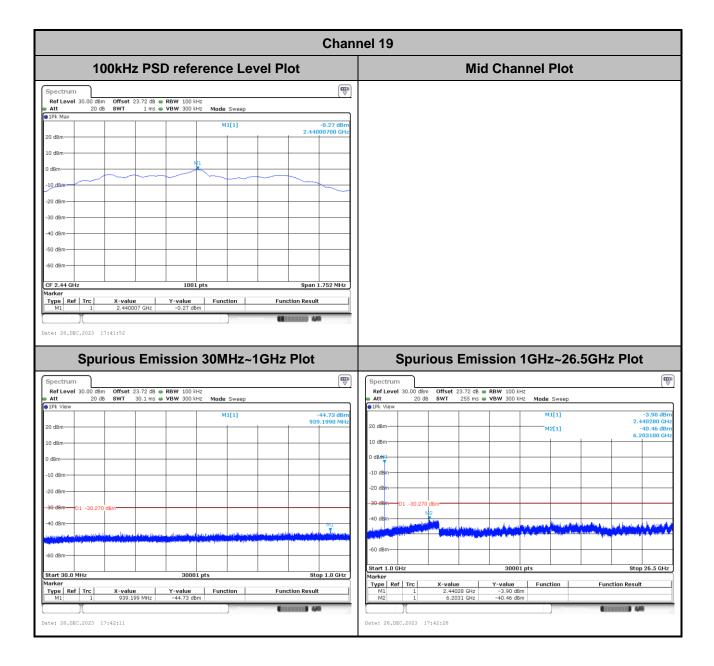


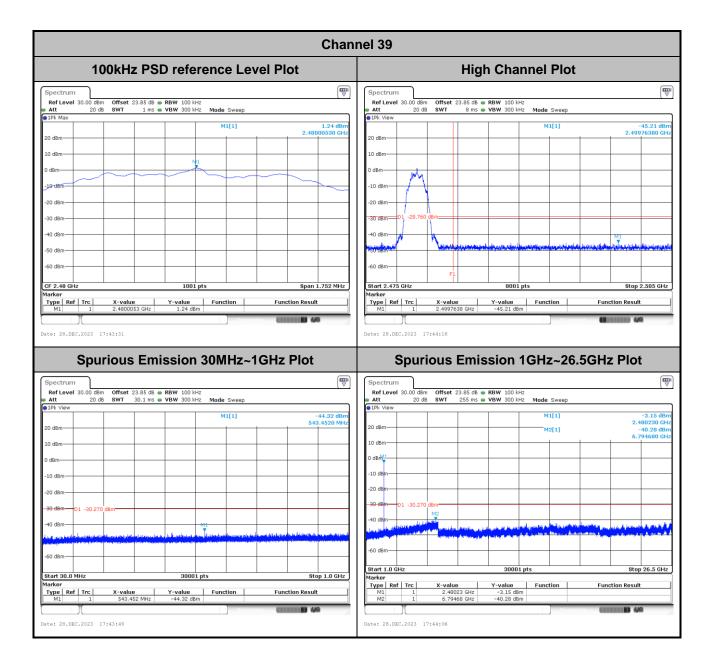
Band Edge and Conducted Spurious Emission

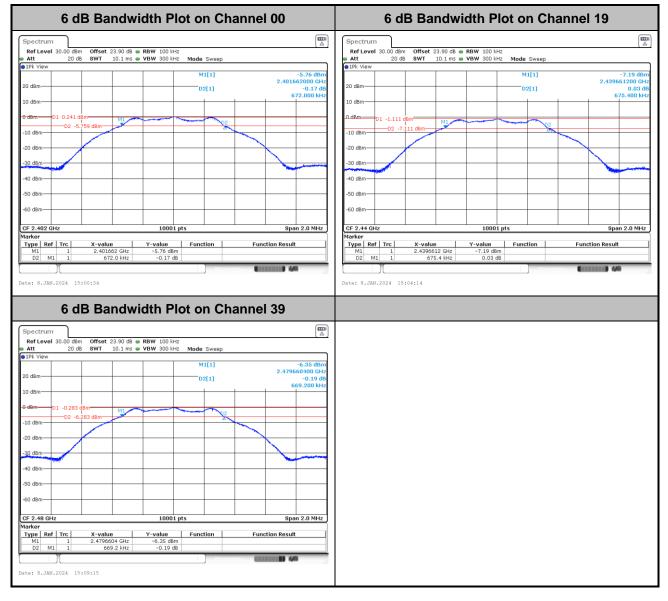
<1Mbps>

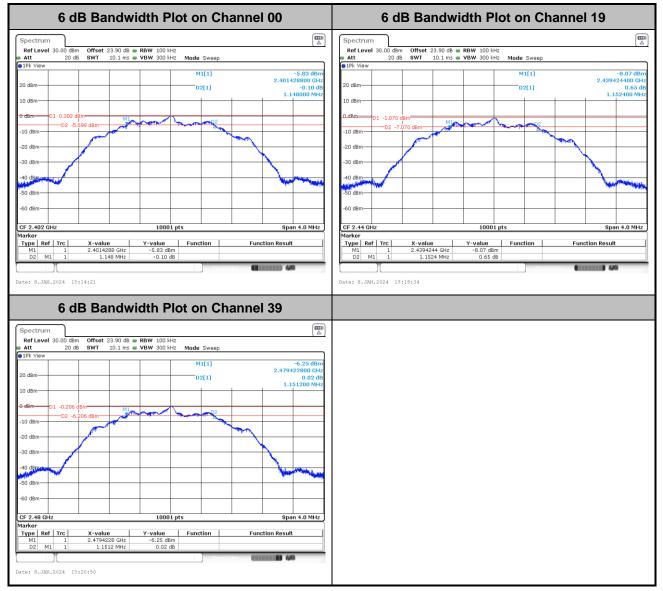






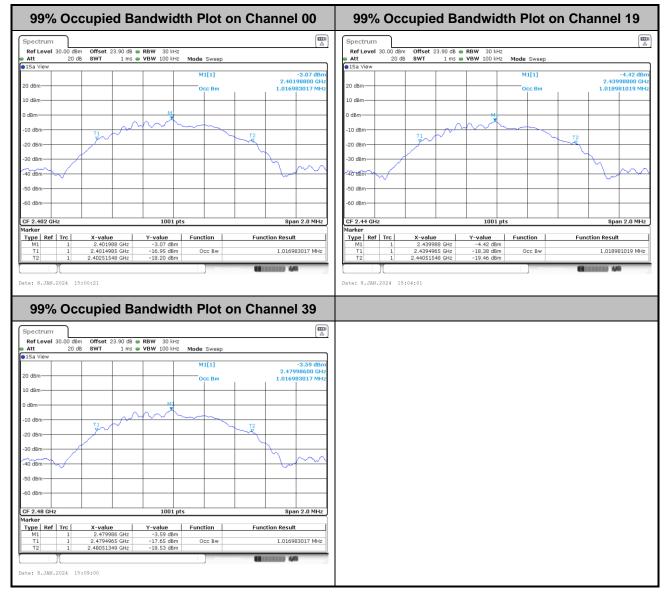


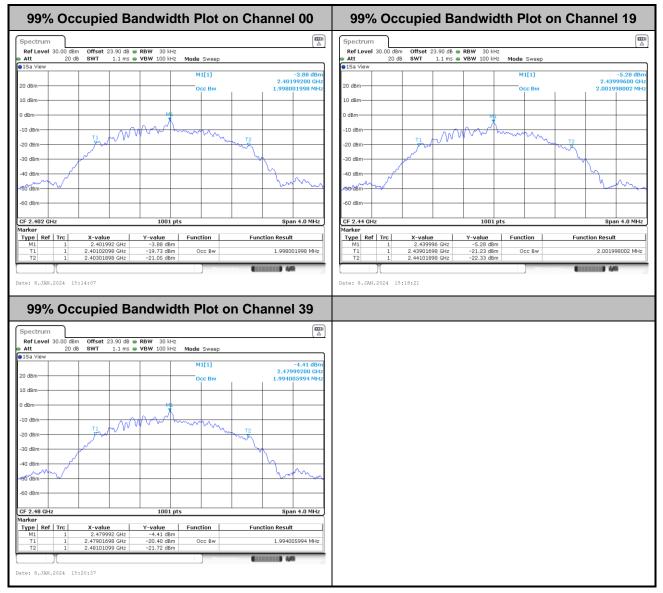




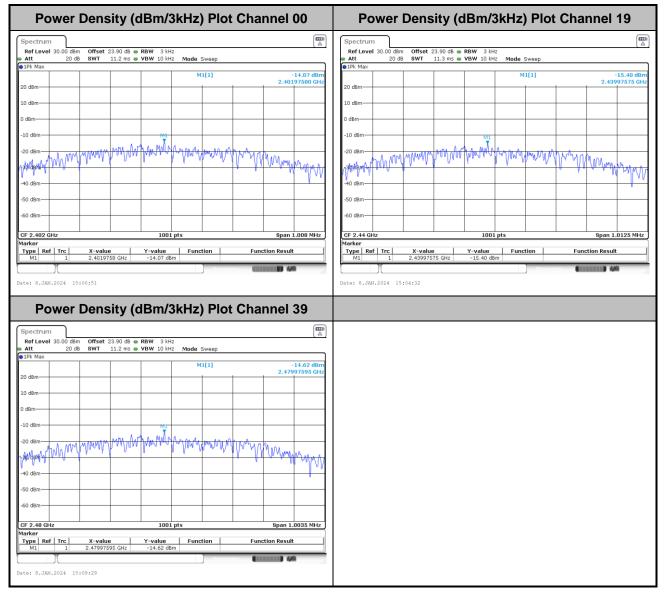
<Ant. 7>

6dB Bandwidth

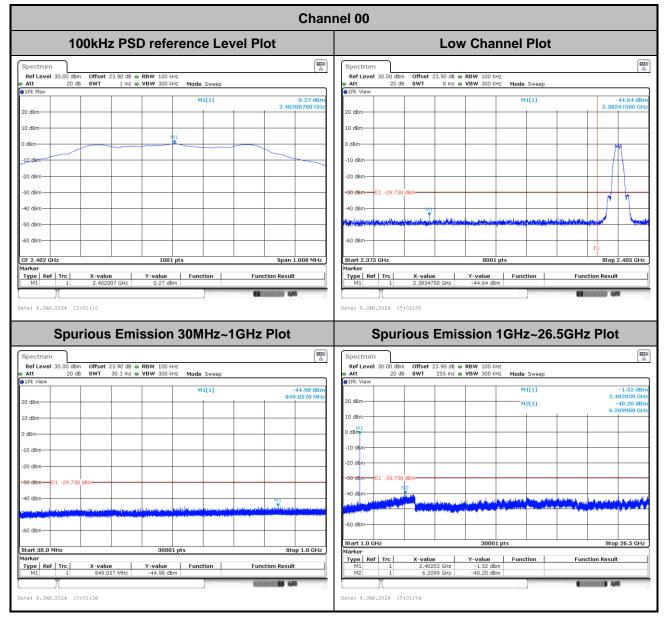


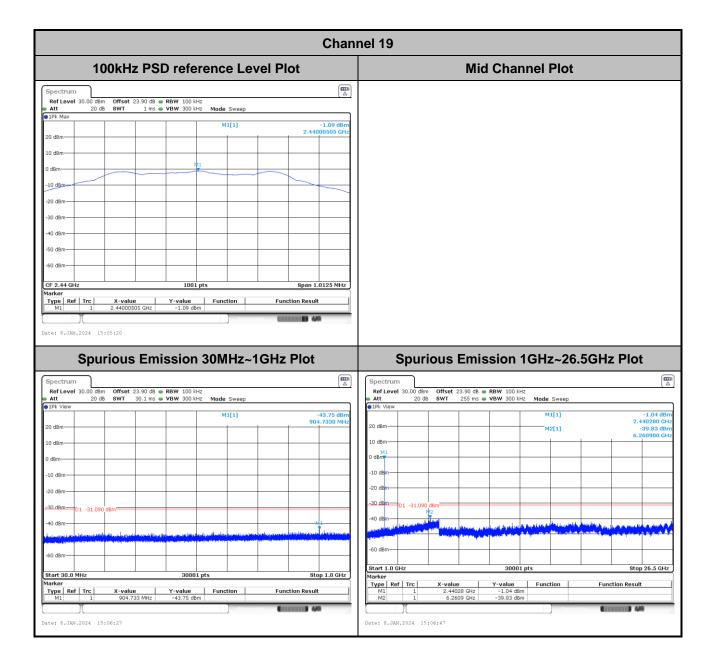


99% Occupied Bandwidth

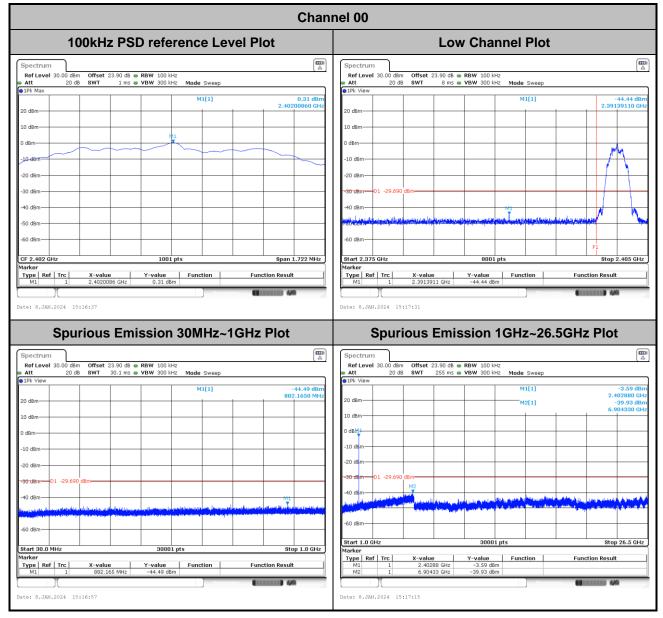


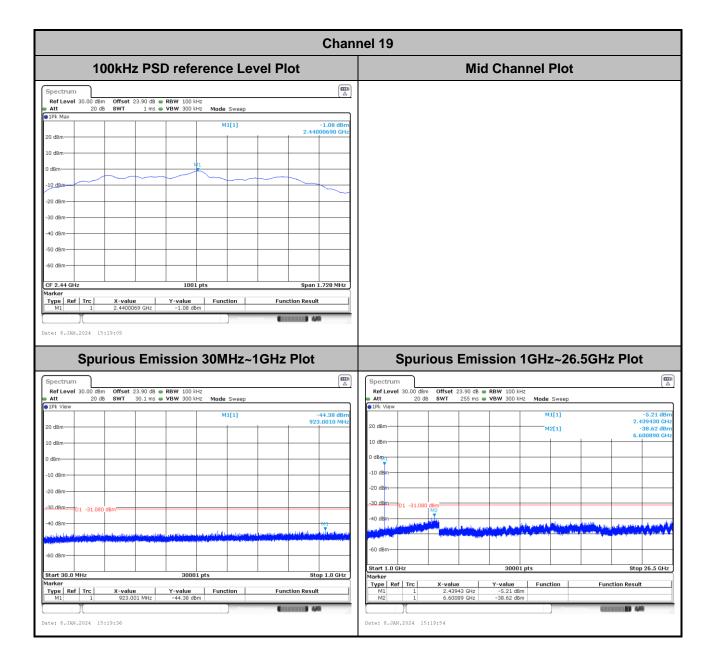
Power Spectral Density (dBm/3kHz)

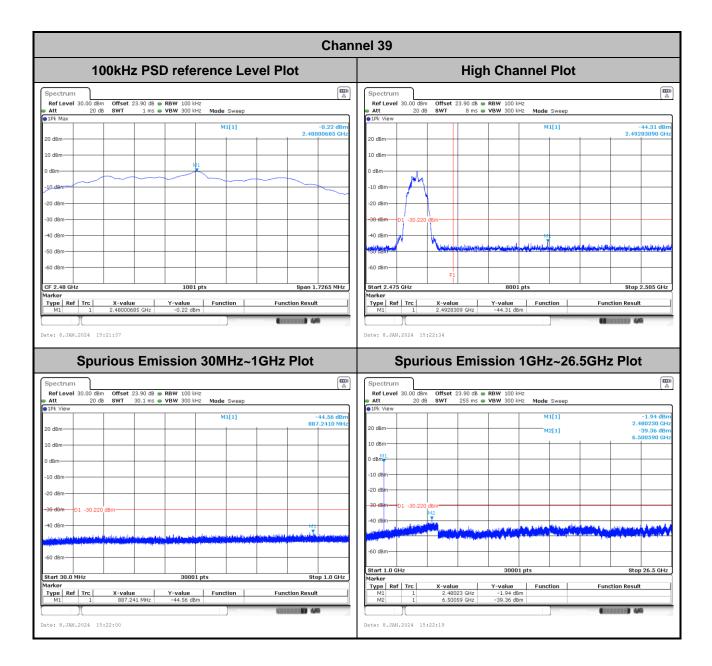


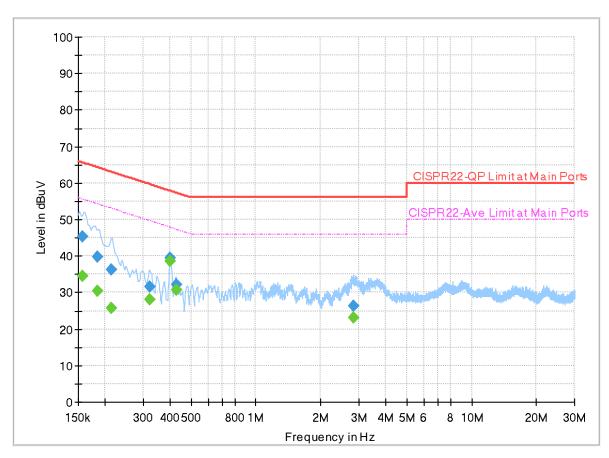

Power Density (dBm/3kHz) Plot Channel 00	Power Density (dBm/3kHz) Plot Channel 19
Spectrum	Spectrum
Ref Level 30.00 dBm Offset 23.90 dB RBW 3 kHz Att 20 dB SWT 19.2 ms VBW 10 kHz Mode Sweep	Ref Level 30.00 dBm Offset 23.90 dB ● RBW 3 kHz ■ Att 20 dB SWT 19.2 ms ● VBW 10 kHz Mode Sweep
● 1Pk Max	1Pk Max 191 191 192 19 192 19
20 dBm 20 dBm 2.40195700 GHz	20 dBm
10 dBm	10 d8m
0 dBm	0 dBm
-10 dBm	- 10 dBm
-20 dBm	-20 dBm
-20 000 Million ANNO MARKANINA WARA WARANA MANANA MANANA MANANA MANANA MANANA MANANA MANANA MANANA MANANA MANA	- 20 COMMENT OF A REAL AND A
No de Maria de al la concerción de la conce	Caral Material and a start stress of the stress
-#0 dBm	
-50 dBm	-50 dBm
-60 dBm	-60 dBm
CF 2.402 GHz 1001 pts Span 1.722 MHz	CF 2.44 GHz 1001 pts Span 1.728 MHz
Marker Type Ref Trc X-value Y-value Function Function Result	Marker Type Ref Trc X-value Y-value Function Function Result
M1 1 2.401957 GHz -16.96 dBm	M1 1 2.4399568 GHz -18.33 dBm 76 For Contract Co
Date: 8.JAN.2024 15:16:18	Date: 8.JAN.2024 15:18:49
Power Density (dBm/3kHz) Plot Channel 39	
Spectrum 🛄	
RefLevel 30.00 dBm Offset 23.90 dB ● RBW 3 kHz ● Att 20 dB SWT 19.2 ms ● VBW 10 kHz Mode Sweep	
1Pk Max M1[1] -17.48 dBm	
20 dBm	
10 dBm	
0 dBm	
-20 dbm	
-20 alm	
Est of MATLANA ALL ALL ALL ALL ALL ALL ALL ALL ALL	
-40 dBm	
-50 dBm	
-60 d8m	
CF 2.48 GHz 1001 pts Span 1.7265 MHz	
Marker Type Ref Trc X-value Y-value Function Function Result	
M1 1 2.47995685 GHz -17.48 dBm M6	
Date: 6.JAN.2024 15:21:01	

Band Edge and Conducted Spurious Emission







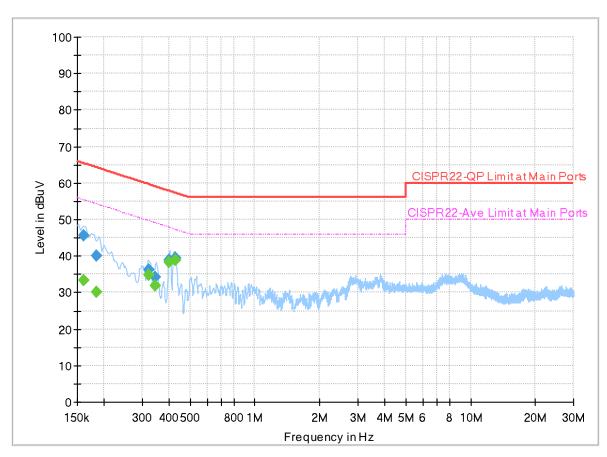


Appendix B. AC Conducted Emission Test Results

Toot Engineer	Louis Chung	Temperature :	19.2~21.3℃
Test Engineer :		Relative Humidity :	58.2~63.7%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 3N2803 Mode 1 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.157380		34.43	55.60	21.17	L1	OFF	19.9
0.157380	45.44		65.60	20.16	L1	OFF	19.9
0.183750		30.55	54.31	23.76	L1	OFF	19.9
0.183750	39.70		64.31	24.61	L1	OFF	19.9
0.214710		25.73	53.02	27.29	L1	OFF	19.9
0.214710	36.27		63.02	26.75	L1	OFF	19.9
0.323340		27.97	49.62	21.65	L1	OFF	19.9
0.323340	31.56		59.62	28.06	L1	OFF	19.9
0.401280		38.69	47.83	9.14	L1	OFF	19.9
0.401280	39.39		57.83	18.44	L1	OFF	19.9
0.426210		30.67	47.33	16.66	L1	OFF	19.9
0.426210	32.23		57.33	25.10	L1	OFF	19.9
2.845860		23.00	46.00	23.00	L1	OFF	20.0
2.845860	26.31		56.00	29.69	L1	OFF	20.0

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 3N2803 Mode 1 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.161250		33.28	55.40	22.12	Ν	OFF	19.9
0.161250	45.63		65.40	19.77	Ν	OFF	19.9
0.183750		30.21	54.31	24.10	Ν	OFF	19.9
0.183750	40.01		64.31	24.30	Ν	OFF	19.9
0.321810		34.75	49.66	14.91	Ν	OFF	19.9
0.321810	36.18		59.66	23.48	Ν	OFF	19.9
0.345750		31.76	49.06	17.30	Ν	OFF	19.9
0.345750	34.15		59.06	24.91	Ν	OFF	19.9
0.401550		38.44	47.82	9.38	Ν	OFF	19.9
0.401550	39.00		57.82	18.82	Ν	OFF	19.9
0.425940		38.96	47.33	8.37	Ν	OFF	19.9
0.425940	39.50		57.33	17.83	Ν	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engineer :	Jack Cheng, Ray Lung and Sky Chang	Temperature :	18~26°C
Test Engineer .		Relative Humidity :	50~70%

<Sample 1>

<Ant.6>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT	ļ				Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
6		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2360.295	49.47	-24.53	74	36.77	27.1	18.25	32.65	100	301	Р	Н
		2373.42	40.51	-13.49	54	27.83	27.07	18.27	32.66	100	301	Α	Н
	*	2402	94.99	-	-	82.27	27.08	18.32	32.68	100	301	Р	Н
BLE	*	2402	94.43	-	-	81.71	27.08	18.32	32.68	100	301	А	Н
CH 00													Н
2402MHz		2370.48	51.09	-22.91	74	38.38	27.1	18.27	32.66	287	40	Р	V
240210112		2339.19	40.66	-13.34	54	28.08	27.01	18.21	32.64	287	40	А	V
	*	2402	92.89	-	-	80.17	27.08	18.32	32.68	287	40	Р	V
	*	2402	92.35	-	-	79.63	27.08	18.32	32.68	287	40	А	V
													V
		2386.72	49.9	-24.1	74	37.27	27	18.3	32.67	101	348	Р	Н
		2369.64	40.45	-13.55	54	27.75	27.1	18.26	32.66	101	348	А	Н
	*	2440	96.64	-	-	84.05	26.9	18.39	32.7	101	348	Р	Н
	*	2440	95.99	-	-	83.4	26.9	18.39	32.7	101	348	А	Н
		2496.99	50.12	-23.88	74	37.47	26.9	18.49	32.74	101	348	Р	Н
BLE		2496.64	40.84	-13.16	54	28.19	26.9	18.49	32.74	101	348	А	Н
CH 19 2440MHz		2363.2	49.56	-24.44	74	36.87	27.1	18.25	32.66	300	36	Р	V
2440101112		2383.92	40.4	-13.6	54	27.78	27	18.29	32.67	300	36	А	V
	*	2440	95.79	-	-	83.2	26.9	18.39	32.7	300	36	Р	V
	*	2440	95.22	-	-	82.63	26.9	18.39	32.7	300	36	А	V
		2488.24	49.54	-24.46	74	36.89	26.9	18.48	32.73	300	36	Р	V
		2496.01	40.66	-13.34	54	28.01	26.9	18.49	32.74	300	36	А	V

Page Number : C1 of C26

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT 6		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
	*	2480	98.02	-		85.39	26.9	18.46	32.73	149	338	P	Η
	*	2480	97.5	-	-	84.87	26.9	18.46	32.73	149	338	Α	н
		2485.64	50.89	-23.11	74	38.25	26.9	18.47	32.73	149	338	Р	н
		2496.84	40.79	-13.21	54	28.14	26.9	18.49	32.74	149	338	А	Н
													н
BLE													н
CH 39	*	2480	96.65	-	-	84.02	26.9	18.46	32.73	295	26	Р	V
2480MHz	*	2480	96.16	-	-	83.53	26.9	18.46	32.73	295	26	А	V
		2491.2	49.87	-24.13	74	37.22	26.9	18.48	32.73	295	26	Р	V
		2486.16	40.73	-13.27	54	28.08	26.9	18.48	32.73	295	26	А	V
													V
													V
	1. No	o other spurious	s found.										
Remark		results are PA		eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

		-		-	БLЕ (Пагіп	F	-	-		-	-		
BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant		Peak	Pol.
ANT 6			(dBµV/m)	(dD)	Line		Factor		Factor	Pos	Pos (deg)	Avg.	(110.0)
0		(MHz) 4804	<u>(авруля)</u> 44.04	-29.96	<u>(авµv/m)</u> 74	(dBµV) 32.91	(dB/m) 32.32	(dB) 12.79	(dB) 33.98	(cm)	(deg)	(F/A) P	(п/v) Н
		4004	44.04	-29.90	74	52.91	32.32	12.79	33.90	-	-	F	
													Н
													Н
													Н
													Н
													н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 00		4804	44.32	-29.68	74	33.19	32.32	12.79	33.98	_	-	Р	V
2402MHz		-00-	44.02	20.00		00.10	02.02	12.75	00.00			•	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT	İ	(8411-)	(dD+)//m)		Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
6		(MHz) 4880	(dBµV/m) 43.99	-30.01	(dBµV/m) 74	(dBµV) 32.66	(dB/m) 32.56	(dB) 12.74	(dB) 33.97	(cm)	(deg)	(P/A) P	(H/V) H
		7320	48.75	-25.25	74	32.61	37	15.56	36.42	_	-	P	н
		7320	39.34	-14.66	54	23.2	37	15.56	36.42	-	-	A	н
		1020	00.04	14.00		20.2		10.00	00.42				н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													H
CH 19													H
2440MHz		4880	44.1	-29.9	74	32.77	32.56	12.74	33.97	-	-	Ρ	V
		7320	47.5	-26.5	74	31.36	37	15.56	36.42	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT	Ì				Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
6	<u> </u>	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	44.64	-29.36	74	33.22	32.7	12.69	33.97	-	-	Р	Н
		7440	48.36	-25.64	74	32.29	36.9	15.66	36.49	-	-	Р	Н
		7440	38.94	-15.06	54	22.87	36.9	15.66	36.49	-	-	Α	н
													н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 39													Н
2480MHz		4960	44.56	-29.44	74	33.14	32.7	12.69	33.97	-	-	Р	V
		7440	48.48	-25.52	74	32.41	36.9	15.66	36.49	-	-	Р	V
		7440	38.89	-15.11	54	22.82	36.9	15.66	36.49	-	-	A	V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	a found										V
		l results are PA		Peak and	Average lim	it line.							
Remark		ne emission pos					ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
		or only.								5 5.			'

2.4GHz 2400~2483.5MHz

BLE	(Band	Edge	@ 3m)	
-----	-------	------	-------	--

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
6		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2376.255	49.96	-24.04	74	37.3	27.04	18.28	32.66	105	360	Р	Н
		2352.105	41.23	-12.77	54	28.63	27.02	18.23	32.65	105	360	А	Н
	*	2402	95.6	-	-	82.88	27.08	18.32	32.68	105	360	Р	Н
	*	2402	94.29	-	-	81.57	27.08	18.32	32.68	105	360	А	Н
BLE													Н
CH 00													Н
2402MHz		2387.385	50.12	-23.88	74	37.49	27	18.3	32.67	312	43	Р	V
		2373.105	41.14	-12.86	54	28.46	27.07	18.27	32.66	312	43	А	V
	*	2402	92.62	-	-	79.9	27.08	18.32	32.68	312	43	Р	V
	*	2402	91.35	-	-	78.63	27.08	18.32	32.68	312	43	А	V
													V
													V
		2375.94	50.41	-23.59	74	37.75	27.04	18.28	32.66	102	359	Р	Н
		2346.4	41.09	-12.91	54	28.51	27	18.22	32.64	102	359	А	Н
	*	2440	97.12	-	-	84.53	26.9	18.39	32.7	102	359	Р	н
	*	2440	95.54	-	-	82.95	26.9	18.39	32.7	102	359	А	Н
515		2490.34	50.15	-23.85	74	37.5	26.9	18.48	32.73	102	359	Р	Н
BLE CH 19		2496.71	41.68	-12.32	54	29.03	26.9	18.49	32.74	102	359	А	Н
2440MHz		2354.1	49.67	-24.33	74	37.04	27.04	18.24	32.65	341	37	Р	V
2.7701012		2364.74	41.45	-12.55	54	28.76	27.1	18.25	32.66	341	37	А	V
	*	2440	96	-	-	83.41	26.9	18.39	32.7	341	37	Р	V
	*	2440	94.55	-	-	81.96	26.9	18.39	32.7	341	37	Α	V
		2495.45	49.74	-24.26	74	37.09	26.9	18.49	32.74	341	37	Р	V
		2492.3	41.73	-12.27	54	29.08	26.9	18.49	32.74	341	37	А	V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.	
ANT					Line	Level	Factor	Loss	Factor	Pos		Avg.		
6		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)	
	*	2480	97.69	-	-	85.06	26.9	18.46	32.73	105	347	Р	Н	
	*	2480	96.13	-	-	83.5	26.9	18.46	32.73	105	347	А	н	
		2488.4	50.28	-23.72	74	37.63	26.9	18.48	32.73	105	347	Р	Н	
		2494.84	41.68	-12.32	54	29.03	26.9	18.49	32.74	105	347	А	Н	
515													Н	
BLE													Н	
CH 39 2480MHz	*	2480	97.36	-	-	84.73	26.9	18.46	32.73	294	29	Ρ	V	
240010112	*	2480	96.08	-	-	83.45	26.9	18.46	32.73	294	29	А	V	
		2490.16	49.77	-24.23	74	37.12	26.9	18.48	32.73	294	29	Ρ	V	
		2484.72	41.52	-12.48	54	28.88	26.9	18.47	32.73	294	29	А	V	
													V	
													V	
Remark	 No other spurious found. All results are PASS against Peak and Average limit line. 													
			0		0									

2.4GHz 2400~2483.5MHz

		-		-	ыс (папп	-	-	-		[ſ	[
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant		Peak	Pol.
ANT	ļ				Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
6			(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	43.76	-30.24	74	32.63	32.32	12.79	33.98	-	-	Р	Н
													Н
													н
													Н
													Н
													Н
													н
													Н
BLE CH 00 2402MHz													Н
													Н
													Н
													н
		4804	43.67	-30.33	74	32.54	32.32	12.79	33.98	-	-	Р	V
240211112													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

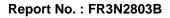
BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT 6		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	
0		4880	43.63	-30.37	74	32.3	32.56	12.74	33.97	- (Cill)	(ueg) -	P	(1 <i>1</i> / V) H
		7320	48.55	-25.45	74	32.41	37	15.56	36.42	-	-	Р	Н
		7320	39.67	-14.33	54	23.53	37	15.56	36.42	-	-	А	Н
													н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19													Н
2440MHz		4880	44.27	-29.73	74	32.94	32.56	12.74	33.97	-	-	Р	V
		7320	48	-26	74	31.86	37	15.56	36.42	-	-	Ρ	V
		7320	39.82	-14.18	54	23.68	37	15.56	36.42	-	-	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos		Avg.	
6		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	44.56	-29.44	74	33.14	32.7	12.69	33.97	-	-	Р	Н
		7440	47.9	-26.1	74	31.83	36.9	15.66	36.49	-	-	Р	н
													н
													н
													Н
													н
													н
													н
													н
													н
													Н
BLE													н
CH 39		4960	44.17	-29.83	74	32.75	32.7	12.69	33.97	_	-	Р	V
2480MHz		7440	47.95	-26.05	74	31.88	36.9	15.66	36.49	_	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
		o other spuriou											
Remark		Il results are PA											
		he emission po	sition marked	as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin aga	inst limit	line or	noise
	fle	oor only.											

Emission above 18GHz

					2.4GHz E	BLE (SHF	·)						
BT	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos		Avg.	
6		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	-
		23719	41.32	-32.68	74	43.76	38.99	18.6	60.03	-	-	Р	Н
													Н
													Н
													н
													н
													Н
													Н
													н
													н
													Н
													Н
2.4GHz													н
BLE		22984	40.19	-33.81	74	43.52	38.93	18.04	60.3	_	-	Р	V
SHF		22904	40.19	-33.01	74	43.02	30.93	10.04	00.3	-	-		V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	l results are PA	SS against li	mit line.									
REIIIdi K	3. Th	e emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	I with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											


2.4GHz BLE (SHF)

Emission below 1GHz

		_					_			_			
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	<u> </u>	Pol.
ANT 6		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	(H/V)
•		31.89	21.93	-18.07	40	29.67	24.01	0.99	32.74	-	-	P	н
		143.4	21.23	-22.27	43.5	34.41	17.42	2.1	32.7	-	-	Р	н
		199.56	19.82	-23.68	43.5	35.1	14.96	2.47	32.71	-	-	Р	н
		265.44	20.03	-25.97	46	30.06	19.84	2.89	32.76	-	-	Ρ	Н
		398.7	29.09	-16.91	46	36.75	21.68	3.51	32.85	-	-	Ρ	Н
		957.3	34.27	-11.73	46	29.14	31.18	5.51	31.56	-	-	Ρ	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
2.4GHz BLE LF													Н
		34.05	27.66	-12.34	40	36.46	22.92	1.02	32.74	-	-	Р	V
		91.02	25.91	-17.59	43.5	41.7	15.23	1.68	32.7	-	-	Р	V
		144.21	24.63	-18.87	43.5	37.83	17.39	2.11	32.7	-	-	Ρ	V
		416.9	24.21	-21.79	46	30.96	22.53	3.59	32.87	-	-	Ρ	V
		901.3	33.24	-12.76	46	31.01	29.06	5.29	32.12	-	-	Ρ	V
		965.7	35.54	-18.46	54	30.4	31.08	5.54	31.48	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
Remark	2. All	o other spurious	SS against li		0000	no of a lar	ionica fau	d ored	incica la				ra ⁱ -
		e emission pos ainst limit or er				peciea em	iission toun	u and em	ISSION IEVE	ei nas ai	ieast 60	ue ma	rgin

2.4GHz BLE (LF)

<Ant.7>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
7		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2318.19	49.69	-24.31	74	37.07	27.08	18.17	32.63	100	355	Р	Н
		2382.03	40.66	-13.34	54	28.04	27	18.29	32.67	100	355	А	Н
	*	2402	95.18	-	-	82.46	27.08	18.32	32.68	100	355	Р	Н
	*	2402	94.68	-	-	81.96	27.08	18.32	32.68	100	355	A	Н
BLE													H H
CH 00		2383.395	50.38	-23.62	74	37.76	27	18.29	32.67	287	41	Р	п V
2402MHz		2332.575	40.52	-13.48	54	27.89	27.07	18.2	32.64	287	41	А	V
	*	2402	93.02	-	-	80.3	27.08	18.32	32.68	287	41	Р	V
	*	2402	92.44	-	-	79.72	27.08	18.32	32.68	287	41	А	V
													V
													V
		2337.16	49.58	-24.42	74	36.99	27.03	18.2	32.64	118	341	Р	Н
		2333.52	40.65	-13.35	54	28.03	27.06	18.2	32.64	118	341	А	Н
	*	2440	96.01	-	-	83.42	26.9	18.39	32.7	118	341	Р	Н
	*	2440	95.53	-	-	82.94	26.9	18.39	32.7	118	341	А	Н
BLE		2491.6	49.91	-24.09	74	37.26	26.9	18.48	32.73	118	341	Р	Н
CH 19		2496.01	40.87	-13.13	54	28.22	26.9	18.49	32.74	118	341	А	Н
2440MHz		2313.5	49.23	-24.77	74	36.66	27.03	18.16	32.62	310	38	Ρ	V
2440MHz		2329.18	40.46	-13.54	54	27.8	27.1	18.19	32.63	310	38	А	V
	*	2440	95.91	-	-	83.32	26.9	18.39	32.7	310	38	Р	V
	*	2440	95.16	-	-	82.57	26.9	18.39	32.7	310	38	А	V
		2497.34	50.08	-23.92	74	37.42	26.9	18.5	32.74	310	38	Р	V
		2485.16	40.73	-13.27	54	28.09	26.9	18.47	32.73	310	38	А	V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT 7		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
	*	2480	97.68	-	-	85.05	26.9	18.46	32.73	112	347	Р	н
	*	2480	97.12	-	-	84.49	26.9	18.46	32.73	112	347	А	н
		2484.84	49.64	-24.36	74	37	26.9	18.47	32.73	112	347	Р	Н
		2486.04	40.76	-13.24	54	28.12	26.9	18.47	32.73	112	347	А	н
													н
BLE													Н
CH 39 2480MHz	*	2480	96.56	-	-	83.93	26.9	18.46	32.73	296	33	Р	V
	*	2480	96.03	-	-	83.4	26.9	18.46	32.73	296	33	А	V
		2484.48	50.43	-23.57	74	37.79	26.9	18.47	32.73	296	33	Р	V
		2491.12	40.73	-13.27	54	28.08	26.9	18.48	32.73	296	33	А	V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	l results are PA	SS against F	Peak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

					БLЕ (Пагії	-	-		[ſ	-	ſ	
BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant		Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
7		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	43.46	-30.54	74	32.33	32.32	12.79	33.98	-	-	Р	Н
													н
													н
													н
													Н
													Н
													н
													н
													Н
BLE CH 00 2402MHz													Н
													Н
													Н
		4804	43.64	-30.36	74	32.51	32.32	12.79	33.98	-	-	Р	V
240211112													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		/ • ••• \			Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
7		(MHz) 4880	(dBµV/m) 44.2	-29.8	(dBµV/m) 74	(dBµV) 32.87	(dB/m) 32.56	(dB) 12.74	(dB) 33.97	(cm) -	(deg)	(P/A) P	(H/V) H
												P	
		7320	47.76	-26.24	74	31.62	37	15.56	36.42	-	-	Р	H
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
BLE													Н
CH 19		4880	44.34	-29.66	74	33.01	32.56	12.74	33.97	-	-	Р	V
2440MHz		7320	47.66	-26.34	74	31.52	37	15.56	36.42	-	-	Р	V
													V
													V
													V
													V
													V
													V
												-	V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos		Avg.	
7		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	44.47	-29.53	74	33.05	32.7	12.69	33.97	-	-	Р	Н
		7440	48.85	-25.15	74	32.78	36.9	15.66	36.49	-	-	Р	Н
		7440	38.94	-15.06	54	22.87	36.9	15.66	36.49	-	-	А	Н
													Н
													н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 39													Н
CH 39 2480MHz		4960	44.75	-29.25	74	33.33	32.7	12.69	33.97	-	-	Р	V
		7440	47.84	-26.16	74	31.77	36.9	15.66	36.49	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	4		found										V
 No other spurious found. All results are PASS against Peak and Average limit line. 													
Remark	 All results are PASS against Peak and Average limit line. emark 3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit 											line or	noise
		oor only.		ias - 11		pected em	1331011 100110	a wiui Sul	ncient mai	yin ayai	1151 111111		10156
		oor only.											

٧

V

V

V

V

<2Mbps>

2.4GHz 2400~2483.5MHz

				-									
				E	BLE (Band	Edge @ :	3m)						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
7		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2371.11	50.4	-23.6	74	37.7	27.09	18.27	32.66	100	353	Р	Н
		2386.125	41.31	-12.69	54	28.69	27	18.29	32.67	100	353	Α	Н
	*	2402	95.36	-	-	82.64	27.08	18.32	32.68	100	353	Р	Н
	*	2402	94.06	-	-	81.34	27.08	18.32	32.68	100	353	А	Н
													Н
BLE													н
		2378.04	50.3	-23.7	74	37.66	27.02	18.28	32.66	309	42	Р	V
2402MHz		2359.77	41.21	-12.79	54	28.51	27.1	18.25	32.65	309	42	А	V
	*	2402	93.12	-	-	80.4	27.08	18.32	32.68	309	42	Ρ	V
	*	2402	91.76	-	-	79.04	27.08	18.32	32.68	309	42	А	V
													V
													V
		2321.76	50.74	-23.26	74	38.09	27.1	18.18	32.63	100	349	Р	Н
		2371.88	41.28	-12.72	54	28.59	27.08	18.27	32.66	100	349	А	Н
	*	2440	97.1	-	-	84.51	26.9	18.39	32.7	100	349	Р	Н
	*	2440	95.6	-	-	83.01	26.9	18.39	32.7	100	349	А	Н
		2490.06	50.35	-23.65	74	37.7	26.9	18.48	32.73	100	349	Ρ	Н
BLE CH 19		2483.62	41.63	-12.37	54	28.99	26.9	18.47	32.73	100	349	А	Н
2440MH 7		2317.28	49.66	-24.34	74	37.05	27.07	18.17	32.63	348	35	Ρ	V

*

*

2373

2440

2440

2484.04

2493.77

41.24

96.22

94.45

50.44

42

-12.76

-

-

-23.56

-12

54

-

-

74

54

28.56

83.63

81.86

37.8

29.35

27.07

26.9

26.9

26.9

26.9

2440MHz

32.66

32.7

32.7

32.73

32.74

18.27

18.39

18.39

18.47

18.49

348

348

348

348

348

35

35

35

35

35

А

Ρ

А Р

А

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT 7		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
	*	2480	98.29	-	-	85.66	26.9	18.46	32.73	105	349	P	Η
	*	2480	96.91	-	-	84.28	26.9	18.46	32.73	105	349	Α	Н
		2487.28	49.99	-24.01	74	37.34	26.9	18.48	32.73	105	349	Р	Н
		2491.4	41.45	-12.55	54	28.8	26.9	18.48	32.73	105	349	А	Н
													Н
BLE													н
CH 39 2480MHz	*	2480	96.88	-	-	84.25	26.9	18.46	32.73	294	35	Ρ	V
240010112	*	2480	95.59	-	-	82.96	26.9	18.46	32.73	294	35	А	V
		2494.36	50.37	-23.63	74	37.72	26.9	18.49	32.74	294	35	Р	V
		2491.2	41.41	-12.59	54	28.76	26.9	18.48	32.73	294	35	А	V
													V
													V
	1. No	o other spurious	s found.										
Remark		results are PA		eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

		-	[DLE (Harin	-	-	-	[-	-		
BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant		Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
7		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	43.38	-30.62	74	32.25	32.32	12.79	33.98	-	-	Р	Н
													Н
													н
													Н
													Н
													Н
													Н
													Н
													Н
													н
													Н
BLE													Н
CH 00		4804	43.79	-30.21	74	32.66	32.32	12.79	33.98	-	-	Р	V
2402MHz								-					V
													V
													V
													V
													V
													V
													V
													V V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT 7		(8411-)			Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz) 4880	(dBµV/m) 43.71	-30.29	(dBµV/m) 74	(dBµV) 32.38	(dB/m) 32.56	(dB) 12.74	(dB) 33.97	(cm)	(deg)	(P/A) P	(H/V) H
		7320	47.73	-26.27	74	31.59	37	15.56	36.42	_	-	P	н
		1020	47.70	20.27		01.00	01	10.00	00.42			•	н
													н
													н
													Н
													H
													Н
													H
													H
BLE													Н
CH 19													Н
2440MHz		4880	44.03	-29.97	74	32.7	32.56	12.74	33.97	-	-	Р	V
		7320	48.15	-25.85	74	32.01	37	15.56	36.42	-	-	Р	V
		7320	39.63	-14.37	54	23.49	37	15.56	36.42	-	-	A	V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
7		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	45.14	-28.86	74	33.72	32.7	12.69	33.97	-	-	Ρ	Н
		7440	47.91	-26.09	74	31.84	36.9	15.66	36.49	-	-	Ρ	Н
		7440	39.36	-14.64	54	23.29	36.9	15.66	36.49	-	-	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													H
CH 39		4000	44.00	00.00	74	00.00	00.7	40.00	00.07			_	H V
2480MHz		4960 7440	44.38 48.75	-29.62 -25.25	74 74	32.96 32.68	32.7 36.9	12.69 15.66	33.97 36.49	-	-	P P	V V
		7440	39.57	-14.43	54	23.5	36.9	15.66	36.49	-	-	A	V
		7440	33.57	-14.45	54	20.0	50.5	15.00	30.43			~	V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	No other spuriou	s found.										
Remark	2. <i>I</i>	All results are PA	SS against F	Peak and	Average lim	it line.							
	З. Т	The emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	loor only.												

V ٧ ۷ V ٧ V V

Emission above 18GHz

2.4GHz BLE (SHF)													
вт	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
7		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		22445	40.46	-33.54	74	44.68	38.58	17.64	60.44	-	-	Р	Н
													н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
2.4GHz													Н
BLE		18882	41.09	-32.91	74	51.1	38.46	15.25	63.72	-	-	Р	V
SHF													V
	-		1	1	1		1		1			1	

													V	
													V	
													V	
													V	
													V	
	1.	1. No other spurious found.												
Remark	2.	2. All results are PASS against limit line.												
Kemark	3.	The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise												
		floor only.												

Emission below 1GHz

	_				2.4GHz								
BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant	Table	<u> </u>	Pol.
ANT			(dBu)//m)	(dB)	Line		Factor		Factor	Pos	Pos (deg)	Avg.	/11//
7		(MHz) 31.62	(dBµV/m) 21.98	-18.02	(dBμV/m) 40	(dBµV) 29.72	(dB/m) 24.01	(dB) 0.99	(dB) 32.74	(cm) -	(deg)	(P/A) P	H
		199.56	19.54	-23.96	43.5	34.82	14.96	2.47	32.71	-	_	P	н
		263.28	20.36	-25.64	46	30.13	20.1	2.88	32.75	_	_	P	н
		381.9	28.64	-17.36	46	36.93	21.11	3.44	32.84	_	-	P	н
		883.8	32.21	-13.79	46	30.30	29.08	5.26	32.23	_	-	' P	н
		963.6	35.33	-18.67	54	30.13	31.16	5.54		-	-	P	н
		903.0	35.33	-10.07	54	30.13	31.10	5.54	31.5	-	-	P	
													н
													н
													Н
													Н
2.4GHz													Н
BLE													Н
BLE LF		33.78	28.54	-11.46	40	37.23	23.03	1.02	32.74	-	-	Р	V
		144.48	24.29	-19.21	43.5	37.5	17.38	2.11	32.7	-	-	Р	V
		261.66	20.24	-25.76	46	30.09	20.02	2.88	32.75	-	-	Р	V
		556.2	27.73	-18.27	46	30.26	26.22	4.25	33	-	-	Р	V
		938.4	34.13	-11.87	46	29.98	30.47	5.43	31.75	-	-	Р	V
		990.2	34.93	-19.07	54	29.89	30.63	5.65	31.24	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. Al	l results are PA	SS against li	mit line.									
Nenidik	3. Th	e emission pos	sition marked	l as "-" m	eans no sus	pected em	nission foun	d and em	ission leve	el has a	t least 60	dB ma	rgin
	ag	ainst limit or er	nission is no	ise floor	only.								
	ag	ainst limit or er	mission is no	ise floor	only.								

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
7		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

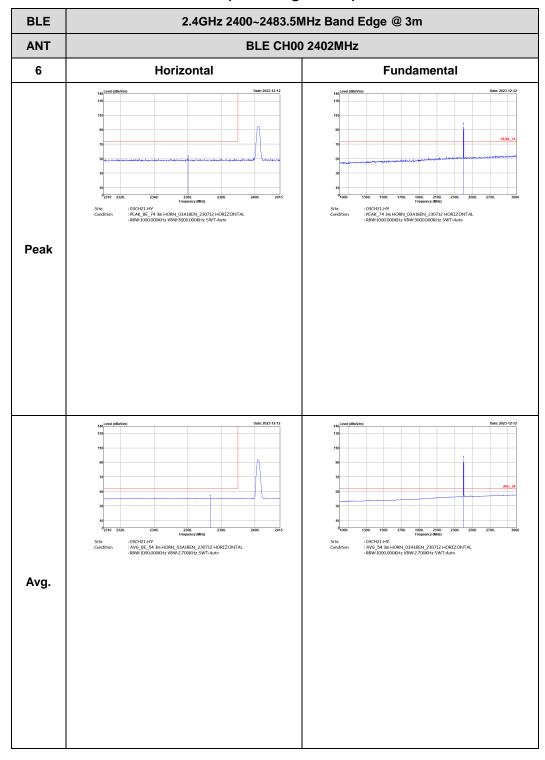
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

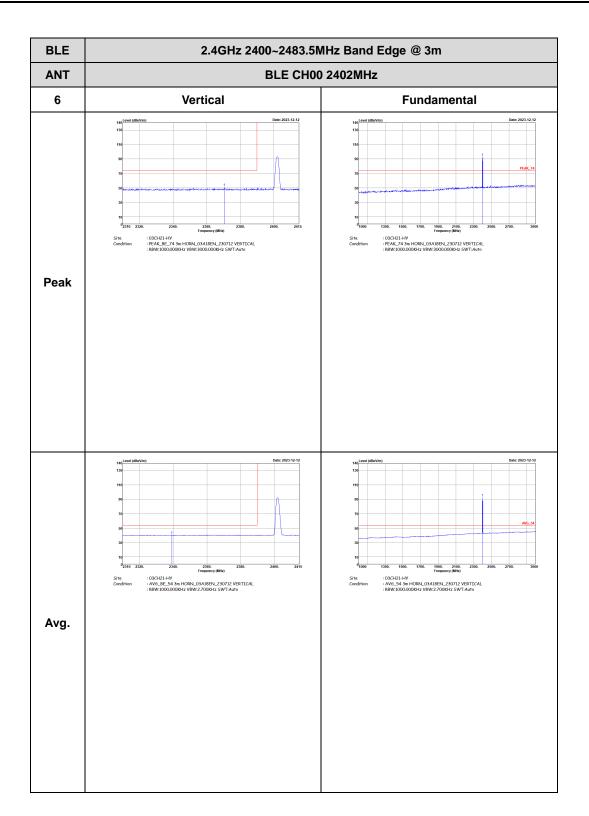
Test Engineer :		Temperature :	18~26°C
Test Engineer .	Jack Cheng, Ray Lung and Sky Chang	Relative Humidity :	50~70%

Note symbol

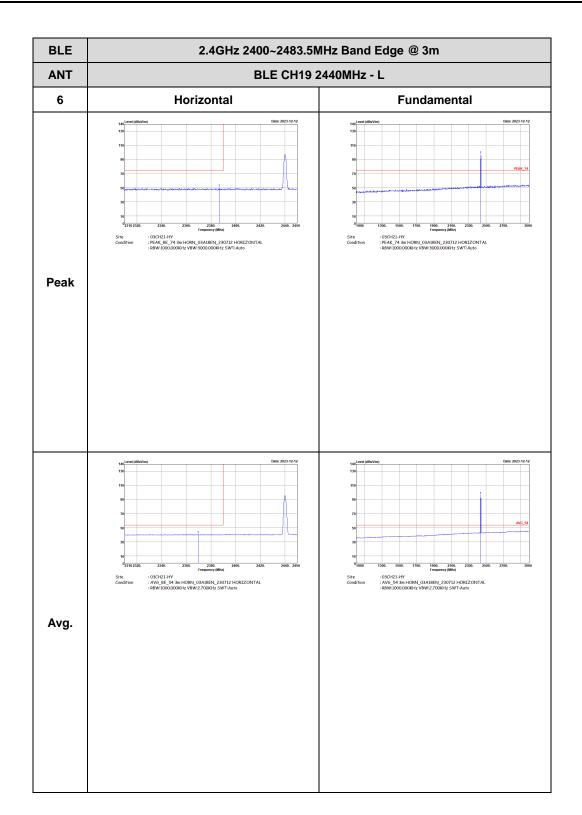
-L	Low channel location
-R	High channel location

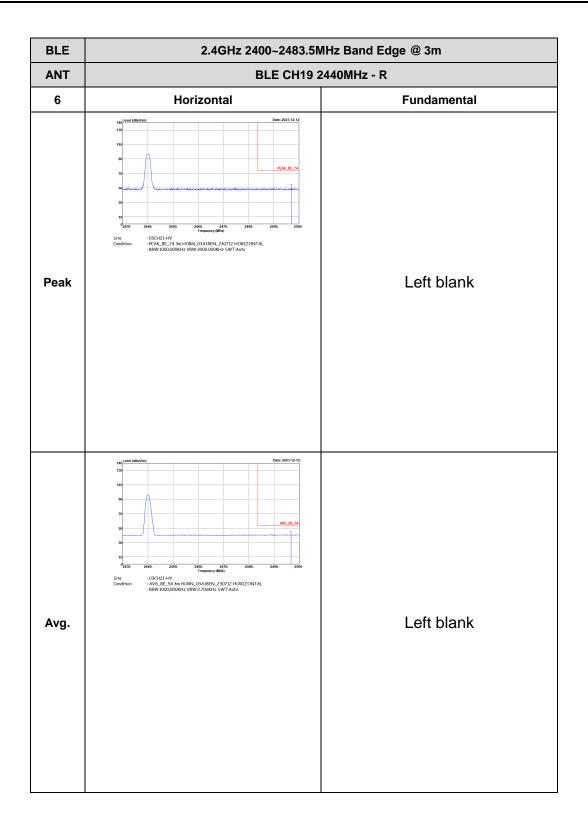

<Sample 1>

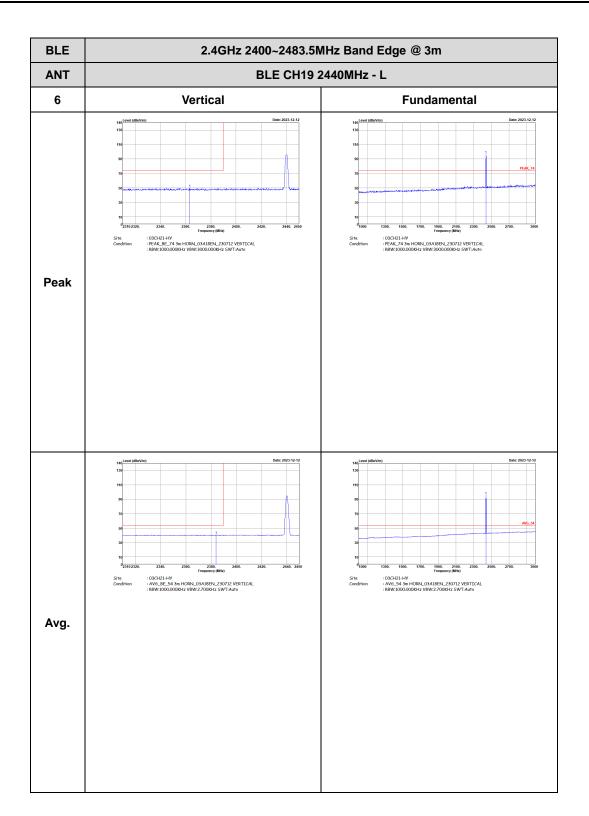
<Ant.6>


<1Mbps>

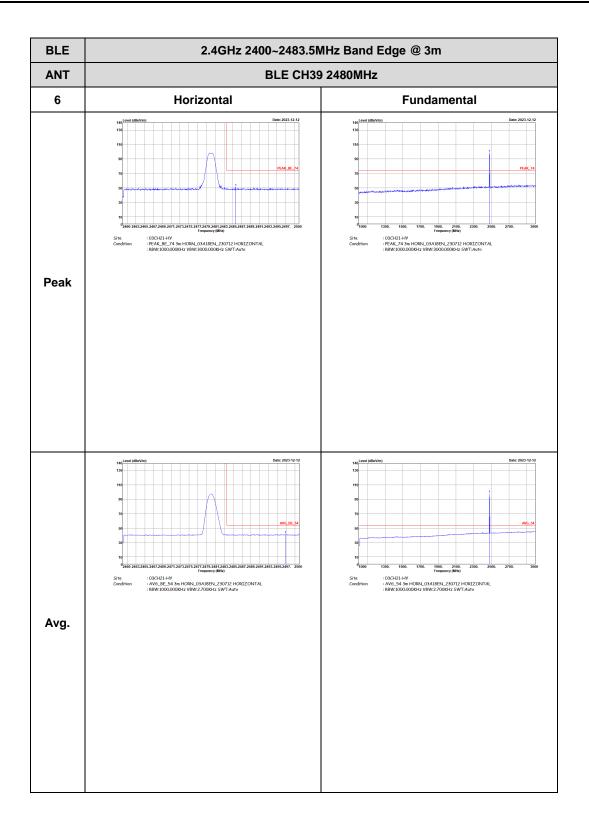
2.4GHz 2400~2483.5MHz

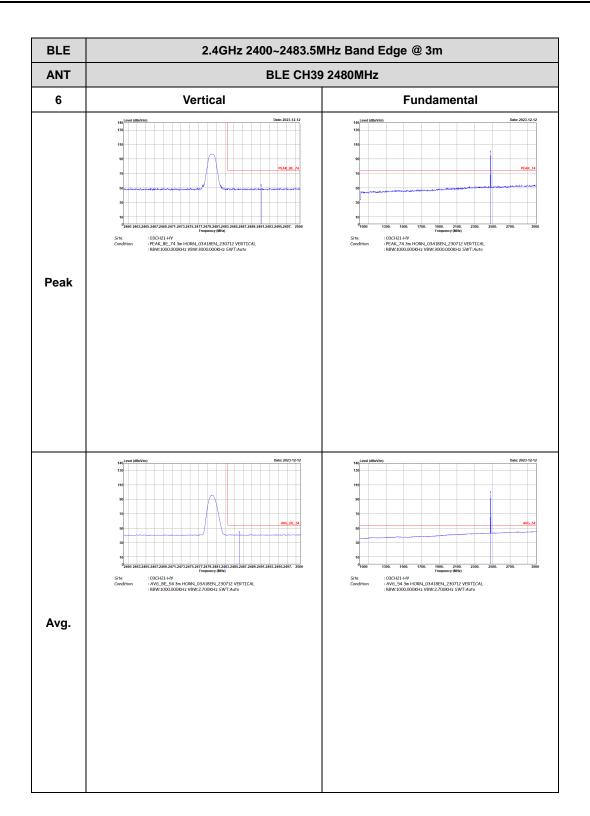

BLE (Band Edge @ 3m)

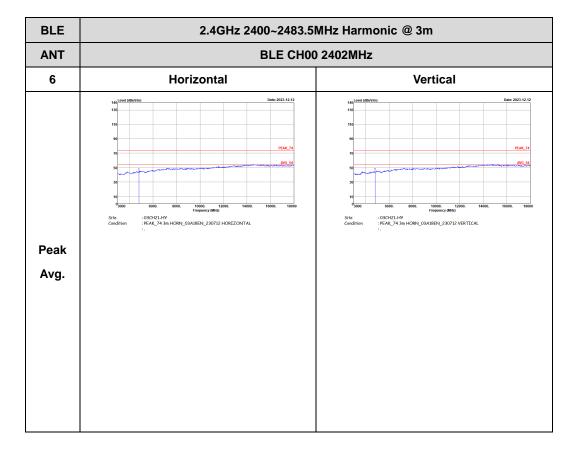




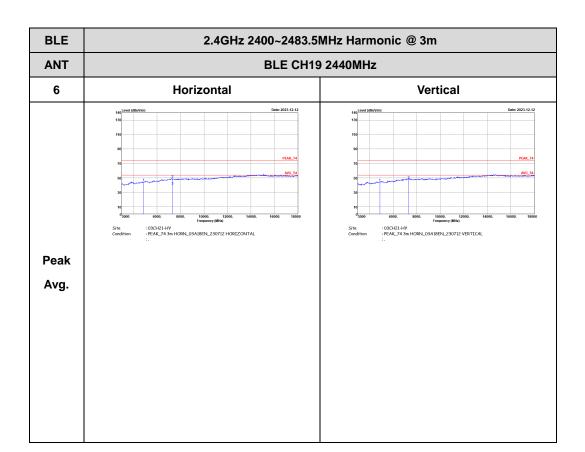




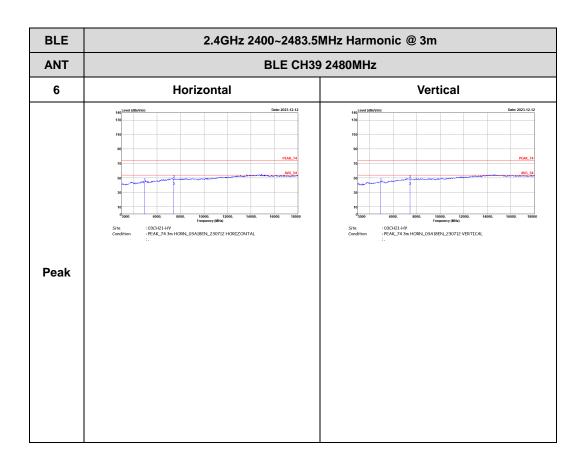




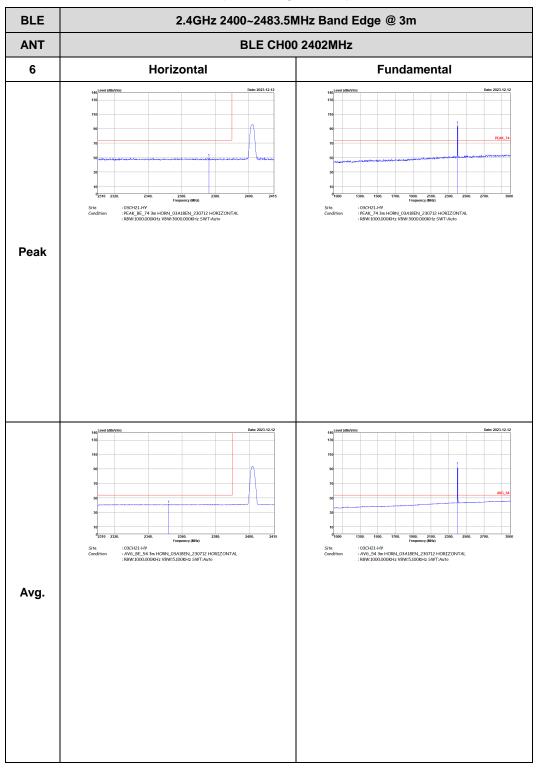
2.4GHz 2400~2483.5MHz

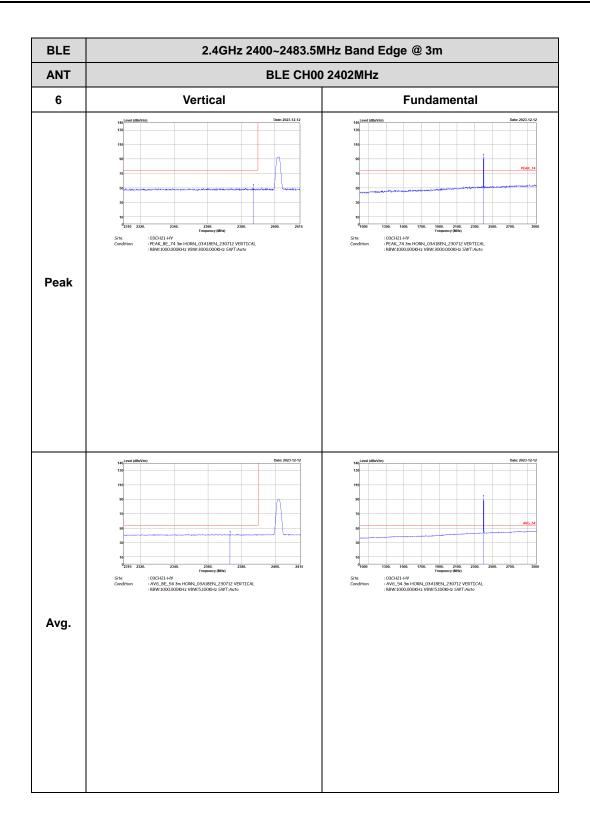

BLE (Harmonic @ 3m)

BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m			
ANT	BLE CH00 2402MHz			
6	Horizontal	Vertical		
10.6G ~18G Avg.	the status of th	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		



BLE	E 2.4GHz 2400~2483.5MHz Harmonic @ 3m			
ANT	BLE CH19 2440MHz			
6	Horizontal	Vertical		
10.6G ~18G Avg.	1 1	14 Image: Control of the second sec		


BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m		
ANT	BLE CH39 2480MHz		
6	Horizontal	Vertical	
10.6G ~18G Avg.	the interview in	sql_cent dilleving Delta 2012 19-10 10 10 10 10 10 10 10 10 10 10 10 10 10 100 100 100 10 100 100 100	


<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

