

Table of Contents

Report Issue History Record	3
Release Control Record	4
1 Certificate of Conformity	5
2 EUT Information	6
 2.1 Operating Frequency Bands and Mode of EUT	6 6 7 7 8
3. U-NII DFS Rule Requirements	9
 3.1 Working Modes and Required Test Items	
4. Test & Support Equipment List 1	2
 4.1 Test Instruments	
5. Test Procedure 1	3
5.1ADT DFS Measurement System15.2Calibration of DFS Detection Threshold Level15.3Deviation From Test Standard15.4Radiated Test Setup Configuration15.4.1Client Without Radar Detection Mode1	14 14 15
6. Test Results 1	6
6.1Summary of Test Results16.2Test Results16.2.1Test Mode: Device Operating In Client Without Radar Detection Mode16.2.2Channel Closing Transmission And Channel Move Time16.2.3Non-Occupancy Period16.2.4Non-Associated Test26.2.5Non- Co-Channel Test2	17 17 18 19 20
7. Information on The Testing Laboratories	21

Report Issue History Record			
Issue No.	Reason For Change	Date Issued	
1	Original release	Apr. 17, 2015	
Report No.: RF1209	03C21S-1 Page No. 3 /	21 Report Format Version: 6.1.1	

Release Control Record				
Issue No.	Description			Date Issued
Issue No. RF120903C21S-1	Description Original release.			Date Issued Apr. 17, 2015

Certificate of Conformity 1

Product:	Mobile Computer	
Brand:	Symbol	
Test Model:	MC40N0	
Sample Status:	Engineering sample	
Applicant:	Zebra Technologies Corporation	
Test Date:	Apr. 16, 2015	
Standards:	FCC Part 15, Subpart E (Section 15.407)	
	KDB 905462 D02	

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Pettie Chen / Senior Specialist

Date:

Apr. 17, 2015

Date:

Apr. 17, 2015

Approved by :

Ken Liu / Senior Manager

2 EUT Information

2.1 Operating Frequency Bands and Mode of EUT

TABLE 1: Operating Frequency Bands and Mode of EUT

Operational Made	Operating Fre	quency Range
Operational Mode	5250~5350MHz	5470~5725MHz
Client without radar detection and ad hoc function	\checkmark	\checkmark

The EUT doesn't operate in 5600 ~ 5650MHz via software controls.

2.2 EUT Hardware, Software and Firmware Version

Table 2: The EUT Hardware/Software/Firmware Version

No.	Product	Model No.	Hardware/Software/Firmware Version
1	Mobile Computer	MC40N0	HW: EV2 SW: Android version: 4.4.4 Build number: 99-4AJ22-K-0008-0004-V0-M1-031315

NOTE: This report is prepared for FCC class II permissive change. This report is issued as a supplementary report of BV ADT report no.: RF120903C21E. The differences compared with original design are changing applicant and antenna design. Therefore, the DFS test was retested and presented in the test report.

2.3 Description Of Available Antennas to The EUT

Table 3: Antenna List

ANT No.	Antenna Type	Operation Frequency Range (MHz)	Gain (dBi)
1	PIFA	5250~5350	3.2
1	PIFA	5470~5725	3.1
2	PIFA	5250~5350	4.1
2	PIFA	5470~5725	4.5

2.4 EUT Maximum Conducted Power

Table 4: The Measured Conducted Output Power

802.11a

ANT No.	Frequency Band (MHz)	MAX. Power	
		Output Power(dBm)	Output Power(mW)
1	5250~5350	18.95	78.52
1	5470~5725	19.11	81.47

802.11n HT20

ANT No.	Frequency Band (MHz)	MAX. Power	
		Output Power(dBm)	Output Power(mW)
1	5250~5350	18.17	65.61
1	5470~5725	18.62	72.78

2.5 EUT Maximum E.I.R.P. Power

Table 5: The EIRP Output Power List

802.11a

ANT No.	Frequency Band (MHz)	MAX. Power	
-		Output Power(dBm)	Output Power(mW)
1	5250~5350	23.05 201.84	
1	5470~5725	23.61	229.61

802.11n HT20

ANT No.	Frequency Band (MHz)	MAX. Power	
		Output Power(dBm)	Output Power(mW)
1	5250~5350	22.27	168.66
1	5470~5725	23.12	205.12

2.6 Transmit Power Control (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

Maximum EIRP of this device is 229.61mW which less than 500mW, therefore it's not require TPC function.

2.7 Statement of Maunfacturer

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band.

3. U-NII DFS Rule Requirements

3.1 Working Modes and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 6 and 7 for the applicability of DFS requirements for each of the operational modes.

		Operational Mo	de
Requirement	Master	Client without radar detection	Client with radar detection
Non-Occupancy Period	~	Not required	\checkmark
DFS Detection Threshold	~	Not required	\checkmark
Channel Availability Check Time	~	Not required	Not required
U-NII Detection Bandwidth	~	Not required	\checkmark

Table 6: Applicability of DFS Requirements Prior To Use a Channel

Table 7: Applicability of DFS Requirements During Normal Operation.

	Operational Mode			
Requirement	Master or Client with radar detection	Client without radar detection		
DFS Detection Threshold	~	Not required		
Channel Closing Transmission Time	~	\checkmark		
Channel Move Time	✓	✓		
U-NII Detection Bandwidth	✓	Not required		

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20 MHz channel blocks and a null frequencies between the bonded 20 MHz channel blocks.

3.2 Test Limits And Radar Signal Parameters

Detection Threshold Values

Table 8: DFS Detection Thresholds For Master Devices And Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	
power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the	
power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 9: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Parameters of DFS Test Signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials			
0	1	1428	18	See Note 1	See Note 1			
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	Roundup $\left\{ \begin{array}{c} 1\\ 360 \\ \hline \\ 19 \cdot 10^{6} \\ \hline \\ PRI_{\#sec} \end{array} \right\}$	60%	30			
		Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A						
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
	Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. 60% 120							

Table 10: Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number Of Pulses Per Burst	Number Of Bursts	Minimum Percentage Of Successful Detection	Minimum Number Of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 12: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage Of Successful Detection	Minimum Number Of Trials
6	1	333	9	0.333	300	70%	30

4. Test & Support Equipment List

4.1 Test Instruments

Table 13: Test Instruments List

Description & Manufacturer	Model No.	Brand	Date Of Calibration	Due Date Of Calibration
R&S Spectrum analyzer	ESR	R&S	2015/01/14	2016/01/13
Signal generator	8645A	Agilent	2014/06/24	2015/06/23

4.2 Description of Support Units

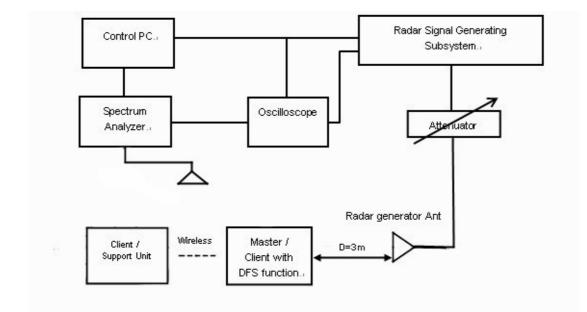
Table 14: Support Unit Information.

No.	Product	Brand	Model No.	FCC ID	Spec.
1	11n Access-Point	MOTOROLA	AP-7131N	UZ7AP7131N	The maximum EIRP is 13.6dBm, Antenna Gain is -3.38dBi

NOTE: This device was functioned as a Master Slave device during the DFS test.

Table 15: Software/Firmware Information.

No. Product		Model No.	Software/Firmware Version	
1	11n Access-Point	AP-7131N	4.1.5.0-004R	



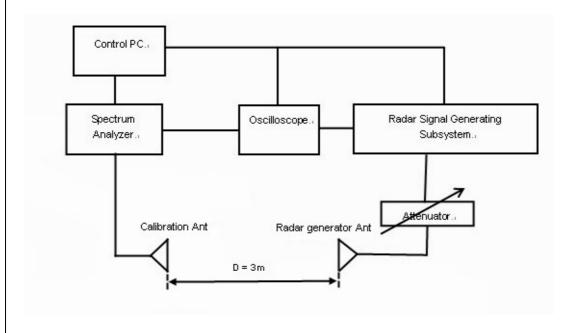
5. Test Procedure

5.1 ADT DFS Measurement System

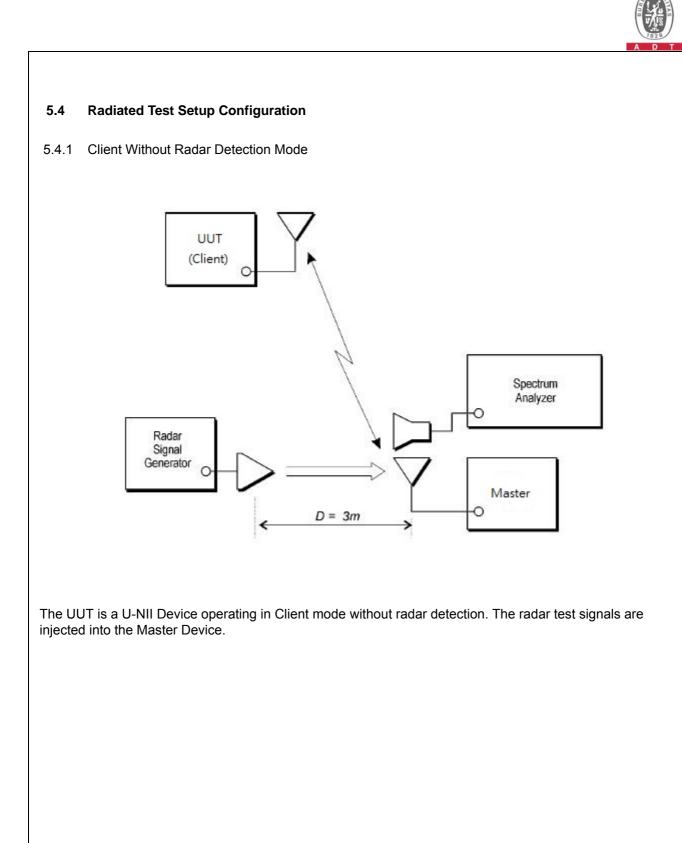
A complete ADT DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 10, 11 and 12. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

Radiated Setup Configuration of ADT DFS Measurement System

System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:


	a) The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, Avetc.) and must generally be transmitting in a streaming mode.			
	b) Software to ping the client is permitted to simulate data transfer but must have random ping intervals.			
V	c) Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater.			
	d) Unicast or Multicast protocols are preferable but other protocols may be used. The appropriate protocol used must be described in the test procedures.			

5.2 Calibration of DFS Detection Threshold Level


The measured channel is 5500MHz. The radar signal was the same as transmitted channels, and injected into the antenna of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The calibrated conducted detection threshold level is set to -62dBm. The tested level is lower than required level hence it provides margin to the limit.

Radiated setup configuration of Calibration of DFS Detection Threshold Level

5.3 Deviation From Test Standard

No deviation.

6. Test Results

6.1 Summary of Test Results

Clause	Test Parameter	Remarks	Pass/Fail
15.407	07 DFS Detection Threshold Not Applicabl		NA
15.407	7 Channel Availability Check Time Not Applicable		NA
15.407	07 Channel Move Time Applicable		Pass
15.407	Channel Closing Transmission Time Applicable		Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	oreading Not Applicable	
15.407	U-NII Detection Bandwidth	Not Applicable	NA
15.407	Non-associated test	Applicable	Pass
15.407	Non-Co-Channel test	Applicable Pass	

6.2 Test Results

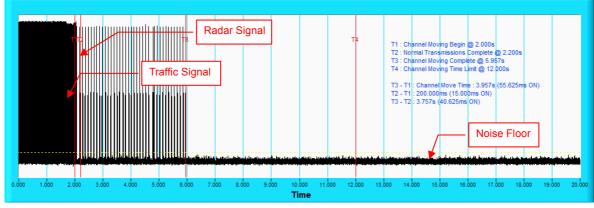
6.2.1 Test Mode: Device Operating In Client Without Radar Detection Mode.

Client with injection at the Master. (The radar test signals are injected into the Master Device)

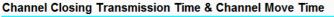
DFS Detection Threshold

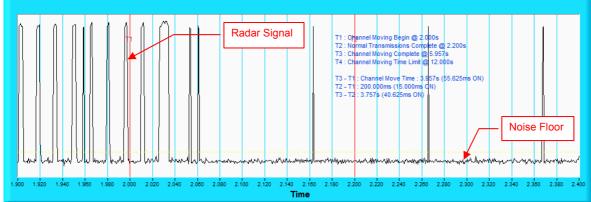
For a detection threshold level of -62dBm, the required signal strength at EUT antenna location is -62 dBm. The tested level is lower than required level hence it provides margin to the limit.

Receiver Spectrum	*			E
	 RBW 3 MHz S0 ms VBW 10 MHz 	Input 1 AC		
TRG: VID PS				
-10 dBm		M1[1]		-62.23 dBn 9.99688 m
-20 dBm				
-30 dBm				
-40 dBm-		Radar signal		
-50 dBm				Noise Floor
-60 dBm TRG -68.000 dBm	M1			
and the second states of the s	shudada hukuta ha	les adhed plast also	http://www.ife	na é Kapa
CF 5.5 GHz	3200	1 pts		5.0 ms/


Radar Signal 0

6.2.2 Channel Closing Transmission And Channel Move Time

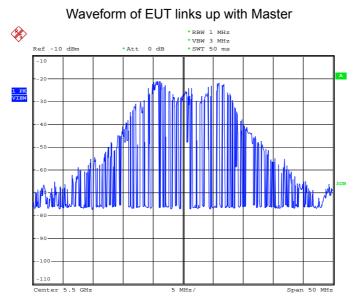

Radar Signal 0


802.11n HT20

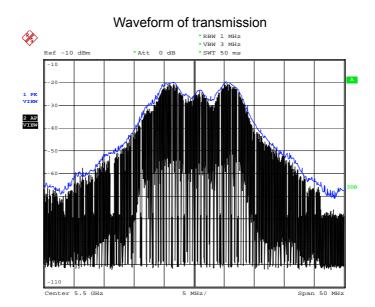
Channel Closing Transmission Time & Channel Move Time

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time.T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: An expanded plot for the device vacates the channel in the required 500ms.



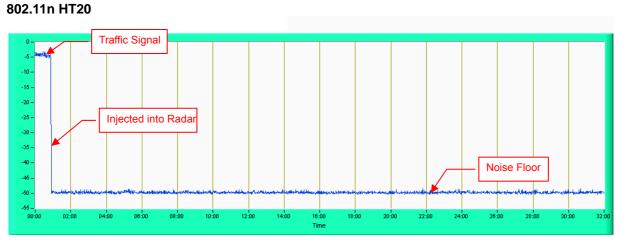
6.2.3 Non-Occupancy Period


Associate test:

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

1) EUT (Client) links with master on 5500MHz.

2) Client plays specified files via master.



3) Radar signal 0 is applied to the Master device and WiFi traffic signal stop immediately.

Radar signal applied to the master and traffic stopped as described in section 6.2.2.

4) 5500MHz has been monitored in 30 minutes period. In this period, no any transmission occurs.

Plot of 30minutes period

NOTE: Test setup are shown on Test set up photo.pdf

6.2.4 Non-Associated Test

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.

6.2.5 Non- Co-Channel Test

The UUT was investigated after radar was detected and confirmed that no co-channel operation with radars.

7. Information on The Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----