

Report No. : FR981244A

FCC RADIO TEST REPORT

FCC ID :	UZ7MC330L
Equipment :	Mobile Computer
Brand Name :	Zebra
Model Name :	MC330L
Applicant :	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer :	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard :	FCC Part 15 Subpart C §15.247

The product was received on Aug. 12, 2019 and testing was started from Aug. 24, 2019 and completed on Oct. 25, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	9
	1.3	Modification of EUT	9
	1.4	Testing Location	9
	1.5	Applicable Standards	.10
2	Test	Configuration of Equipment Under Test	.11
	2.1	Carrier Frequency Channel	.11
	2.2	Test Mode	.12
	2.3	Connection Diagram of Test System	.15
	2.4	Support Unit used in test configuration and system	.16
	2.5	EUT Operation Test Setup	.16
	2.6	Measurement Results Explanation Example	.16
3	Test	Result	.17
	3.1	Number of Channel Measurement	.17
	3.2	Hopping Channel Separation Measurement	.19
	3.3	Dwell Time Measurement	.25
	3.4	20dB and 99% Bandwidth Measurement	.27
	3.5	Output Power Measurement	. 38
	3.6	Conducted Band Edges Measurement	.40
	3.7	Conducted Spurious Emission Measurement	.47
	3.8	Radiated Band Edges and Spurious Emission Measurement	.57
	3.9	AC Conducted Emission Measurement	.61
	3.10	Antenna Requirements	.63
4	List c	f Measuring Equipment	.64
5	Unce	rtainty of Evaluation	.66
Арр	pendix	A. AC Conducted Emission Test Result	
Арр	oendix	B. Radiated Spurious Emission	
Арр	oendix	C. Radiated Spurious Emission Plots	
Арр	oendix	D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR981244A	01	Initial issue of report	Nov. 29, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 6.83 dB at 41.640. MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 12.94 dB at 0.152 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Ruby Zou

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Computer			
Brand Name	Zebra			
Model Name	MC330L			
FCC ID	UZ7MC330L			
EUT supports Radios application	NFC WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE			
HW Version	DV			
SW Version_Gun	Android Version 9			
SW Version_Brick	Android Version 9			
SW Version_Rotate	Android Version 9			
FW Version_Gun	Terminal Version: 02-11-08.00-PG-U00-PLT			
FW Version_Brick	Terminal Version: 02-11-08.00-PG-U00-PLT			
FW Version_Rotate	Terminal Version: 02-11-08.00-PG-U00-PLT			
MFD_Gun	01AUG19			
MFD_Brick	02AUG19			
MFD_Rotate	27JUL19			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories					
Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US	
U cable	Brand Name	Symbol	Model Name	CBL-MC33-USBCHG-01	
MC32 1X battery (Inventus)	Brand Name	Symbol	Model Number	82-000011-01	
MC32 2X battery (Inventus)	Brand Name	Symbol	Model Number	82-000012-02	
MC32 2X battery (TWS)	Brand Name	Symbol	Model Number	82-000012-02	
MC33 1X battery (Inventus)	Brand Name	ZEBRA	Model Number	BT-000338	
MC33 2X battery (Inventus)	Brand Name	ZEBRA	Model Number	BT-000337	
MC33 2X battery (TWS)	Brand Name	ZEBRA	Model Number	BT-000337A	
MC33 7000mA 2X (Inventus)	Brand Name	ZEBRA	Model Number	BT-000375	
Holster for MC3XXX Gun configuration	Brand Name	Zebra	Model Number	SG-MC3021212-01R	
Rigid holster for MC3XXX Gun configuration	Brand Name	Zebra	Model Number	SG-MC33-RDHLST-01	
Holster for MC3XXXX Brick configuration	Brand Name	Zebra	Model Number	11-69293-01R	
Rigid holster for MC3XXX Brick configuration	Brand Name	Zebra	Model Number	SG-MC33-RDHLST-01	
Lanyard for MC3XXX Brick Configuration	Brand Name	Zebra	Model Number	SG-MC33-LNYDB-01	
Protective boot for MC3XXX straight shooter	Brand Name	Zebra	Model Number	SG-MC33-RBTG-01	
Protective boot for MC3XXX Turret Cup of Rotate configuration	Brand Name	Zebra	Model Number	SG-MC33-RBTRT-01	
Protective boot for MC3XXX Rotate configuration	Brand Name	Zebra	Model Number	SG-MC33-RBTRD-01	

<Sample Information>

Organization / Function / Group	SKU1	SKU2	SKU3	SKU4	SKU5
Phase	DV	DV	DV	DV	DV
Configuration					
Form Factor	Gun	Gun	Gun - Amazon	Gun China	Rotate
Scanner	SE965	SE4850 new 20-4850-IM001R	SE4770	SE4720	SE965
Kourad	Numeric	Function Numeric	AlphaNum	Function Numeric	Numeric
Keypad	(29Key)	(47Key)	(47Key)	(38Key)	(47Key)
Tier	Base	Base	Base	Base	Base
NFC	Yes	Yes	Yes	Yes	Yes
Camera	NA	NA	NA	NA	No
Audio Jack (NA)	NA	NA	NA	NA	No
Back Hsg	Gun 18D	Gun 18D	Gun 18D	Gun 18D	Rotate Head
Screen Protector	No	Yes	Yes	No	No
RFID Tag	Yes	Yes	Yes	Yes	No
Hand strap	No	Yes	Yes	No	No
USB Charge cable in box	No	No	No	Yes	No
Wal wart adaptor	No	No	No	Yes	No
РСВ	Tripod	Tripod	Tripod	Tripod	Tripod
DRAM/eMMIC	4/32 GB MLC	4/32 GB MLC	4/32 GB MLC	4/16 GB MLC	4/32 GB MLC
DRAM/eMMC Mfr main source	Hynix/Hynix	Hynix/Hynix	Hynix/Hynix	Hynix/Hynix	Hynix/Hynix

Organization / Function / Group	SKU6	SKU7	SKU8	SKU9	SKU10	
Phase	DV	DV	DV	DV	DV	
Configuration						
Form Factor	Straight (S)	Straight (S)	Straight (S) China	Straight (L)	Straight(45)	
Scanner	SE965	SE4770	SE4720	SE4850 new 20-4850-IM001R	SE4770	
Keypad	AlphaNum (47Key)	Function Numeric (38Key)	Function Numeric (38Key)	Numeric (29Key)	Function Numeric (38Key)	
Tier	Base + Camera	Base + Camera	Base	Base + Camera	Base + Camera	
NFC	Yes	Yes	Yes	Yes	Yes	
Camera	Yes	Yes	No	Yes	Yes	
Audio Jack (NA)	No	No	No	No	No	
Back Hsg	22 Deg ST	22 Deg ST	22 Deg ST	18 deg ST	45 deg ST	
Screen Protector	No	No	No	Yes	Yes	
RFID Tag	No	No	No	No	No	
Hand strap	Yes	No	No	No	Yes	
USB Charge cable in box	No	No	Yes	No	No	
Wal wart adaptor	No	No	Yes	No	No	
РСВ	Tripod	Tripod	Tripod	Tripod	Tripod	
DRAM/eMMIC	4/32 GB MLC	4/32 GB MLC	4/16 GB MLC	4/32 GB MLC	4/32 GB MLC	
DRAM/eMMC Mfr main source	Hynix/Hynix	Hynix/Hynix	Hynix/Hynix	Hynix/Hynix	Hynix/Hynix	

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
	Bluetooth BR(1Mbps) : 0.10 dBm (0.0010 W)			
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : -0.79 dBm (0.0008 W)			
	Bluetooth EDR (3Mbps) : -0.45 dBm (0.0009 W)			
	Bluetooth BR(1Mbps) : 0.871MHz			
99% Occupied Bandwidth	Bluetooth EDR (2Mbps) : 1.181MHz			
	Bluetooth EDR (3Mbps) : 1.175MHz			
Antenna Type / Gain	PIFA Antenna type with gain 3.40 dBi			
	Bluetooth BR (1Mbps) : GFSK			
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK			
	Bluetooth EDR (3Mbps) : 8-DPSK			

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory				
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978				
Teet Site Ne	Sporton	Site No.			
Test Site No.	TH05-HY	CO05-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No. 03CH12-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

		Bluetooth Average Output Power					
Channel	Frequency	Frequency GFSK / 1Mbps					
		DH1	DH3	DH5			
Ch00	2402MHz	-1.37 dBm	-3.01 dBm	-3.46 dBm			
Ch39	2441MHz	-1.28 dBm	-2.98 dBm	-3.43 dBm			
Ch78	2480MHz	<mark>-1.26</mark> dBm	-2.97 dBm	-3.36 dBm			

		Bluetooth Average Output Power					
Channel	Frequency						
		2DH1 2DH3		2DH5			
Ch00	2402MHz	-4.76 dBm -6.61 dBm		-7.06 dBm			
Ch39	2441MHz	-4.74 dBm	-6.59 dBm	-7.02 dBm			
Ch78	2480MHz	<mark>-4.72</mark> dBm	-6.57 dBm	-6.96 dBm			

		Bluetooth Average Output Power						
Channel	Frequency	8-DPSK / 3Mbps						
	3DH1		3DH3	3DH5				
Ch00	2402MHz	<mark>-4.72</mark> dBm	-6.46 dBm	-6.94 dBm				
Ch39	2441MHz	-4.79 dBm	-6.46 dBm	-6.93 dBm				
Ch78	2480MHz	-4.77 dBm	-6.45 dBm	-6.83 dBm				

Channel	Frequency	Bluetooth Peak Output Power equency GFSK / 1Mbps						
		DH1	DH1 DH3					
Ch00	2402MHz	-0.14 dBm	0.04 dBm	-0.09 dBm				
Ch39	2441MHz	-0.09 dBm	0.09 dBm	0.02 dBm				
Ch78	2480MHz	-0.06 dBm	<mark>0.10</mark> dBm	0.04 dBm				

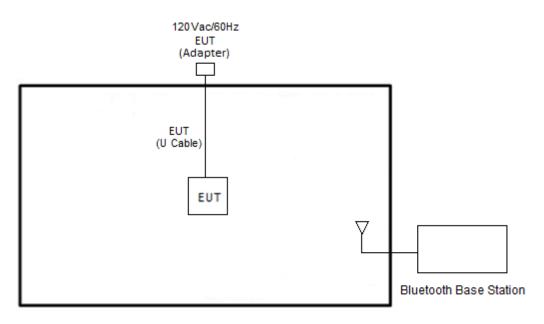
		Blu	uetooth Peak Output Pov	ver			
Channel	Frequency	π/4-DQPSK / 2Mbps					
		2DH1	2DH3	2DH5			
Ch00	2402MHz	-1.21 dBm	-1.22 dBm	-0.93 dBm			
Ch39	2441MHz	-0.96 dBm	-1.12 dBm	-0.88 dBm			
Ch78	2480MHz	-0.90 dBm	-1.10 dBm	<mark>-0.79</mark> dBm			

		Blu	uetooth Peak Output Pov	ver			
Channel	Frequency	8-DPSK / 3Mbps					
		3DH1	3DH3	3DH5			
Ch00	2402MHz	-0.94 dBm	-0.69 dBm	-0.73 dBm			
Ch39	2441MHz	-0.75 dBm	-0.57 dBm	-0.63 dBm			
Ch78	2480MHz	-0.66 dBm	-0.49 dBm	<mark>-0.45</mark> dBm			

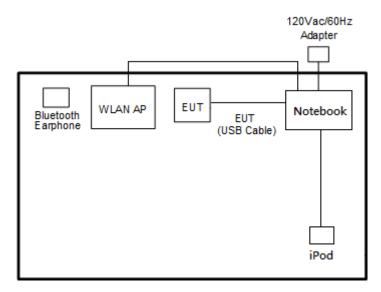
Remark: The data rate was set in 1Mbps for all the test items due to the highest RF output power.

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases								
		Data Rate / Modulation							
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps						
	GFSK	π /4-DQPSK	8-DPSK						
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz						
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz						
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz						
	Bluetooth BR 1Mbps GFSK								
Radiated		Mode 1: CH00_2402 MHz							
Test Cases		Mode 2: CH39_2441 MHz							
		Mode 3: CH78_2480 MHz							
AC		n la su Dhuasta atta Lindu y Oalan D							
Conducted		nk + Bluetooth Link + Color Ba							
Emission	2X + USB Data Lini	< with Notebook (eMMC to No	tedook) for SKU 5						
Remark:									
1. For radiate	1. For radiated test cases, the worst mode data rate 1Mbps was reported only since the highest RF								
output pov	ver in the preliminary tests. The	e conducted spurious emissior	ns and conducted band edge						
measurem	nent for other data rates were r	not worse than 1Mbps, and no	other significantly						


frequencies found in conducted spurious emission.

- 2. Data Linking with Notebook means data application transferred mode between EUT and Notebook.
- 3. For Radiated Test Cases, the tests were performed with MC33 2X battery (Inventus) and SKU 5.



2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
5.	Notebook	Dell	Latitude E5570	FCC DoC	AC I/P: Unshielded, 1.2m	DC O/P : Shielded, 1.8m
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT v3.0.298.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

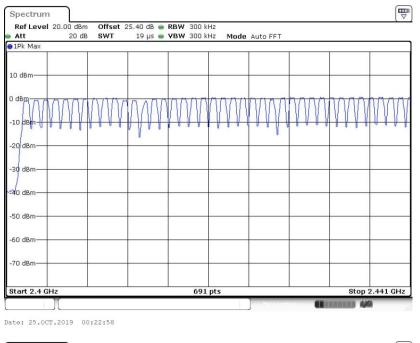
See list of measuring equipment of this test report.

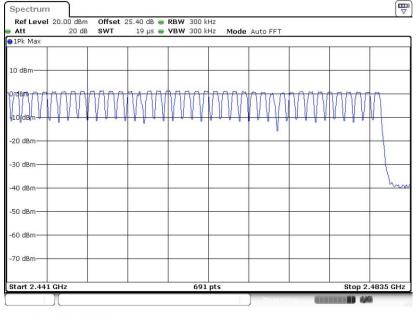
3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

Spectrum Analyzer


EUT



3.1.5 Test Result of Number of Hopping Frequency

Test Engineer : Kai Lia	Tem	perature :	21~25℃ 51~54%	
		ative Humidity :		
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail	
79	20	> 15	Pass	

Number of Hopping Channel Plot on Channel 00 - 78

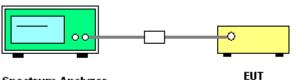
Date: 25.0CT.2019 00:23:59

Page Number : 18 of 66 Issued Date : Nov. 29, 2019 Report Version : 01

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

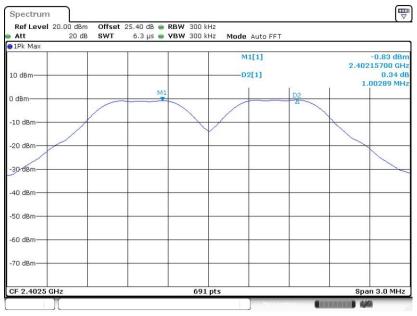
See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

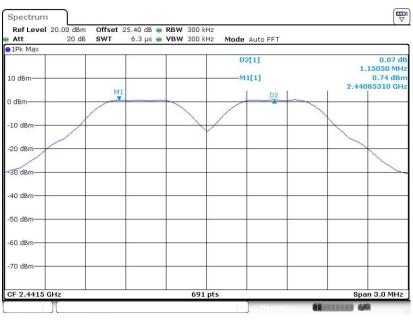
3.2.4 Test Setup

Spectrum Analyzer



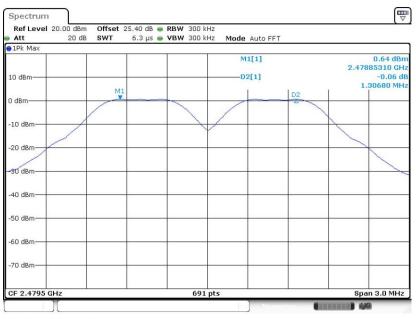
3.2.5 Test Result of Hopping Channel Separation

Test Eng	ineer :		Kai Liao)		Temperature : Relative Humidity :		21~25℃ 51~54%	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Hopping Chan Separation Measuremen (MHz)		Hopping Chan Separation Measuremer Limit (MHz)	nt	Pass/Fail
DH	1Mbps	1	0	2402	1.003		0.6310		Pass
DH	1Mbps	1	39	2441	1.151		0.6291		Pass
DH	1Mbps	1	78	2480	1.307		0.6310		Pass
2DH	2Mbps	1	0	2402	1.025		0.8567		Pass
2DH	2Mbps	1	39	2441	1.307		0.8539		Pass
2DH	2Mbps	1	78	2480	1.025		0.8567		Pass
3DH	3Mbps	1	0	2402	1.003		0.8625		Pass
3DH	3Mbps	1	39	2441	1.003		0.8481		Pass
3DH	3Mbps	1	78	2480	1.216		0.8596		Pass


<1Mbps>

Channel Separation Plot on Channel 00 - 01

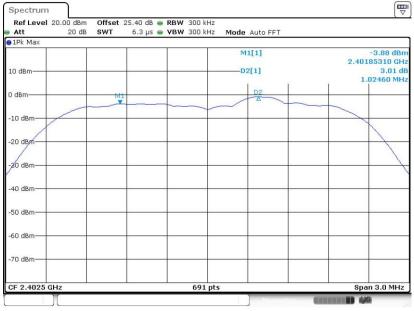
Date: 25.0CT.2019 00:08:43



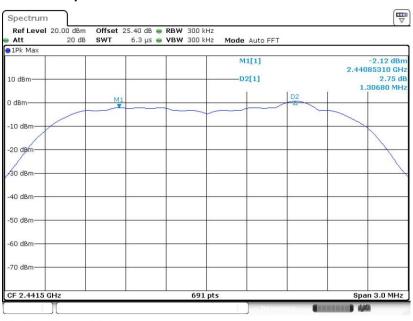
Channel Separation Plot on Channel 39 - 40

Date: 25.0CT.2019 00:16:47

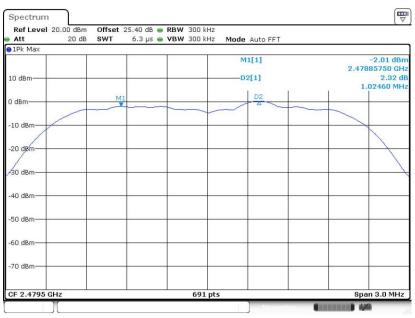
Channel Separation Plot on Channel 77 - 78



Date: 25.0CT.2019 00:17:56

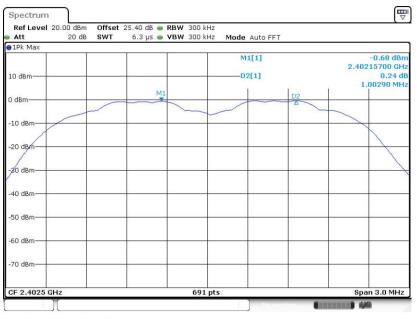

<2Mbps>

Channel Separation Plot on Channel 00 - 01 Spectrum Offset 25.40 dB ● RBW 300 kHz SWT 6.3 µs ● VBW 300 kHz Ref Level 20.00 dBm Mode Auto FFT Att 20 dB


Date: 25.0CT.2019 00:42:04

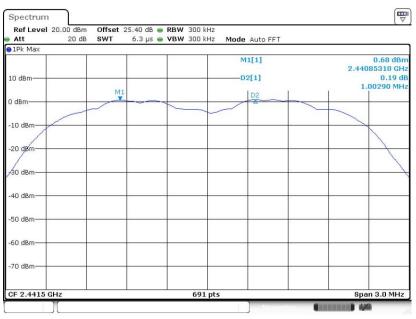
Channel Separation Plot on Channel 39 - 40

Date: 25.0CT.2019 00:34:59



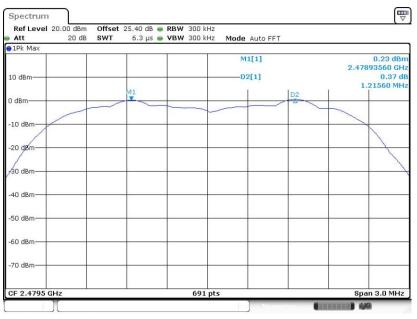
Channel Separation Plot on Channel 77 - 78

Date: 25.0CT.2019 00:32:22


<3Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 25.0CT.2019 01:02:10



Channel Separation Plot on Channel 39 - 40

Date: 25.0CT.2019 00:59:51

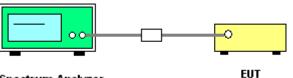
Channel Separation Plot on Channel 77 - 78

Date: 25.0CT.2019 01:09:01

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

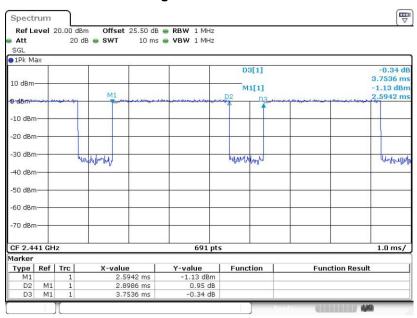

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup


Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Teet Engineer		Temperature :	21~25 ℃
Test Engineer :	Kai Liao	Relative Humidity :	51~54%

Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

Package Transfer Time Plot

Date: 17.SEP.2019 00:21:10

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

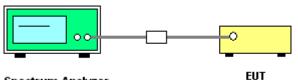
2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

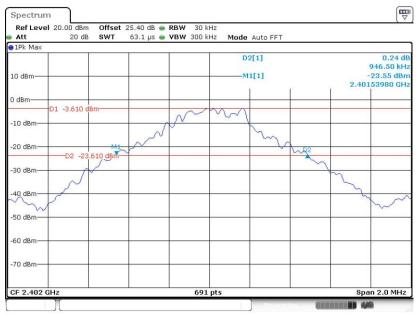
See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

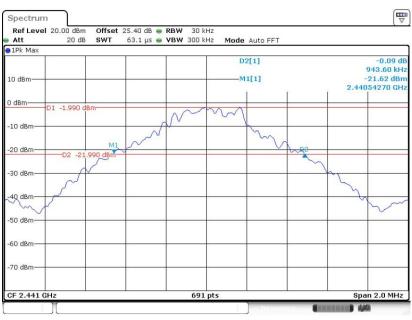
3.4.4 Test Setup

Spectrum Analyzer



3.4.5 Test Result of 20dB Bandwidth

Toot Enginee		Kailiaa			Temperature :		21~25 ℃	
Test Enginee	r: Kai Liao			Relative Humic	tive Humidity :		51~54%	
					20db			
Mod.	Data Rate	Ντχ	CH.	Freq. (MHz)	2005 (MF		Pass/Fail	
DH	1Mbps	1	0	2402	0.9	47	Pass	
DH	1Mbps	1	39	2441	0.944		Pass	
DH	1Mbps	1	78	2480	0.947		Pass	
2DH	2Mbps	1	0	2402	1.2	85	Pass	
2DH	2Mbps	1	39	2441	1.2	81	Pass	
2DH	2Mbps	1	78	2480	1.2	85	Pass	
3DH	3Mbps	1	0	2402	1.2	94	Pass	
3DH	3Mbps	1	39	2441	1.2	72	Pass	
3DH	3Mbps	1	78	2480	1.2	89	Pass	


<1Mbps>

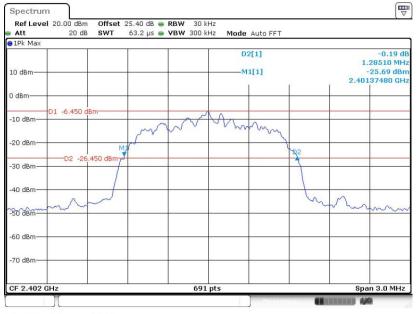
Date: 25.0CT.2019 00:10:07



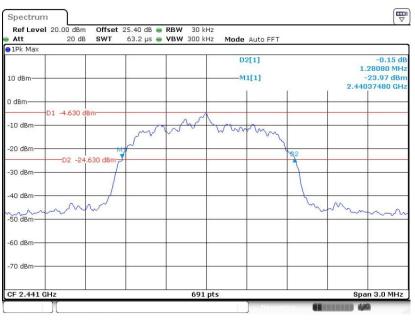
20 dB Bandwidth Plot on Channel 39

Date: 25.0CT.2019 00:15:07

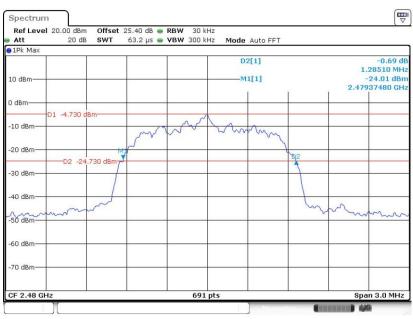
20 dB Bandwidth Plot on Channel 78



Date: 25.0CT.2019 00:19:05

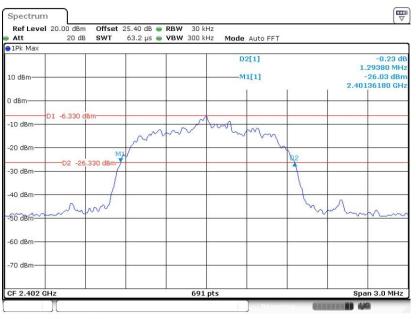

<2Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 25.0CT.2019 00:43:05

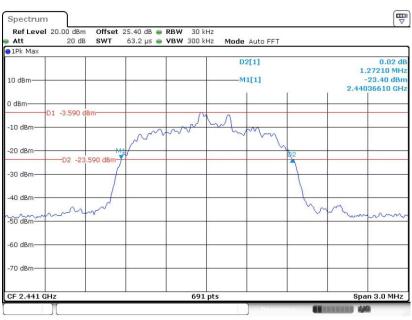
20 dB Bandwidth Plot on Channel 39

Date: 25.0CT.2019 00:35:50



20 dB Bandwidth Plot on Channel 78

Date: 25.0CT.2019 00:31:09


<3Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 25.0CT.2019 01:05:32

20 dB Bandwidth Plot on Channel 39

Date: 25.0CT.2019 01:01:12

20 dB Bandwidth Plot on Channel 78

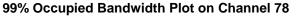
Date: 25.0CT.2019 01:09:59

3.4.6 Test Result of 99% Occupied Bandwidth

Test Engineer : Kai Liao					Temperature :	21~25 ℃
rest Engli		30		Relative Humidity :	51~54%	
	-	r	r	r		
Mod.	Data Rate	Nтx	CH.	Freq. (MHz)	99% Bandwidth (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.871	Pass
DH	1Mbps	1	39	2441	0.868	Pass
DH	1Mbps	1	78	2480	0.868	Pass
2DH	2Mbps	1	0	2402	1.181	Pass
2DH	2Mbps	1	39	2441	1.181	Pass
2DH	2Mbps	1	78	2480	1.181	Pass
3DH	3Mbps	1	0	2402	1.172	Pass
3DH	3Mbps	1	39	2441	1.169	Pass
3DH	3Mbps	1	78	2480	1.175	Pass

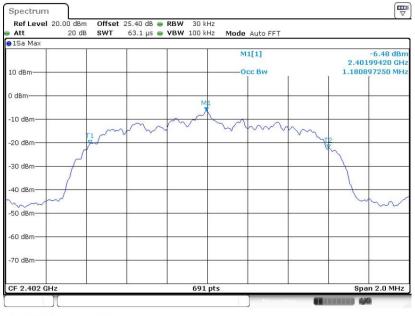
<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

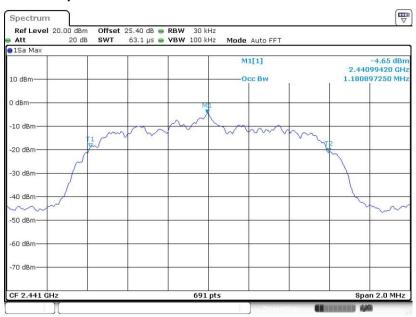

Date: 25.0CT.2019 00:11:01

99% Occupied Bandwidth Plot on Channel 39

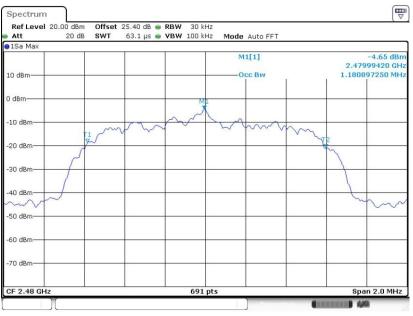
Date: 25.0CT.2019 00:12:53



Date: 25.0CT.2019 00:20:28


<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 25.0CT.2019 00:39:20

99% Occupied Bandwidth Plot on Channel 39

Date: 25.0CT.2019 00:37:19

99% Occupied Bandwidth Plot on Channel 78

Date: 25.0CT.2019 00:26:59

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 25.0CT.2019 01:14:21

99% Occupied Bandwidth Plot on Channel 39

Date: 25.0CT.2019 00:54:07

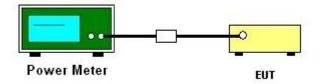
99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Test Engine	er: Ka	i Liao		Temperature :	21~25℃
Ū				Relative Humidity :	51~54%
DH	CH.	Ντχ	Peak Power (dBm)	Power Limit (dBm) Test Result
	0	1	0.04	20.97	Pass
DH1	39	1	0.09	20.97	Pass
	78	1	0.10	20.97	Pass
2DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm) Test Result
	0	1	-0.93	20.97	Pass
2DH1	39	1	-0.88	20.97	Pass
	78	1	-0.79	20.97	Pass
3DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm) Test Result
	0	1	-0.73	20.97	Pass
3DH1	39	1	-0.63	20.97	Pass
	78	1	-0.45	20.97	Pass

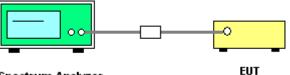
3.5.6 Test Result of Average Output Power (Reporting Only)

Test Engine	er: Ka	i Liao	Temperat		21~25 ℃
			Relative	Humidity :	51~54%
DH	CH.	Νтх	Average Power (dBm)	Dut	y Factor (dB)
	0	1	-1.37		5.18
DH1	39	1	-1.28		5.18
	78	1	-1.26		5.18
2DH	CH.	Νтх	Average Power (dBm)	Dut	y Factor (dB)
	0	1	-4.76		5.12
2DH1	39	1	-4.74		5.12
	78	1	-4.72		5.12
3DH	CH.	Νтх	Average Power (dBm)	Dut	y Factor (dB)
	0	1	-4.72		5.08
3DH1	39	1	-4.79		5.08
	78	1	-4.77		5.08

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

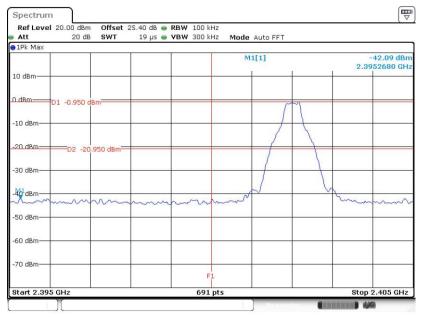
See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

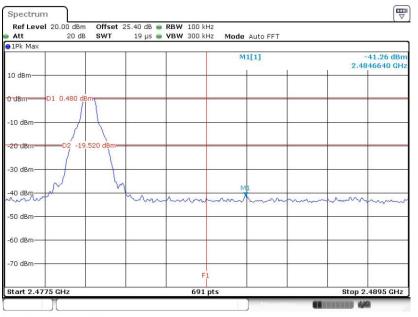
3.6.4 Test Setup

Spectrum Analyzer



3.6.5 Test Result of Conducted Band Edges

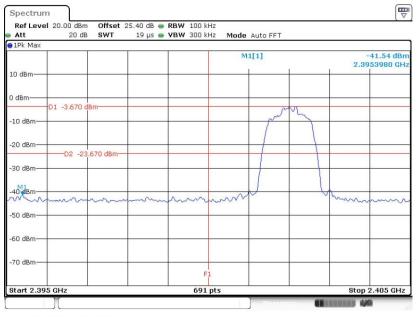
Teet Engineer .	Kailian	Temperature :	21~25 ℃
Test Engineer :	Kai Liao	Relative Humidity :	51~54%


<1Mbps>

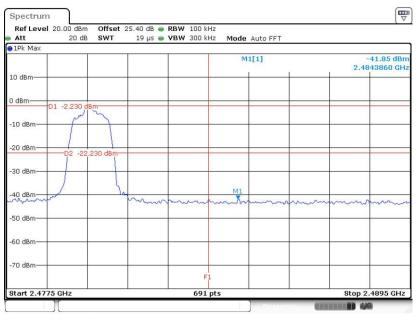
Low Band Edge Plot on Channel 00

Date: 25.0CT.2019 00:10:28

High Band Edge Plot on Channel 78



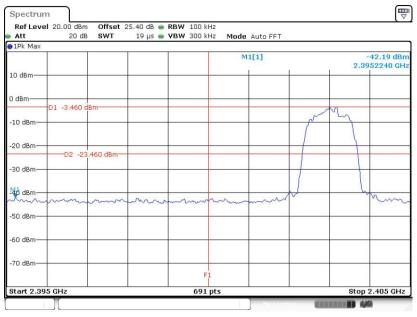
Date: 25.0CT.2019 00:19:32


<2Mbps>

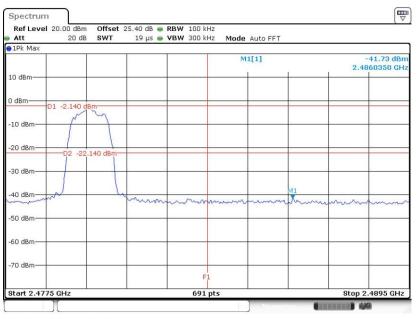
Low Band Edge Plot on Channel 00

Date: 25.0CT.2019 01:25:23

High Band Edge Plot on Channel 78



Date: 25.0CT.2019 00:29:49

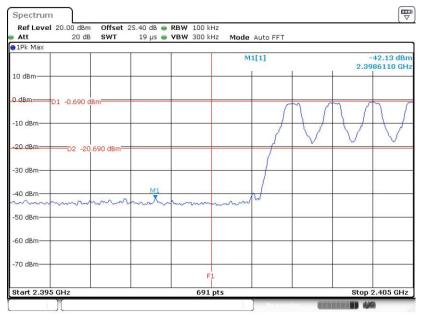

<3Mbps>

Low Band Edge Plot on Channel 00

Date: 25.0CT.2019 01:02:28

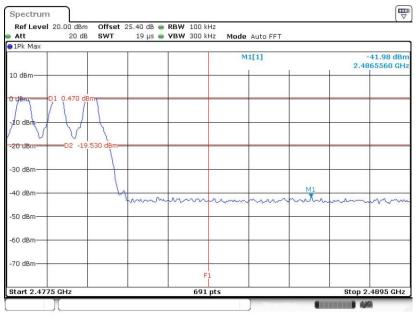
High Band Edge Plot on Channel 78

Date: 25.0CT.2019 01:08:07



3.6.6 Test Result of Conducted Hopping Mode Band Edges

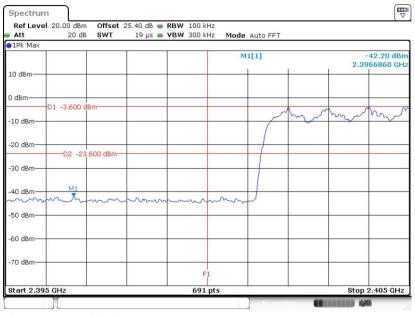
Toot Engineer .	Kailiaa	Temperature :	21~25 ℃
Test Engineer :	Kai Liao	Relative Humidity :	51~54%


<1Mbps>

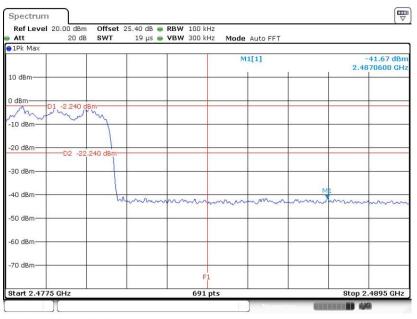
Hopping Mode Low Band Edge Plot

Date: 25.0CT.2019 00:22:19

Hopping Mode High Band Edge Plot



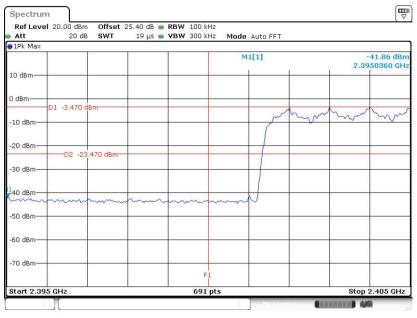
Date: 25.0CT.2019 00:22:03


<2Mbps>

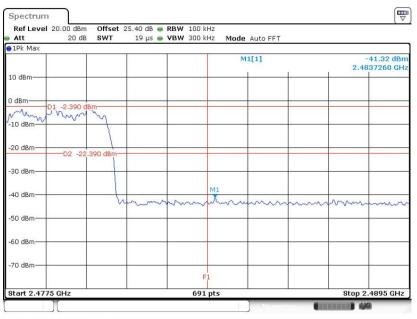
Hopping Mode Low Band Edge Plot

Date: 25.0CT.2019 00:25:48

Hopping Mode High Band Edge Plot



Date: 25.0CT.2019 00:26:19


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 25.0CT.2019 01:10:50

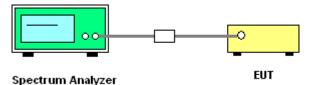
Hopping Mode High Band Edge Plot

Date: 25.0CT.2019 01:10:24

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

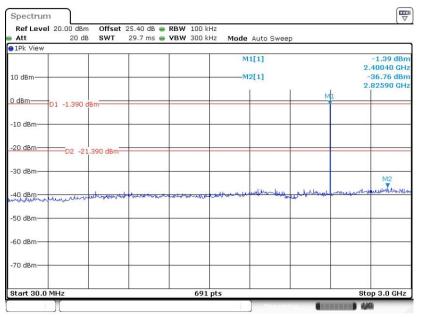
See list of measuring equipment of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

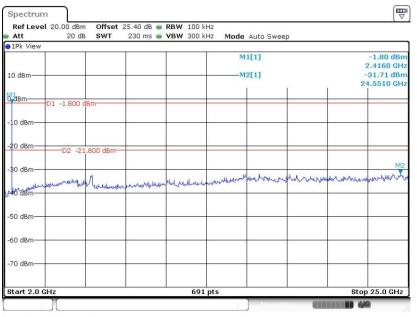
3.7.4 Test Setup

TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4



3.7.5 Test Result of Conducted Spurious Emission

Teet Engineer .	Kailian	Temperature :	21~25 ℃
Test Engineer :	Kai Liao	Relative Humidity :	51~54%


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 25.0CT.2019 00:11:33

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 25.0CT.2019 00:12:02

Ref Leve	n I 20.00 dBm	Offset	25.40 dB 👄	RBW 100	(Hz				
Att	20 dB	SWT	29.7 ms 👄	VBW 300	Hz Mode	Auto Sweep)		
1Pk View					м	1[1]		2	0.46 dBn 2.43910 GH:
10 dBm					M	2[1]			-36.20 dBn 2.85600 GH:
	D1 0.460 dB	m							
-10 dBm	D2 -19.	E 40 dB ~							
-20 dBm-	02 -19.	540 UBIII-		0			2		
	menodenter	Mathan Long	and	and wanter	-	had Advident	Josh Marshar	and the second	M2 Aurohiteren
-50 dBm	nunum								
-60 dBm			-						
-70 dBm									
Start 30.0	MHz			691	pts			St	op 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 25.0CT.2019 00:13:25

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level Att	20.00 dBm 20 dB	Offset SWT	25.40 dB 👄 230 ms 👄	RBW 100 VBW 300		Auto Swee	D		
1Pk View									
10 dBm						1[1] 2[1]			-0.04 dBr 2.4490 GH 30.25 dBr 5.9760 GH
dBm D	1 -0.040 di	3m		-					
10 dBm									
20 dBm		040 dBm-		2					
30 dBm	matoriante	M2 Autokiew	muderlyn	Hullwelly	all all both of her	mentononen	moundary	multilitie	wayth
40 dBm		- 00 wyr (
50 dBm									2
60 dBm									
70 dBm									
Start 2.0 GH					1 pts				25.0 GHz

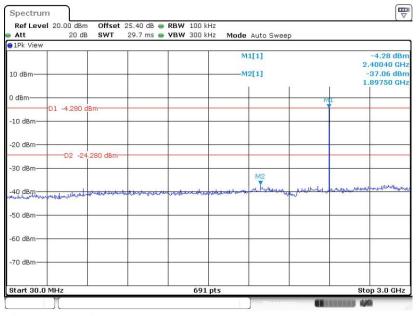
Date: 25.0CT.2019 00:13:54

10 dBm D1 0.270 dB	Bm M1[1] 0.27 dBm m 01 0.270 dBm M2[1] -37.16 dBm iBm D1 0.270 dBm M1 M1 iBm D2 -19.730 dBm M1 M2 iBm D2 -19.730 dBm M2 M2 iBm IBm IBm IBm M2 iBm IBm IBm IBm IBm IBm iBm IBm		0 dB SWT 29.7	' ms 👄 VBW 300 ki	Hz Mode Auto Swe	ер	
0 dBm 01 0.270 dBm	m D1 0.270 dBm iBm D2 -19,730 dBm iBm iBm iBm iBm iBm iBm						2.48210 GH -37.16 dBr 2.74430 GH
-20 dBm D2 -19,730 dBm	IBm	0 dBm D1 0.27	70 dBm				1
-30 dBm	IBm	-10 dBm					
	IBM	-20 dBmD2	-19.730 dBm				~
	IBM IBM I I I I I I I I I I I I I I I I	-30 dBm					M2
	IBM	40 dBranderwar	month and the second	-	- alto war high here	hand and a second	
-50 dBm		-50 dBm					
-60 dBm	JBM	-60 dBm					
-70 dBm		-70 dBm	_				

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 25.0CT.2019 00:20:59

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att 20.00 dBm		● ● RBW 100 kHz ● ● VBW 300 kHz Mode A	auto Sweep	
10 dBm		M1[0.16 dBn 2.4830 GH -30.85 dBn 24.5510 GH
D1 0.160 dl	Bm			
2 0 dBm D 2 -19	9.840 dBm			
30 dBm	Marian	performance and the second	martine and the second second	We when when when when when when when whe
50 dBm				
60 dBm				
70 dBm				

Date: 25.0CT.2019 00:21:32

<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 25.0CT.2019 00:40:03

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

	Offset 25.40 dB RBW SWT 230 ms VBW		
1Pk View			
10 dBm		M1[1] M2[1]	-4.24 dBn 2.4160 GH: -31.74 dBn 24.9170 GH:
D1 -4.240 dBm			
10 dBm			
D2 -24.24		. I. c. Americanist	A Mr. A.d. Admit while he have more more than
40 abm	under all and an all the of a	alung and a far and a solo who	n stand um can a crofut inn a na a
50 dBm			
SU UBIII			
60 dBm			
-60 dBm			

Date: 25.0CT.2019 00:40:40

Att	l 20.00 dBm 20 dB		25.40 dB 👄 29.7 ms 👄	VBW 300		Auto Swee	р		
1Pk View			1	-					
					M	1[1]			-2.79 dBn 2.43910 GH
10 dBm					M	2[1]			-36.81 dBn 2.97210 GH
0 dBm						1		M1	
	D1 -2.790 d	8m-						T	-
-10 dBm				-				+	-
-20 dBm			0:	5					
20 0011	D2 -22	.790 dBm—							
-30 dBm				<u>.</u>					M
40 dBm-	adageartite		1.00	a bla da	L. A. A. ala	His Widediscon	mannahled	an printer	munderhauben
pulsandouro	astronger with	al magnesies		- malmalanthene	Wardhorn Jao	- W		4 I. G. 11	
-50 dBm									-
-60 dBm									
-00 ubiii									
-70 dBm									
Start 30.0	MHz		11	691	L pts			S	top 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 25.0CT.2019 00:37:56

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

	20 dB SWT	25.40 dB 👄 RB 230 ms 👄 VB		de Auto Sweep		
1Pk View 10 dBm				M1[1] —M2[1]	10	-3.98 dBr 2.4490 GH -31.88 dBr 24.2510 GH
0 dBm D1 -3	.980 dBm					
)2 -23.980 dBm-					M2
40 dBm	nheight habener	maldwithre	protect delight at some ho	our the atom when the	hoursehouse	handreader
50 dBm						
50 dBm						
			691 pts			op 25.0 GHz

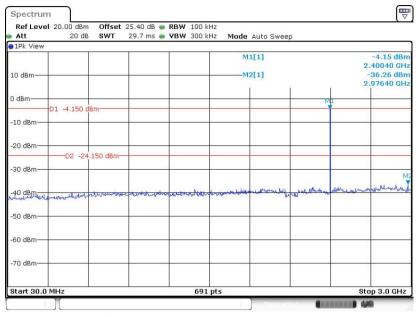
Date: 25.0CT.2019 00:38:33

Ref Level Att	20.00 dBm 20 dB			RBW 100 k VBW 300 k		Auto Sweep			
1Pk View									
10 dBm						1[1] 2[1]			-2.90 dBm .48210 GHz -36.75 dBm .80870 GHz
0 dBm	D1 -2.900 c	8m-						M1	
-10 dBm									
-20 dBm	D2 -22	.900 dBm							
-30 dBm							<u>19</u>		M2
-40 dBm	Ulmonte	atter market and	-	ywywythywathia	Madda and Strange	An Hender	montheattheatth	لمناهيهم وبالعد	human hand
-50 dBm									
-60 dBm							0		
-70 dBm									
Start 30.0	MHz			691	pts			St	op 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 25.0CT.2019 00:27:43

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


-3.280 dBm-					1[1] 2[1]			-3.28 dBn 2.4830 GH
-3.280 dBm-								31.39 dBn 4.5510 GH
-D2 -23,280) dBm							
mununhu	alenonymet	unumritur	modular	Chromopeorthe	montanen	whilehere		Manunan
								2
	A CONTRACTOR OF A CONTRACT	-D2 -23.280 dBm	- A CAR AND A CA	Anton Mean marine march march and		Anton Meanun munumun munu alun au and an	Anton Manun munum munum munum munum mun munum munum	Autor Melaning ministration and and an

Date: 25.0CT.2019 00:29:22

<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 25.0CT.2019 01:04:11

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Ref Level 20.00 dBr Att 20 d		dB 👄 RBW 100 kHz ms 👄 VBW 300 kHz		
1Pk View				
10 dBm			M1[1] ——M2[1]	-4.43 dBn 2.4160 GH -30.81 dBn 24.1510 GH
D1 -4.430	dBm			
10 dBm				
20 dBm	4.430 dBm			
30 dBm	hannen	mundumber	warmanter	M2 M2
and dem				
50 dBm				
40 dBm 60 dBm 70 dBm				

Date: 25.0CT.2019 01:04:50

	20 dB SWT	29.7 ms 👄	VBW 300 k	Hz Mode	Auto Swee	р		
10 dBm					1[1] 2[1]			-3.04 dBm 2.43910 GH: -36.31 dBm 2.28440 GH;
0 dBm	040 dBm						41 Y	
-10 dBm								
-20 dBm	2 -23.040 dBm-							
-30 dBm			<u>.</u>			M2		_
40 dBm	mencephiliphili	when the part	- and the state of	and the states of the states o	west many	Welshahr		wonnewalk
-50 dBm			-					
-60 dBm								-
-70 dBm								
Start 30.0 MHz			691	pts			5	stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 25.0CT.2019 00:54:50

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 20.0 Att	20 dB SWT	25.40 dB 👄 R 230 ms 👄 V	BW 300 kHz	Mode Auto	o Sweep	
1Pk View				M1[1] ——M2[1]		-3.39 dBr 2.4490 GH -31.24 dBr 19.3250 GH
10 dBm	3.390 dBm					
20 dBm	D2 -23.390 dBm-					
30 dBm	merulander	logenterment	mulnaturnand	water	M2	antikan godontat
50 dBm						
60 dBm						
70 dBm						

Date: 25.0CT.2019 00:56:51

Att	l 20.00 dBn 20 dB		25.40 dB 👄 29.7 ms 👄	VBW 300 k		Auto Swee	p		
∋1Pk View									
10 dBm						1[1]			-2.30 dBn 2.48210 GH -37.06 dBn 2.83880 GH
0 dBm	D1 -2.300	dBm		-				M1	
-10 dBm									
-20 dBm	D2 -2:	2.300 dBm-							
-30 dBm				0			2		M2
-40 dBro-	nerenholtre	madoricapi	www.www.alt	and the second second	مىيەر <mark>لىرلىل ئىرەلدەرە</mark>	appen which was my	Martha Martha	rulan me	M2
-50 dBm	-	-					-		
-60 dBm									
-70 dBm									
Start 30.0	MH2			691	pts			8	top 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 25.0CT.2019 01:07:08

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Ref Level 20.00 dBm Att 20 dB		 RBW 100 kHz VBW 300 kHz 	Mode Auto Sweep	
1Pk View			M1[1] —_M2[1]	-3.98 dBr 2.4830 GH -31.57 dBr
NdBmD1 -3.980 dB	im			24.5510 GH
10 dBm				
30 dBm		mounterenter	Holorennow	M
50 dBm				
50 dBm				
70 dBm				
Start 2.0 GHz		691 pts		Stop 25.0 GHz

Date: 25.0CT.2019 01:07:49

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

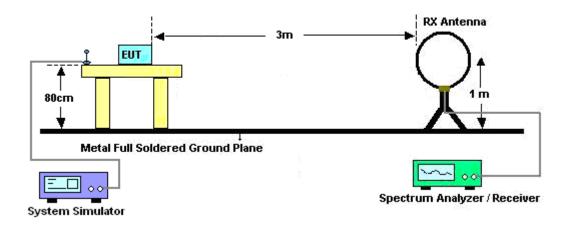
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

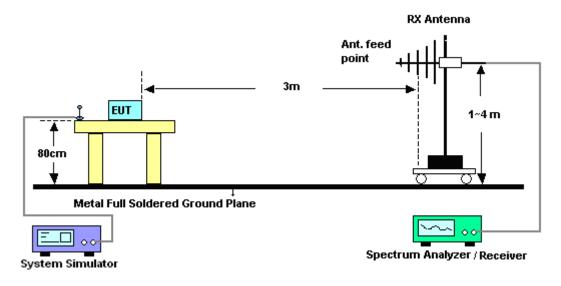
3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

3.8.3 Test Procedures

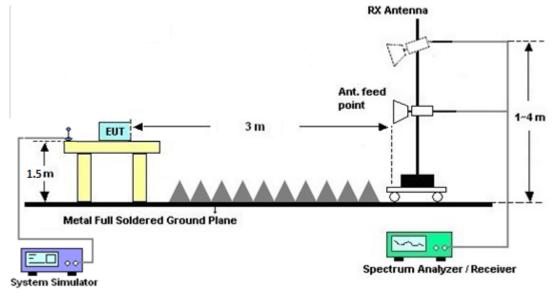

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

TEL : 886-3-327-3456	Page Number	: 59 of 66
FAX : 886-3-328-4978	Issued Date	: Nov. 29, 2019
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.9 AC Conducted Emission Measurement

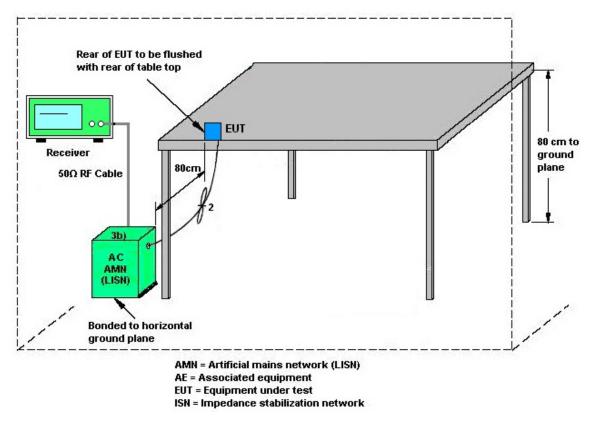
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 27, 2018	Oct. 23, 2019~ Oct. 25, 2019	Dec. 26, 2019	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 27, 2018	Oct. 23, 2019~ Oct. 25, 2019	Dec. 26, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 13, 2018	Oct. 23, 2019~ Oct. 25, 2019	Nov. 12, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 21, 2018	Oct. 23, 2019~ Oct. 25, 2019	Nov. 20, 2019	Conducted (TH05-HY)
BT Base Station(Measure)	Anritsu	MT8852B	6K000057 22	BT 3.0	Sep. 27, 2019	Oct. 23, 2019~ Oct. 25, 2019	Sep. 26, 2020	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019	Oct. 23, 2019~ Oct. 25, 2019	Mar. 26, 2020	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Aug. 24, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 12, 2018	Aug. 24, 2019	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Aug. 24, 2019	Nov. 13, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 09, 2018	Aug. 24, 2019	Nov. 08, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Aug. 24, 2019	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Dec. 31, 2018	Aug. 24, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Dec. 31, 2018	Aug. 24, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Sep. 07, 2019~ Oct. 14, 2019	Jan. 06, 2020	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	37059&01	30MHz~1GHz	Oct. 13, 2018	Sep. 07, 2019~ Oct. 11, 2019	Oct. 12, 2019	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	37059&01	30MHz~1GHz	Oct. 12, 2019	Oct. 12, 2019~ Oct. 14, 2019	Oct. 11, 2020	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-132 8	1GHz ~ 18GHz	Nov. 09, 2018	Sep. 07, 2019~ Oct. 14, 2019	Nov. 08, 2019	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz ~ 40GHz	Dec. 05, 2018	Sep. 07, 2019~ Oct. 14, 2019	Dec. 04, 2019	Radiation (03CH12-HY)

Report No. : FR981244A

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 25, 2019	Sep. 07, 2019~ Oct. 14, 2019	Mar. 24, 2020	Radiation (03CH12-HY)
Preamplifier	Agilent	8449B	3008A023 75	1GHz~26.5GHz	May 27, 2019	Sep. 07, 2019~ Oct. 14, 2019	May 26, 2020	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03K	171000180 0054002	1GHz~18GHz	Aug. 06, 2019	Sep. 07, 2019~ Oct. 14, 2019	Aug. 05, 2020	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA00101800 -30-10P	160111800 02	1GHz~18GHz	Aug. 01, 2019	Oct. 14, 2019~ Oct. 14, 2019	Jul. 31, 2020	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 06, 2018	Sep. 07, 2019~ Oct. 14, 2019	Dec. 05, 2019	Radiation (03CH12-HY)
Spectrum Analyzer	Keysight	N9010A	MY553705 26	10Hz~44GHz	Mar. 19, 2019	Sep. 07, 2019~ Oct. 14, 2019	Mar. 18, 2020	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-1 2SS	SN1	1.2 GHz Lowpass	Mar. 22, 2019	Sep. 07, 2019~ Oct. 14, 2019	Mar. 21, 2020	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN2	3GHz High Pass	Jul. 15, 2019	Sep. 07, 2019~ Oct. 14, 2019	Jul. 14, 2020	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Feb. 26, 2019	Sep. 07, 2019~ Oct. 14, 2019	Feb. 25, 2020	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30M~40GHz	Feb. 26, 2019	Sep. 07, 2019~ Oct. 14, 2019	Feb. 25, 2020	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Sep. 07, 2019~ Oct. 14, 2019	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Sep. 07, 2019~ Oct. 14, 2019	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-00098 9	N/A	N/A	Sep. 07, 2019~ Oct. 14, 2019	N/A	Radiation (03CH12-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.20
of 95% (U = 2Uc(y))	2.20

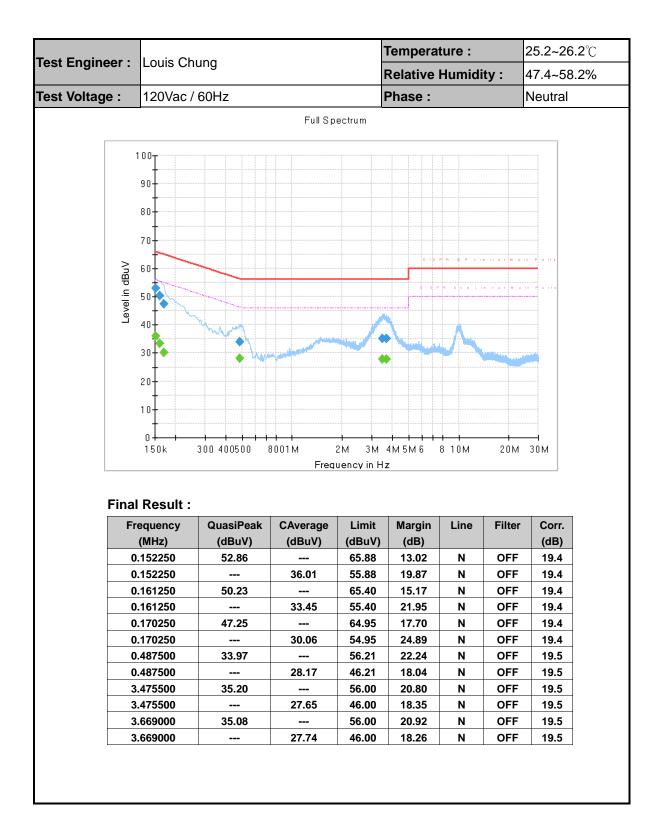
Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.10
0195% (0 = 20C(y))	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)


Measuring Uncertainty for a Level of Confidence	4.70
of 95% (U = 2Uc(y))	4.70

Appendix A. AC Conducted Emission Test Results

Toot Engineer		una		T	Tempera		25.2~26.2°C	
Test Engineer :	Louis Ch	ung		F	Relative	ity :		
Test Voltage :	120Vac /	60Hz		F	Phase :			Line
			Full Sp	ectrum				
	100-							
	90-							
	90+							
	80-							
	70+							
	70T							
Nu <	60+				CIS	<u>PR-QP Li</u>	<u>mit at Mai</u>	in Ports
Level in dBuV	50+	~			CISF	<u> R-Ave L</u>	imit at Ma	in Ports
evel								
	40	man				A.		
	30+	<u>ب</u> ۲۳	and the second states of the s					
	<u> </u>							
	20+							
	20-							
	<u> </u>							
	<u> </u>		8001M	2M 3M	4 5 5 6	8 10M	20M	30M
		300 400500		2M 3M 4		8 10M	20M	30M
		300 400500				8 10M	20M	30M
Fina		300 400500				8 10M	20M	30M
	10 0 150k	QuasiPeak	Freq CAverage	uency in Hz	Margin	8 10M	20M	Corr.
Fr	10 150k I Result : requency (MHz)	QuasiPeak (dBuV)	Freq CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
Fr	10 0 150k I Result : requency (MHz) 0.152250	QuasiPeak (dBuV) 	Freq CAverage (dBuV) 35.60	Limit (dBuV) 55.88	Margin (dB) 20.28	Line L1	Filter	Corr. (dB) 19.4
Fr 0 0	10 150k I Result : requency (MHz) 0.152250 0.152250	QuasiPeak (dBuV) 52.94	Freq CAverage (dBuV) 35.60 	Limit (dBuV) 55.88 65.88	Margin (dB) 20.28 12.94	Line L1 L1	Filter OFF OFF	Corr. (dB) 19.4 19.4
Fr 0 0 0 0	10 150k I Result : requency (MHz) 0.152250 0.152250 0.170250	QuasiPeak (dBuV) 	Freq CAverage (dBuV) 35.60	Limit (dBuV) 55.88 65.88 54.95	z Margin (dB) 20.28 12.94 24.81	Line L1	Filter	Corr. (dB) 19.4 19.4 19.4
Fr 0 0 0 0 0	10 150k I Result : requency (MHz) 0.152250 0.152250	QuasiPeak (dBuV) 52.94 	Freq CAverage (dBuV) 35.60 	Limit (dBuV) 55.88 65.88	Margin (dB) 20.28 12.94	Line L1 L1 L1	Filter OFF OFF OFF	Corr. (dB) 19.4 19.4
Fr 0 0 0 0 0 0 0 0	10 150k 1 Result : requency (MHz) 0.152250 0.152250 0.170250 0.170250	QuasiPeak (dBuV) 52.94 48.22	Freq (dBuV) 35.60 30.14 	Limit (dBuV) 55.88 65.88 54.95 64.95	Margin (dB) 20.28 12.94 24.81 16.73	Line L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF	Corr. (dB) 19.4 19.4 19.4 19.4
	10 150k 1 Result : requency (MHz) 0.152250 0.152250 0.170250 0.170250 0.366000 0.366000 0.498750	QuasiPeak (dBuV) 52.94 48.22 32.23 	Freq (dBuV) 35.60 30.14 28.05	Limit (dBuV) 55.88 65.88 54.95 64.95 48.59 58.59 46.02	z Margin (dB) 20.28 12.94 24.81 16.73 20.54 26.36 16.67	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4
Fr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 150k 1 Result : requency (MHz) 152250 152250 152250 170250 170250 366000 366000 366000 0.498750 0.498750	QuasiPeak (dBuV) 52.94 48.22 32.23 35.49	Freq (dBuV) 35.60 30.14 28.05 29.35 	Limit (dBuV) 55.88 65.88 54.95 64.95 48.59 58.59 46.02 56.02	Margin (dB) 20.28 12.94 24.81 16.73 20.54 26.36 16.67 20.53	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4
Fr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I Result : equency (MHz) 0.152250 0.152250 0.152250 0.170250 0.170250 0.366000 0.366000 0.498750 0.498750 0.498750 0.516000	QuasiPeak (dBuV) 52.94 48.22 32.23 35.49 	Freq (dBuV) 35.60 30.14 28.05 29.35 28.01	Limit (dBuV) 55.88 65.88 54.95 64.95 48.59 58.59 46.02 56.02 46.00	Margin (dB) 20.28 12.94 24.81 16.73 20.54 26.36 16.67 20.53 17.99	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4
Fr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 150k 1 Result : requency (MHz) 152250 152250 152250 170250 170250 366000 366000 366000 0.498750 0.498750	QuasiPeak (dBuV) 52.94 48.22 32.23 35.49	Freq (dBuV) 35.60 30.14 28.05 29.35 	Limit (dBuV) 55.88 65.88 54.95 64.95 48.59 58.59 46.02 56.02	Margin (dB) 20.28 12.94 24.81 16.73 20.54 26.36 16.67 20.53	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4

Appendix B. Radiated Spurious Emission

Test Engineer :	Jack Cheng , Lance Chiang ,CR Liao	Temperature :	23.1~26.4°C
rest Engineer .		Relative Humidity :	51.8~60.9%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2337.93	45.98	-28.02	74	44.87	27.67	6.54	33.1	179	348	Р	Н
		2337.93	21.22	-32.78	54	-	-	-	-	-	-	А	Н
DT	*	2402	98.46	-	-	97.52	27.5	6.61	33.17	179	348	Р	Н
BT CH00		2402	73.7	19.7	54	-	-	-	-	-	-	А	Н
2402MHz		2360.19	47.13	-26.87	74	46.11	27.58	6.56	33.12	108	93	Р	V
240211112		2360.19	22.37	-31.63	54	-	-	-	-	-	-	А	V
	*	2402	91.53	-	-	90.59	27.5	6.61	33.17	108	93	Р	V
		2402	66.77	12.77	54	-	-	-	-	-	-	А	V
		2330.58	45.74	-28.26	74	44.58	27.72	6.53	33.09	118	347	Р	н
		2330.58	20.98	-33.02	54	-	-	-	-	-	-	А	Н
	*	2441	100.59	-	-	99.75	27.42	6.64	33.22	118	347	Р	Н
		2441	75.83	21.83	54	-	-	-	-	-	-	А	Н
		2485.3	46.62	-27.38	74	45.88	27.33	6.68	33.27	118	347	Р	Н
BT		2485.3	21.86	-32.14	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		2374.4	45.65	-28.35	74	44.66	27.55	6.58	33.14	107	276	Р	V
2441101712		2374.4	20.89	-33.11	54	-	-	-	-	-	-	А	V
	*	2441	93.13	-	-	92.29	27.42	6.64	33.22	107	276	Р	V
		2441	68.37	14.37	54	-	-	-	-	-	-	А	V
		2496.36	44.97	-29.03	74	44.26	27.31	6.69	33.29	107	276	Р	V
		2496.36	20.21	-33.79	54	-	-	-	-	-	-	А	V

	*	2480	100.19	-	-	99.44	27.34	6.68	33.27	143	358	Ρ	Н
		2480	75.43	21.43	54	-	-	-	-	-	-	А	Н
		2483.72	47.66	-26.34	74	46.92	27.33	6.68	33.27	143	358	Ρ	Н
		2483.72	22.9	-31.1	54	-	-	-	-	-	-	А	Н
57													Н
ВТ СН 78													Н
2480MHz	*	2480	93.2	-	-	92.45	27.34	6.68	33.27	100	277	Ρ	V
240011112		2480	68.44	14.44	54	-	-	-	-	-	-	А	V
		2495.48	46.03	-27.97	74	45.31	27.31	6.69	33.28	100	277	Р	V
		2495.48	21.27	-32.73	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lin	nit line.							

2.4GHz 2400~2483.5MHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
			(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4804	38.08	-35.92	74	60.19	31.1	10.07	63.28	100	0	Р	Н
		4804	13.32	-40.68	54	-	-	-	-	-	-	A	Н
вт													Н
													н
CH 00 2402MHz		4804	38.36	-35.64	74	60.47	31.1	10.07	63.28	100	0	Р	V
240211112		4804	13.6	-40.4	54	-	-	-	-	-	-	А	V
													V
													V
		4882	38.08	-35.92	74	60.15	31.1	10.08	63.25	100	0	Р	Н
		4882	13.32	-40.68	54	-	-	-	-	-	-	А	Н
		7323	44.26	-29.74	74	55.91	36.55	12.51	60.71	100	0	Р	Н
BT		7323	19.5	-34.5	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		4882	38.71	-35.29	74	60.78	31.1	10.08	63.25	100	0	Ρ	V
244 10112		4882	13.95	-40.05	54	-	-	-	-	-	-	Α	V
		7323	44.12	-29.88	74	55.77	36.55	12.51	60.71	100	0	Р	V
		7323	19.36	-34.64	54	-	-	-	-	-	-	А	V
		4960	38.34	-35.66	74	60.16	31.32	10.08	63.22	100	0	Р	Н
		4960	13.58	-40.42	54	-	-	-	-	-	-	А	Н
вт		7440	43.12	-30.88	74	54.7	36.38	12.61	60.57	100	0	Р	Н
ы СН 78		7440	18.36	-35.64	54	-	-	-	-	-	-	А	Н
2480MHz		4960	38.54	-35.46	74	60.36	31.32	10.08	63.22	100	0	Р	V
24001112		4960	13.78	-40.22	54	-	-	-	-	-	-	Α	V
		7440	43.18	-30.82	74	54.76	36.38	12.61	60.57	100	0	Р	V
		7440	18.42	-35.58	54	-	-	-	-	-	-	А	V
Remark		o other spurious results are PA		eak and	Average lim	it line.							

BT (Harmonic @ 3m)

Emission below 1GHz

DT		-		•		BI (LF)		D. d			T .11		
BT	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		<u> </u>	(H/V)
		42.61	30.68	-9.32	40	42.16	17.92	0.96	30.36	-	-	P	H
		106.63	31.1	-12.4	43.5	43.34	16.67	1.51	30.42	-	-	Р	Н
		159.98	22.76	-20.74	43.5	34.64	16.71	1.77	30.36	-	-	Р	Н
		719.67	35.9	-10.1	46	34.33	27.09	3.95	29.47	-	-	Р	Н
		881.66	38.08	-7.92	46	33.7	29.1	4.45	29.17	100	0	Ρ	н
		920.46	36.05	-9.95	46	31.17	29.39	4.57	29.08	-	-	Ρ	Н
													Н
2.4GHz													Н
вт		41.64	33.17	-6.83	40	44.16	18.4	0.96	30.35	100	104	QP	V
LF		41.64	37.31	-2.69	40	48.3	18.4	0.96	30.35	100	104	Р	V
		61.04	29.88	-10.12	40	47.41	11.78	1.15	30.46	-	-	Р	V
		104.69	28.07	-15.43	43.5	40.46	16.52	1.51	30.42	-	-	Р	V
		714.82	39.85	-6.15	46	38.44	26.97	3.93	29.49	-	-	Р	V
		881.66	37.75	-8.25	46	33.37	29.1	4.45	29.17	-	-	Р	V
		888.45	37.82	-8.18	46	33.46	29.06	4.46	29.16	-	-	Р	V
													V
													V
Remark		o other spurious		mit line.									

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

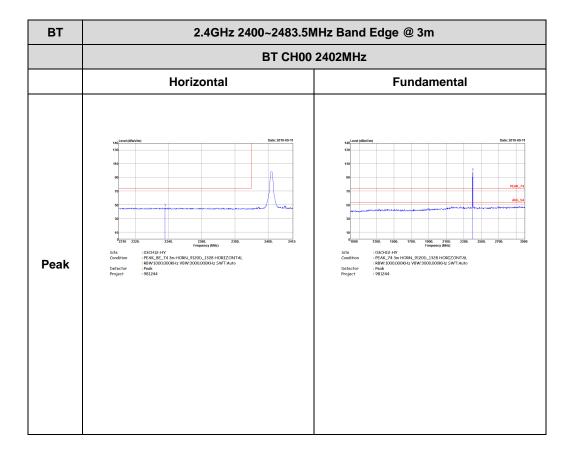
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

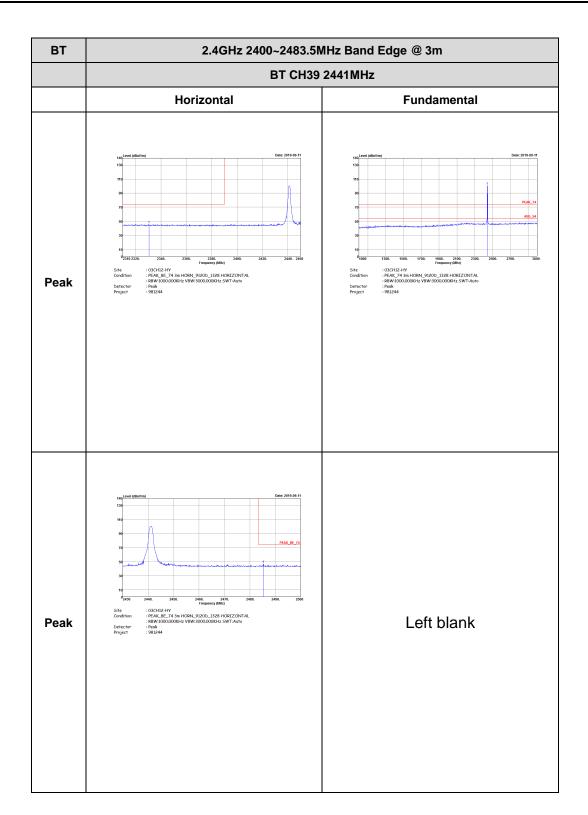
Appendix C. Radiated Spurious Emission Plots

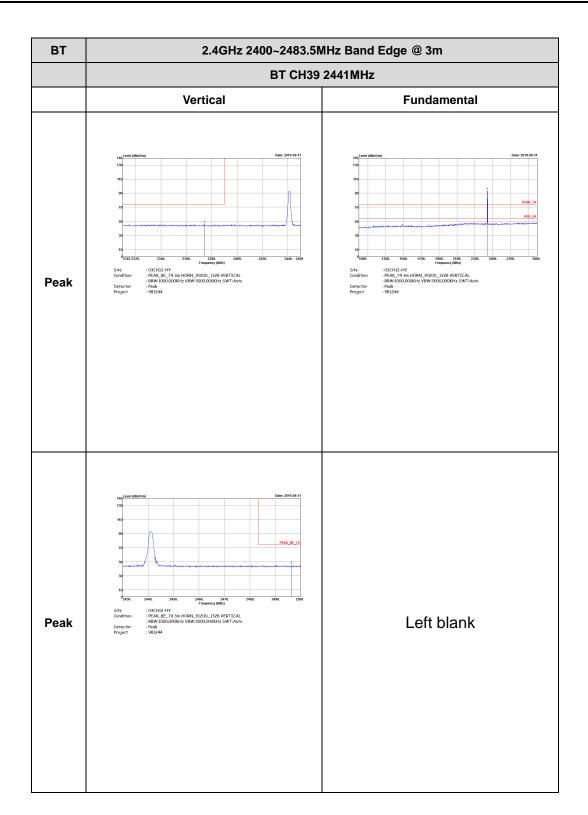

Toot Engineer	Jack Cheng , Lance Chiang ,CR Liao	Temperature :	23.1~26.4°C
Test Engineer :	Sack Cheng, Lance Chiang, CK Liau	Relative Humidity :	51.8~60.9%

Note symbol

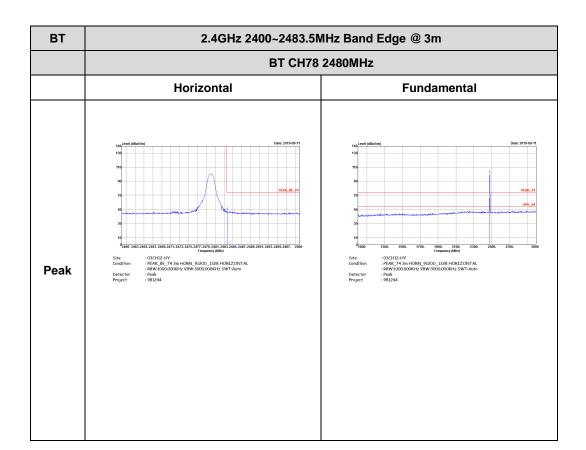
-L	Low channel location
-R	High channel location

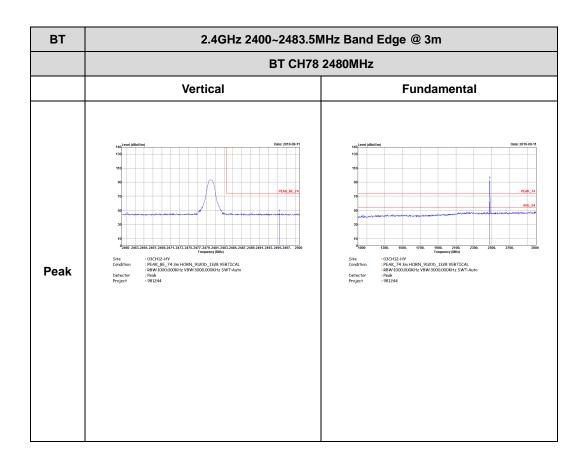
2.4GHz 2400~2483.5MHz

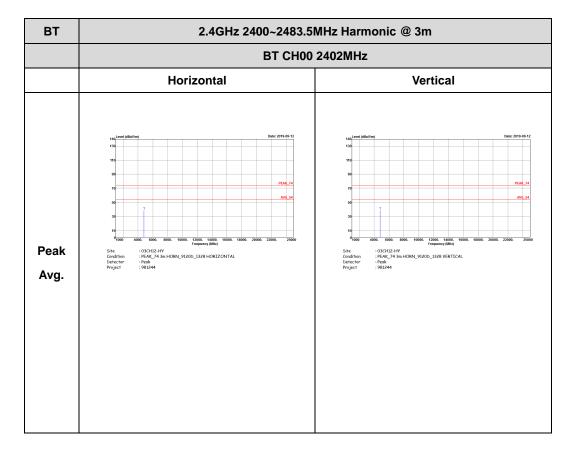

BT (Band Edge @ 3m)

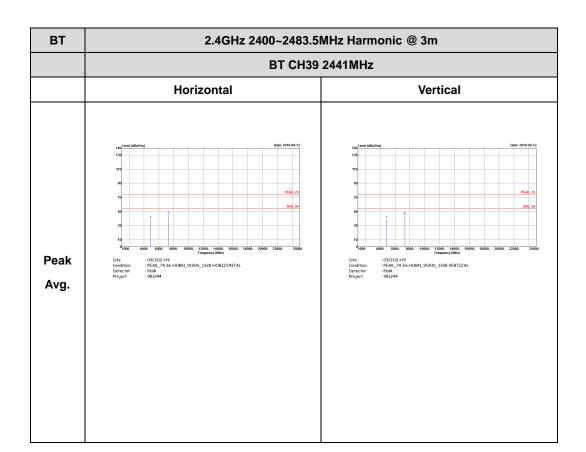


вт	2.4GHz 2400~2483.5MHz Band Edge @ 3m BT CH00 2402MHz									
	Vertical	Fundamental								
Peak	viewerentering Die 2019 of 100 of	state rest (distrim) Diff: 2019 0.01 state rest (distrim) rest (distrim) rest (distrim) res (distrim) res (distrim)								

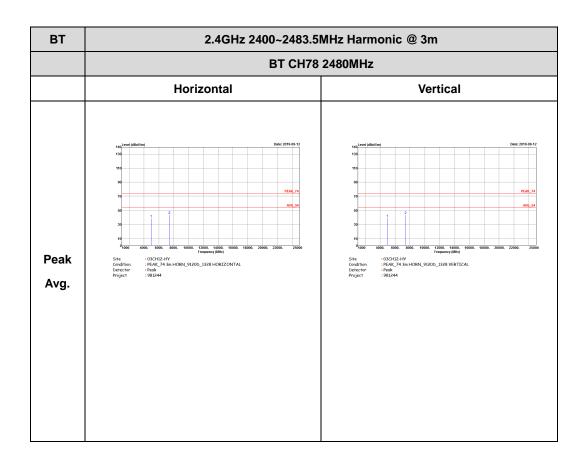




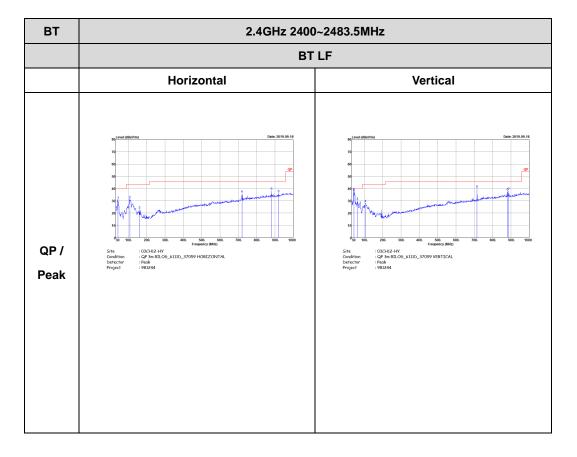




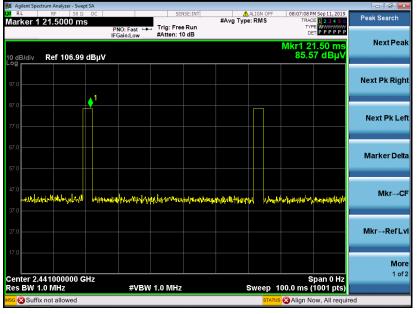
2.4GHz 2400~2483.5MHz


BT (Harmonic @ 3m)





Emission below 1GHz



Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.89 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

20 x log(5.76 ms/100ms) = -24.76 dB