DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 2 of 5 Motorola Solutions, Inc. EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322 **Date of Report:** 11/01/2012 **Report Revision:** D **Report ID:** SR10523 LEX 700 Rev D 110112 **Responsible Engineer:** Stephen Whalen (Principal Staff Engineer) **Report Author:** Stephen Whalen (Principal Staff Engineer) **Date/s Tested:** 5/09/2012 - 6/13/2012; 7/25-26/2012 Manufacturer/Location: Motorola Solutions, Inc./One Motorola Plaza, Holtsville NY 11742-1300, USA Sector/Group/Div.: MSI Data submitted for test: 04/05// **Date submitted for test:** 04/05/2012 **DUT Description:** The LEX 700 Mission Critical Handheld includes the following connectivity options to the field: " Band 14 Public Safety LTE "Band 13 Verizon Wireless LTE "CDMA2000: CDMA 1x, CDMA 1x EVDO (Rev0, RevA)" 802.11 a/b/g/n Wi-Fi "Mission Critical Wireless and Bluetooth Personal Area Network" Mobile VPN with prioritization. WLAN 802.11a/b/g/n, CDMA/EVDO and LTE **Test TX mode(s):** WLAN 802.11a/b/g/n, CDMA/EVDO at **Max. Power output:** Refer to Section 6 of Part 1 of Report **Nominal Power:** Refer to Section 6 of Part 1 of Report **Tx Frequency Bands:** LTE B13: 777-787MHz; LTE B14: 788-798MHz; CDMA (BC0): 824-849MHz, CDMA (BC1): 1850-1910MHz;EVDO (BC0): 824-849MHz, EVDO (BC1): 1850-1910MHz; BT:2402-2480MHz; WLAN802.11 b/g/n:2412-2462MHz, ;WLAN802.11a/n: 5.15-5.25 GHz; 5.25-5.35 GHz; 5.47- 5.725 GHz and 5.725-5.85 GHz Signaling type: LTE-FDD (QPSK & 16 QAM); CDMA2000: CDMA 1x, CDMA 1x EVDO (Rev0, RevA) GMSK modulation; Bluetooth FHSS; WLAN (802.11 a/b/g/n), OFDM & DSSS Model(s) Tested: LEX 700 Model(s) Certified: LEX 700 **Serial Number(s):** 12053522500135; 12053522500224; 12053522500102; 12053522500227 Classification: General Population/Uncontrolled Environment FCC ID: UZ7LEX700; Rule parts 15, 90, 22, 27 & 24 IC: 109AN-LEX700 * Refer to section 15 of part 1 for highest SAR summary results. The test results clearly demonstrate compliance with FCC General Population/Uncontrolled RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 2.0 W/kg averaged over 10grams of contiguous tissue. Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated. Dearral Zakharia Deanna Zakharia EMS EME Lab Senior Resource Manager, Laboratory Director Approval Date: 11/01/2012 Certification Date: 8/01/2012 Certification No.: L1120801P # Appendix C Dipole Calibration Certificates # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola EME Certificate No: D2450V2-703_May11/2 Accreditation No.: SCS 108 CALIBRATION CERTIFICATE (Replacement of No:D2450V2-703 May11) D2450V2 - SN: 703 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: May 24, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Calibrated by: Claudio Leubler Laboratory Technician Certificate No: D2450V2-703_May11/2 Katja Pokovic This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Approved by: Page 1 of 8 Technical Manager Issued: March 5, 2012 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schweizerlscher Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-703_May11/2 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.73 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | •••• | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.2 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 53.6 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---
--------------------|---------------------------| | SAR measured | 250 mW input power | 6.20 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.6 ± 6 % | 1.93 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 12.7 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.8 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.89 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.5 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-703_May11/2 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $55.8 \Omega + 2.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 24.3 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.2 Ω + 5.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.1 dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.148 ns | |----------------------------------|------------------| | | part of the form | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 22, 2001 | Certificate No: D2450V2-703_May11/2 #### **DASY5 Validation Report for Head TSL** Date: 24.05.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 703 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.73 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 Measurement SW: DASY52, V52.6.2 Build (424) Postprocessing SW: SEMCAD X, V14.4.4 Build (2829) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.083 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.580 W/kg SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.2 mW/g Maximum value of SAR (measured) = 17.004 mW/g 0 dB = 17.000 mW/g Certificate No: D2450V2-703_May11/2 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: D2450V2-703_May11/2 #### **DASY5 Validation Report for Body TSL** Date: 24.05.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 703 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.93 \text{ mho/m}$; $\varepsilon_r = 51.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY52, V52.6.2 Build (424) Postprocessing SW: SEMCAD X, V14.4.4 Build (2829) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.154 V/m; Power Drift = -0.0039 dB Peak SAR (extrapolated) = 26.114 W/kg ### SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.89 mW/g Maximum value of SAR (measured) = 16.591 mW/g 0 dB = 16.590 mW/g Certificate No: D2450V2-703_May11/2 # Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Motorola EME Certificate No: D5GHzV2-1017_Sep11/2 Client CALIBRATION CERTIFICATE (Replacement of No:D5GHzV2-1017_Sep11) D5GHzV2 - SN: 1017 Object Calibration procedure(s) QA CAL-22.v1 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: September 20, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 05-Oct-11 (No. 217-01451) Oct-12 Reference 20 dB Attenuator 29-Mar-11 (No. 217-01368) SN: 5086 (20g) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe EX3DV4 SN: 3503 30-Dec-11 (No. EX3-3503_Dec11) Dec-12 SN: 601 DAE4 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Name Function Calibrated by: Dimce Iliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 5, 2012 Certificate No: D5GHzV2-1017_Sep11/2 Page 1 of 13 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: tissue simulating liquid TSL ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of
measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1017_Sep11/2 Page 2 of 13 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | Mer son | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5500 MHz ± 1 MHz
5800 MHz ± 1 MHz | | #### Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | *************************************** | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.44 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | 501.00 | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.79 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 77.3 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 2.22 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 21.9 mW /g ± 16.5 % (k=2) | #### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|-------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.73 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 3 -1 3 | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.40 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 83.2 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.39 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 mW / g ± 16.5 % (k=2) | Certificate No: D5GHzV2-1017_Sep11/2 # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.9 ± 6 % | 5.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.80 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 77.2 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | 11 15 (L) 11 11 11 15 15 15 15 15 15 15 15 15 15 | |---|--------------------|--| | SAR measured | 100 mW input power | 2.21 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 21.8 mW / g ± 16.5 % (k=2) | #### Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.0 ± 6 % | 5.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.61 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 75.8 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.13 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 mW / g ± 17.6 % (k=2) | #### Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.4 ± 6 % | 5.88 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.20 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 81.7 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.27 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 22.6 mW / g ± 17.6 % (k=2) | # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.8 ± 6 % | 6.29 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.69 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 76.6 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.12 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.1 mW / g ± 17.6 % (k=2) | #### **Appendix** #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 50.4 Ω - 7.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.4 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 55.7 Ω - 6.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.1 dB | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 57.2 Ω - 6.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.1 dB | | #### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 50.3 Ω - 6.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.1 dB | | #### Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 55.6 Ω - 4.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.7 dB | | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 59.0 Ω - 4.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.9 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.234 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 05, 2004 | Certificate No: D5GHzV2-1017_Sep11/2 Page 7 of 13 #### **DASY5 Validation Report for Head TSL** Date: 20.09.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT:
Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1017 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.44$ mho/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.73$ mho/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.02$ mho/m; $\epsilon_r = 33.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### **DASY52 Configuration:** - Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 04.03.2011 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.589 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 28.998 W/kg SAR(1 g) = 7.79 mW/g; SAR(10 g) = 2.22 mW/g Maximum value of SAR (measured) = 17.776 mW/g #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.361 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 33.287 W/kg SAR(1 g) = 8.4 mW/g; SAR(10 g) = 2.39 mW/g Maximum value of SAR (measured) = 19.730 mW/g #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.941 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.737 W/kg SAR(1 g) = 7.8 mW/g; SAR(10 g) = 2.21 mW/g Maximum value of SAR (measured) = 18.737 mW/g Certificate No: D5GHzV2-1017_Sep11/2 Page 8 of 13 #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 19.09.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1017 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.49$ mho/m; $\epsilon_r = 48$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.88$ mho/m; $\epsilon_r = 47.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.29$ mho/m; $\epsilon_r = 46.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### **DASY52 Configuration:** - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 04.03.2011 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.578 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.490 W/kg SAR(1 g) = 7.61 mW/g; SAR(10 g) = 2.13 mW/g Maximum value of SAR (measured) = 17.235 mW/g #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.471 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 34.752 W/kg SAR(1 g) = 8.2 mW/g; SAR(10 g) = 2.27 mW/g Maximum value of SAR (measured) = 19.268 mW/g #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.732 V/m; Power Drift = -0.0038 dB Peak SAR (extrapolated) = 35.372 W/kg SAR(1 g) = 7.69 mW/g; SAR(10 g) = 2.12 mW/g Maximum value of SAR (measured) = 18.585 mW/g Certificate No: D5GHzV2-1017_Sep11/2 Page 11 of 13 #### Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola EME Certificate No: D835V2-427_Jan11/2 Accreditation No.: SCS 108 #### CALIBRATION CERTIFICATE (Replacement of No:D835V2-427_Jan11) Object D835V2 - SN: 427 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits Calibration date: January 27, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Primary Standards Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 SN: 5086 (20g) Reference 20 dB Attenuator 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 29, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-427_Jan11/2 Page 1 of 9 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-427_Jan11/2 Page 2 of 9 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V4.9 | at | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured
Head TSL parameters | (22.0 ± 0.2) °C | 41.3 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature during test | (21.8 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.36 mW / g | | SAR normalized | normalized to 1W | 9.44 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.50 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.54 mW / g | | SAR normalized | normalized to 1W | 6.16 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.19 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.1 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature during test | (21.5 ± 0.2) °C | (****) | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.50 mW / g | | SAR normalized | normalized to 1W | 10.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.80 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.64 mW / g | | SAR normalized | normalized to 1W | 6.56 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.47 mW / g ± 16.5 % (k=2) | #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.2 Ω - 4.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.9 dB | | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.8 Ω - 5.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.2 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.423 ns | |----------------------------------|-----------| | Liectical Delay (one direction) | 1.423 118 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 20, 2000 | Certificate No: D835V2-427_Jan11/2 #### **DASY5 Validation Report for Head TSL** Date/Time: 21.01.2011 09:54:57 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:427 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 Measurement SW: DASY52, Version 52.6 1 Build (408) Postprocessing SW SEMCAD X V 14.4.2 Build (2595) # Head/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.222 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.558 W/kg SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.54 mW/g Maximum value of SAR (measured) = 2.756 mW/g 0 dB = 2.760 mW/g Certificate No: D835V2-427_Jan11 Page 6 of 9 # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date/Time: 27.01.2011 11:41:22 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:427 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 Measurement SW: DASY52, Version 52.6 1 Build (408) Postprocessing SW SEMCAD X V 14.4.2 Build (2595) #### Body/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.027 V/m; Power Drift = -0.0036 dB Peak SAR (extrapolated) = 3.698 W/kg SAR(1 g) = 2.5 mW/g; SAR(10 g) = 1.64 mW/g Maximum value of SAR (measured) = 2.914 mW/g 0 dB = 2.910 mW/g Certificate No: D835V2-427_Jan11 Page 8 of 9 # Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Client Motorola EME Certificate No: D835V2-435_Feb12/2 CALIBRATION CERTIFICATE (Replacement of No:D835V2-435_Feb12) Object D835V2 - SN: 435 QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: February 24, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Scheduled Calibration Cal Date (Certificate No.) Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 05-Oct-11 (No. 217-01451) Oct-12 Reference 20 dB Attenuator SN: 5086 (20g) 29-Mar-11 (No. 217-01368) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) Dec-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 In house check: Oct-12 18-Oct-01 (in house check Oct-11) Name Function Calibrated by: Israe El-Naouq Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 5, 2012 Certificate No: D835V2-435_Feb12/2 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance
and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-435_Feb12/2 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | 311 | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.0 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | ***** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | 200 | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.33 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.37 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.53 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.15 mW /g ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.7 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.43 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.45 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.59 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.22 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-435_Feb12/2 Page 3 of 8 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.3 Ω - 7.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.1 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.3 Ω - 6.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.2 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.391 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 15, 2000 | ## **DASY5 Validation Report for Head TSL** Date: 24.02.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 435 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.836 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.4540 SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (measured) = 2.706 mW/g 0 dB = 2.710 mW/g = 8.66 dB mW/g Certificate No: D835V2-435_Feb12/2 Page 5 of 8 ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 24.02.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 435 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ mho/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.799 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.5160 SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.59 mW/g Maximum value of SAR (measured) = 2.819 mW/g Certificate No: D835V2-435_Feb12/2 ## Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **Motorola EME** Accreditation No.: SCS 108 S C S Certificate No: D1900V2-521_Aug11/2 #### CALIBRATION CERTIFICATE (Replacement of No:D1900V2-521_Aug11) Object D1900V2 - SN: 521 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz August 17, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID# Cal Date (Certificate No.) Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205 Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 6, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-521_Aug11/2 Page 1 of 8 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates
Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-521_Aug11/2 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | -222 | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | 3,500 | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.42 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.90 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.2 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.12 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.9 ± 6 % | 1.57 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.3 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 40.5 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.34 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-521_Aug11/2 Page 3 of 8 ## **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 46.1 Ω - 8.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.5 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.0 Ω - 7.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.9 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.189 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 20, 2000 | Certificate No: D1900V2-521_Aug11/2 #### **DASY5 Validation Report for Head TSL** Date: 16.08.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 521 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.619 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.092 W/kg SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.12 mW/g Maximum value of SAR (measured) = 12.171 mW/g 0 dB = 12.170 mW/g Certificate No: D1900V2-521_Aug11/2 Page 5 of 8 ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 17.08.2011 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 521 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\varepsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.280 V/m; Power Drift = 0.002 dB Peak SAR (extrapolated) = 18.352 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.34 mW/g Maximum value of SAR (measured) = 13.135 mW/g 0 dB = 13.130 mW/g Certificate No: D1900V2-521_Aug11/2 Page 7 of 8 # Impedance Measurement Plot for Body TSL