

FCC RADIO TEST REPORT

FCC ID	: UZ7FXR9001
Equipment	: Industrial Fixed RFID Reader
Brand Name	: ZEBRA
Model Name	: FXR9001
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Aug. 16, 2023 and testing was performed from Sep. 14, 2023 to Nov. 01, 2023. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

TEL : 886-3-327-3456
FAX : 886-3-328-4978
Report Template No.: BU5-FR15CBT4.0 Version 2.4

Page Number: 1 of 27Issue Date: Nov. 24, 2023Report Version: 01

Table of Contents

His	tory o	f this test report	3
Sur	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	7
	1.3	Modification of EUT	8
	1.4	Testing Location	8
	1.5	Applicable Standards	8
2	Test	Configuration of Equipment Under Test	9
	2.1	Carrier Frequency Channel	9
	2.2	Test Mode	10
	2.3	Connection Diagram of Test System	11
	2.4	Support Unit used in test configuration and system	13
	2.5	EUT Operation Test Setup	13
	2.6	Measurement Results Explanation Example	13
3	Test	Result	14
	3.1	6dB and 99% Bandwidth Measurement	14
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Conducted Band Edges and Spurious Emission Measurement	17
	3.5	Radiated Band Edges and Spurious Emission Measurement	18
	3.6	AC Conducted Emission Measurement	22
	3.7	Antenna Requirements	24
4	List o	of Measuring Equipment	25
5	Meas	urement Uncertainty	27
Арр	oendix	A. Conducted Test Results	
Арр	pendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	
Арр	pendix	D. Radiated Spurious Emission Plots	
A	ondiv	c E. Duty Cycle Plots	

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR381616B	01	Initial issue of report	Nov. 24, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	5.11 dB under the limit at 4804.00 MHz
3.6	15.207	AC Conducted Emission	Pass	25.05 dB under the limit at 0.17 MHz
3.7	15.203	Antenna Requirement Pa		-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen Report Producer: Rebecca Wu

TEL : 886-3-327-3456	Page Number	: 4 of 27
FAX : 886-3-328-4978	Issue Date	: Nov. 24, 2023
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Industrial Fixed RFID Reader			
Brand Name	ZEBRA			
Model Name	FXR9001			
FCC ID	UZ7FXR9001			
Sample 1	FXR90011-400000-WR 4+1 Port & Bolt-on: BT, WLAN			
Sample 2	FXR90010-800000-WR 8-Port: BT, WLAN			
Sample 3	FXR90010-400000-WR 4-Port: BT, WLAN			
EUT supports Radios application	RFID WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 WLAN 11ax HE20/HE40/HE80 Bluetooth BR/EDR/LE			
HW Version	EV2			
SW Version	0.4.11			
MFD	01AUG23			
EUT Stage	Identical Prototype			

Remark: The EUT's information above is declared by manufacturer.

Supported Un	Supported Unit Used in Test Configuration and System			
Cable, 3-way USB Splitter	Brand Name	ZEBRA	Model Name	ADP-USB0010-M12
Cable, USB-C Host, 5ft.	Brand Name	ZEBRA	Model Name	CBL-USBCHST015-M12
Cable, USB-C Host, 15ft.	Brand Name	ZEBRA	Model Name	CBL-USBCHST035-M12
Cable, USB-C Client, 5ft.	Brand Name	ZEBRA	Model Name	CBL-USBCCLT015-M12
Cable, USB-C Client, 15ft.	Brand Name	ZEBRA	Model Name	CBL-USBCCLT035-M12
Cable, USB-A Client, 5ft.	Brand Name	ZEBRA	Model Name	CBL-USBACLT015-M12
Cable, USB-A Client, 15ft.	Brand Name	ZEBRA	Model Name	CBL-USBACLT035-M12
Cable, GPIO	Brand Name	ZEBRA	Model Name	CBL-GP0050-M12M12A
Cable, 12V (Cigarette Lighter) Power Adapter, 3.5 meter	Brand Name	ZEBRA	Model Name	CBL-PWRD035-M12CL
Cable, DC Power Cord (Flying Leads), 3.5m	Brand Name	ZEBRA	Model Name	CBL-PWRD035-M1200
Cable, DC Power Cord (Flying Leads), 10m	Brand Name	ZEBRA	Model Name	CBL-PWRD100-M1200
Cable, Power Supply Output Adapter, 3.5m	Brand Name	ZEBRA	Model Name	CBL-PWRD035-M12M12
Cable, Power Supply Output Adapter, 10m	Brand Name	ZEBRA	Model Name	CBL-PWRD100-M12M12

Supported Un	Supported Unit Used in Test Configuration and System				
Cable, DC-DC Power Supply Input	Brand Name	ZEBRA	Model Name	CBL-PWRD150-M12M00	
Cable, AC-DC Power Supply Input (Flying Leads)	Brand Name	ZEBRA	Model Name	CBL-PWRA150-M1200	
Cable, AC-DC Power Supply Input (IEC plug)	Brand Name	ZEBRA	Model Name	CBL-PWRA035-M12IEC	
CBL: RF, N STR PLUG TO RP-TNC STR PLUG ON LMR-240, 68", IP67 Sealed	Brand Name	ZEBRA	Model Name	CBLRD-3B4000680R	
CBL: RF, N STR PLUG TO RP-TNC STR PLUG ON LMR-240, 180", IP67 Sealed	Brand Name	ZEBRA	Model Name	CBLRD-3B4001800R	
CBL: RF, N STR PLUG TO RP-TNC STR PLUG ON LMR-240, 240", IP67 Sealed	Brand Name	ZEBRA	Model Name	CBLRD-3B4002400R	
CBL: RF, N STR PLUG TO RP-TNC STR PLUG ON LMR-240, 360", IP67 Sealed	Brand Name	ZEBRA	Model Name	CBLRD-3B4003600R	
CBL: RF, N STR PLUG TO RP-TNC STR PLUG ON LMR-240, 68", IP67 Sealed	Brand Name	ZEBRA	Model Name	CBLRD-1B4000680R	
CBL: RF, N STR PLUG TO RP-TNC STR PLUG ON LMR-240, 180", IP67 Sealed	Brand Name	ZEBRA	Model Name	CBLRD-1B4001800R	
CBL: RF, N STR PLUG TO RP-TNC STR PLUG ON LMR-240, 240", IP67 Sealed	Brand Name	ZEBRA	Model Name	CBLRD-1B4002400R	
CBL: RF, N STR PLUG TO RP-TNC STR PLUG ON LMR-240, 360", IP67 Sealed	Brand Name	ZEBRA	Model Name	CBLRD-1B4003600R	
· · · · · · · · · · · · · · · · · · ·	Brand Name	ZEBRA	Model Name	CBL-ENT00500-M1200	
CHIMERA ETHERNET CABLE 15M	Brand Name	ZEBRA	Model Name	CBL-ENT01500-M1200	
Outdoor AC-DC PSU	Brand Name	ZEBRA	Model Name	PWR-BGA24V90W0WW (Spec PD-007875-01)	
Forklift DC-DC PSU	Brand Name	ZEBRA	Model Name	PWR-BGA24V90W1WW (Spec PD-007876-01)	
Indoor AC-DC PSU	Brand Name	ZEBRA	Model Name	PWR-BGA24V78W3WW (Spec PD-007877-01)	
PoE adaptor	Brand Name	ZEBRA	Model Name	PD-9001GR/AT/AC	

Supported U	Supported Unit Used in Test Configuration and System				
External RFID Antenna	Brand Name	ZEBRA	Model Name	AN480	
External RFID Antenna	Brand Name	ZEBRA	Model Name	AN650	
External RFID Antenna	Brand Name	ZEBRA	Model Name	SR5502	
External RFID Antenna	Brand Name	ZEBRA	Model Name	AN510	
External RFID Antenna	Brand Name	ZEBRA	Model Name	AN520	
External RFID Antenna	Brand Name	ZEBRA	Model Name	AN610	
External RFID Antenna	Brand Name	ZEBRA	Model Name	AN620	
External RFID Antenna	Brand Name	ZEBRA	Model Name	AN720	
External RFID Antenna	Brand Name	ZEBRA	Model Name	AN440	
External RFID Antenna	Brand Name	ZEBRA	Model Name	SP5504	
BT/WLAN_External Antenna	Brand Name	Amphenol	Model Name	ST0228-30-502-A	
BT/WLAN_External Antenna	Brand Name	Amphenol	Model Name	ZB511A-02-001-C	
AN650 Antenna cable(5ft/1524mm)	Brand Name	ZEBRA	Model Name	CBLRD-1C4000600R	
AN650 Antenna cable(20ft/6096mm)	Brand Name	ZEBRA	Model Name	CBLRD-1C4002400R	
AN650 Antenna cable(15ft/4572mm)	Brand Name	ZEBRA	Model Name	CBLRD-1C4001800R	
AN650 Antenna cable(30ft/9144mm)	Brand Name	ZEBRA	Model Name	CBLRD-1C4003600R	
AN650 Antenna cable(10ft/3048mm)	Brand Name	ZEBRA	Model Name	CBLRD-1C4001200R	

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard					
Tx/Rx Frequency Range2400 MHz ~ 2483.5 MHz					
Number of Channels 40					
Carrier Frequency of Each Channel	40 Channel (37 hopping + 3 advertising channel)				
	<internal antenna=""></internal>				
Maximum Output Power to Antenna	Bluetooth – LE (1Mbps): 8.30 dBm / 0.0068 W				
	Bluetooth – LE (2Mbps): 7.90 dBm / 0.0062 W				
	<internal antenna=""></internal>				
99% Occupied Bandwidth	1.031 MHz for 1Mbps				
	2.070 MHz for 2Mbps				
	<internal antenna=""></internal>				
	PIFA Antenna with gain 4.02 dBi				
Antonno Tuno / Coin	<external 1="" antenna=""></external>				
Antenna Type / Gain	Dipole Antenna with gain 2.98 dBi				
	<external 2="" antenna=""></external>				
	Dipole Antenna with gain 3.59 dBi				
Type of Modulation	Bluetooth LE: GFSK				

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No. CO05-HY, 03CH07-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.			
TH05-HY (TAF Code: 3786)				
Remark	The Conducted test item subcontracted to Sporton International Inc. Wensan Laboratory.			

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

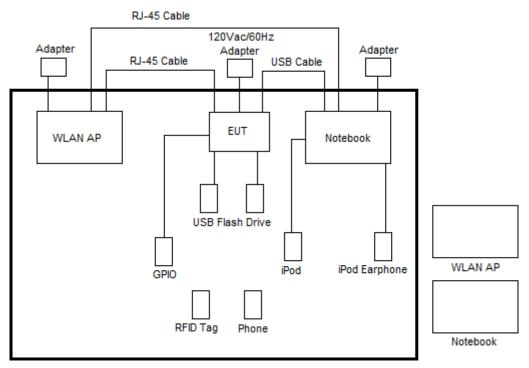
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	MHz 10 11	2422	31	2464
		2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

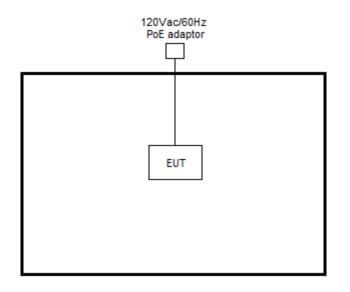
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

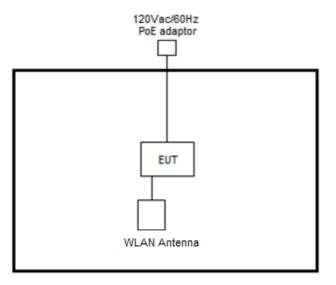
	Summary table of Test Cases
Test Item	Data Rate / Modulation
	Bluetooth – LE / GFSK
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
	<sample 2=""></sample>
	<internal antenna=""></internal>
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
Radiated	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
Test Cases	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
1631 04365	<external antenna=""></external>
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases							
Test Item	Data Rate / Modulation							
	Mode 1: WLAN (2.4GHz) Link + Bluetooth Link + RFID Link +							
	ADP-USB0010-M12 (3-way USB Splitter) (2) + CBL-GP0050-M12M12A,							
	5m (GPIO Extension) (7) + CBL-PWRD035-M12M12, 3.5 meter (16) +							
AC Canducto	PWR-BGA24V90W0WW (Outdoor AC-DC PSU) (28) +							
AC Conducted	CBL-PWRA035-M12IEC (22) +CBL-USBCHST015-M12, 1.5m (3) load							
Emission	with USB Flash Drive + CBL-ENT01500-M1200,15M (27) (Data Link with							
	Notebook) + CBL-USBCHST035-M12, 3.5m (23) load with USB Flash							
	Drive + CBL-USBACLT035-M12, 3.5m (24) load with Notebook for							
	Sample 1							
Remark:								
	on spurious emission, the modulation and the data rate picked for testing are							
	d by the Max. RF conducted power.							
	with Notebook means data application transferred mode between EUT and							
Notebook 3. For Radia	ted Test Cases, the tests were performed with Sample 2.							


2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>



<Bluetooth - LE Tx Mode for Internal Antenna>

<Bluetooth Tx Mode for External Antenna>

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
2.	Notebook	Dell	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	iPod	Apple	A1285	DoC	Shielded, 1.0m	N/A
4.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
5.	USB Flash Drive	SanDisk	E8BOC	N/A	N/A	N/A
6.	Phone	ZEBRA	TC26	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "Tera Term Version 4.95" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

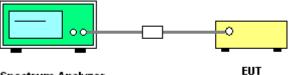
= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

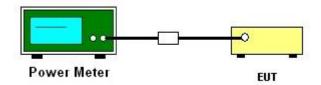
Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

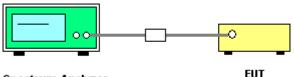
3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

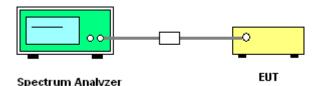
Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

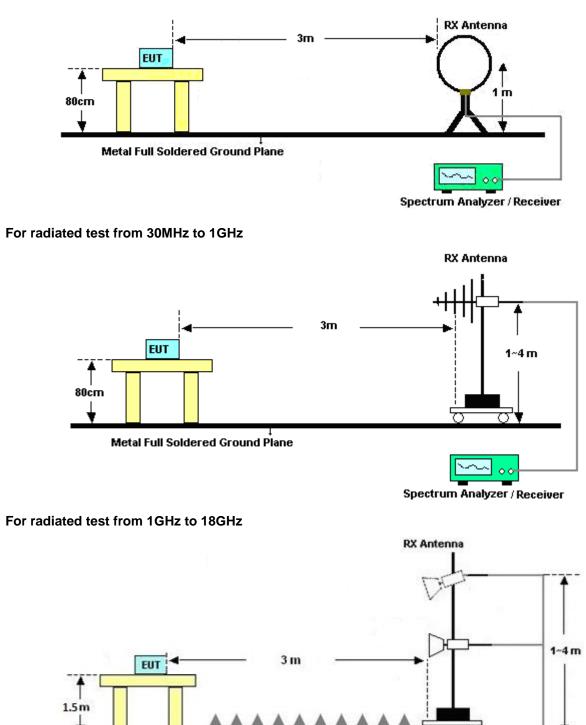
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures

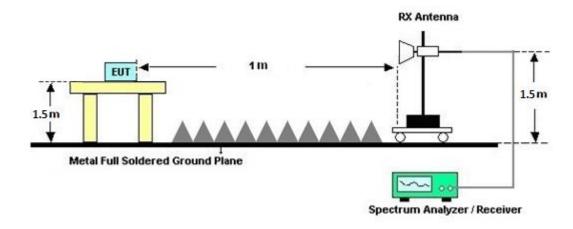
- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz

TEL: 886-3-327-3456

FAX: 886-3-328-4978


Report Template No.: BU5-FR15CBT4.0 Version 2.4

Metal Full Soldered Ground Plane

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

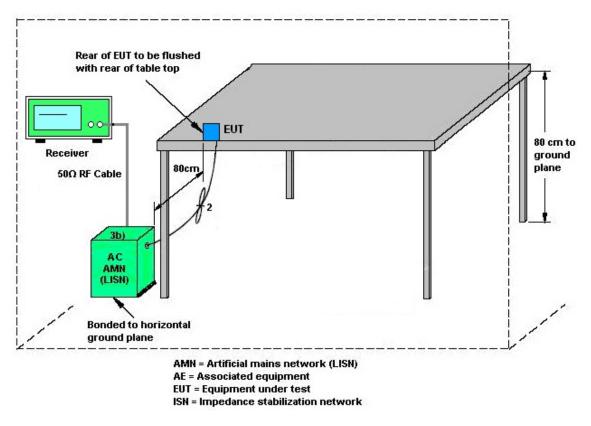
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of omission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35419 & 03	30MHz~1GHz	Apr. 23, 2023	Sep. 21, 2023~ Nov. 01, 2023	Apr. 22, 2024	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 01, 2022	Sep. 21, 2023~ Nov. 01, 2023	Nov. 30, 2023	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Feb. 28, 2023	Sep. 21, 2023~ Nov. 01, 2023	Feb. 27, 2024	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 20, 2023	Sep. 21, 2023~ Nov. 01, 2023	Apr. 19, 2024	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	Oct. 03, 2022	Sep. 21, 2023~ Oct. 01, 2023	Oct. 02, 2023	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	Oct. 02, 2023	Oct. 02, 2023~ Nov. 01, 2023	Oct. 01, 2024	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Mar. 24, 2023	Sep. 21, 2023~ Nov. 01, 2023	Mar. 23, 2024	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Mar. 28, 2023	Sep. 21, 2023~ Nov. 01, 2023	Mar. 27, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682/4	30MHz to 18GHz	Feb. 22, 2023	Sep. 21, 2023~ Nov. 01, 2023	Feb. 21, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/4	9kHz to 18GHz	Feb. 22, 2023	Sep. 21, 2023~ Nov. 01, 2023	Feb. 21, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4	9kHz to 18GHz	Feb. 22, 2023	Sep. 21, 2023~ Nov. 01, 2023	Feb. 21, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 15, 2023	Sep. 21, 2023~ Nov. 01, 2023	Sep. 14, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2	18GHz~40GHz	Feb. 22, 2023	Sep. 21, 2023~ Nov. 01, 2023	Feb. 21, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801606/2	9KHz ~ 40GHz	Apr. 20, 2023	Sep. 21, 2023~ Nov. 01, 2023	Apr. 19, 2024	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	N/A	Sep. 21, 2023~ Nov. 01, 2023	N/A	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Sep. 21, 2023~ Nov. 01, 2023	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	N/A	Sep. 21, 2023~ Nov. 01, 2023	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Sep. 21, 2023~ Nov. 01, 2023	N/A	Radiation (03CH07-HY)
Software	Audix	E3	N/A	N/A	N/A	Sep. 21, 2023~ Nov. 01, 2023	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A	Mar. 14, 2023	Sep. 21, 2023~ Nov. 01, 2023	Mar. 13, 2024	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Sep. 21, 2023~ Nov. 01, 2023	Jun. 26, 2024	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917025 1	18GHz~40GHz	Nov. 24, 2022	Sep. 21, 2023~ Nov. 01, 2023	Nov. 23, 2023	Radiation (03CH07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Sep. 20, 2023~ Oct. 11, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Jan. 05, 2023	Sep. 20, 2023~ Oct. 11, 2023	Jan. 04, 2024	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2023	Sep. 20, 2023~ Oct. 11, 2023	Aug. 22, 2024	Conducted (TH05-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 14, 2023	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2022	Sep. 14, 2023	Nov. 30, 2023	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 17, 2022	Sep. 14, 2023	Nov. 16, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 01, 2022	Sep. 14, 2023	Nov. 30, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 17, 2022	Sep. 14, 2023	Nov. 16, 2023	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Sep. 14, 2023	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	9kHz-200MHz	Jul. 28, 2023	Sep. 14, 2023	Jul. 27, 2024	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 29, 2022	Sep. 14, 2023	Dec. 28, 2023	Conduction (CO05-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.50 dB
of 95% (U = 2Uc(y))	3.30 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6 20 dB
of 95% (U = 2Uc(y))	6.30 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.60 dB
of 95% (U = 2Uc(y))	4.00 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.30 dB
of 95% (U = 2Uc(y))	4.30 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	E 20 dB
of 95% (U = 2Uc(y))	5.30 dB

Report Number : FR381616B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Ray Wang	Temperature:	21~25	°C
Test Date:	2023/09/20~2023/10/11	Relative Humidity:	51~54	%

<Internal Antenna>

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth								
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	1.029	0.676	0.50	Pass	
BLE	1Mbps	1	19	2440	1.029	0.682	0.50	Pass	
BLE	1Mbps	1	39	2480	1.031	0.682	0.50	Pass	
-	-				·				

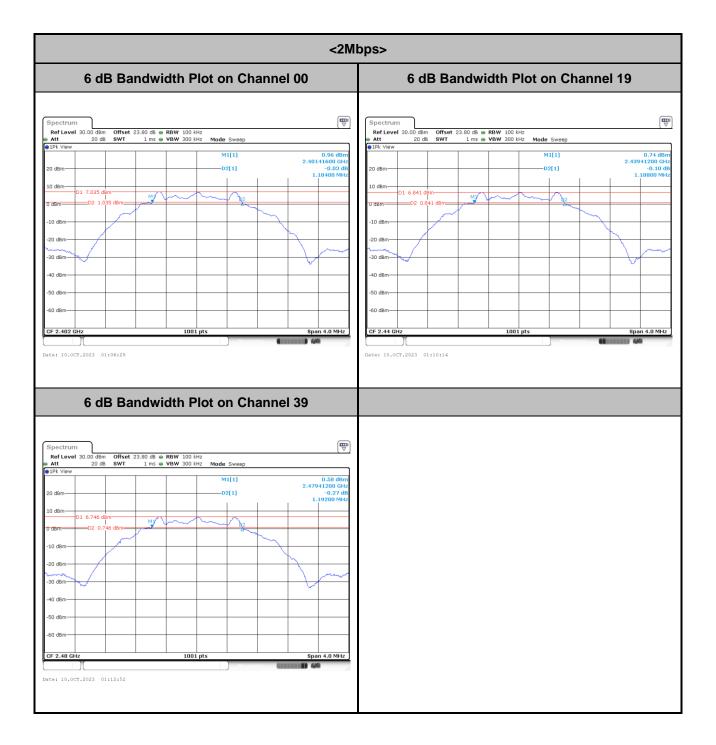
	<u>TEST RESULTS DATA</u> <u>Average Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	8.30	30.00	4.02	12.32	36.00	Pass	
BLE	1Mbps	1	19	2440	8.10	30.00	4.02	12.12	36.00	Pass	
BLE	1Mbps	1	39	2480	8.00	30.00	4.02	12.02	36.00	Pass	

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	7.76	-6.69	4.02	8.00	Pass	
BLE	1Mbps	1	19	2440	-7.61	-6.80	4.02	8.00	Pass	
BLE	1Mbps	1	39	2480	7.54	-6.89	4.02	8.00	Pass	
Note: F	SD (dB	m/ 10	0kHz)	is a refe	rence level u	used for Cor	nducted Bar	nd Edges and	d Conducted	Spurious Emission 30dBc limit.

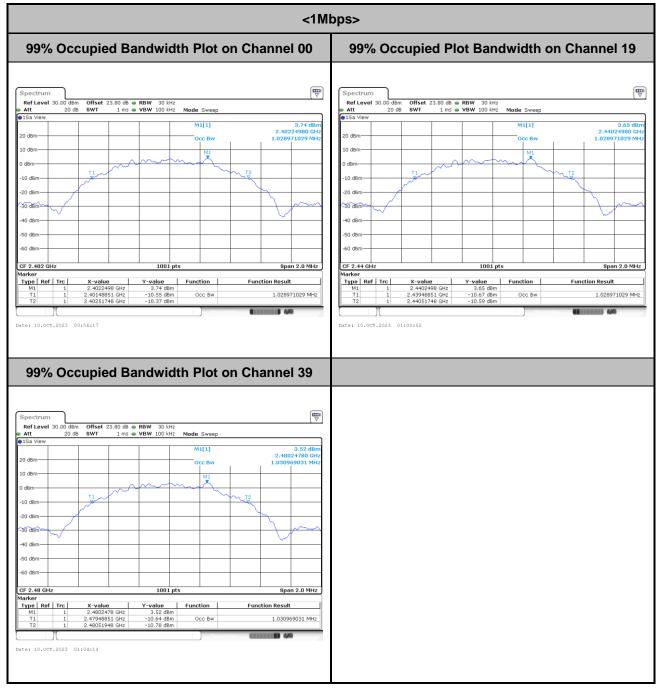
Report Number : FR381616B

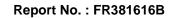
TEST RESULTS DATA Average Power Table

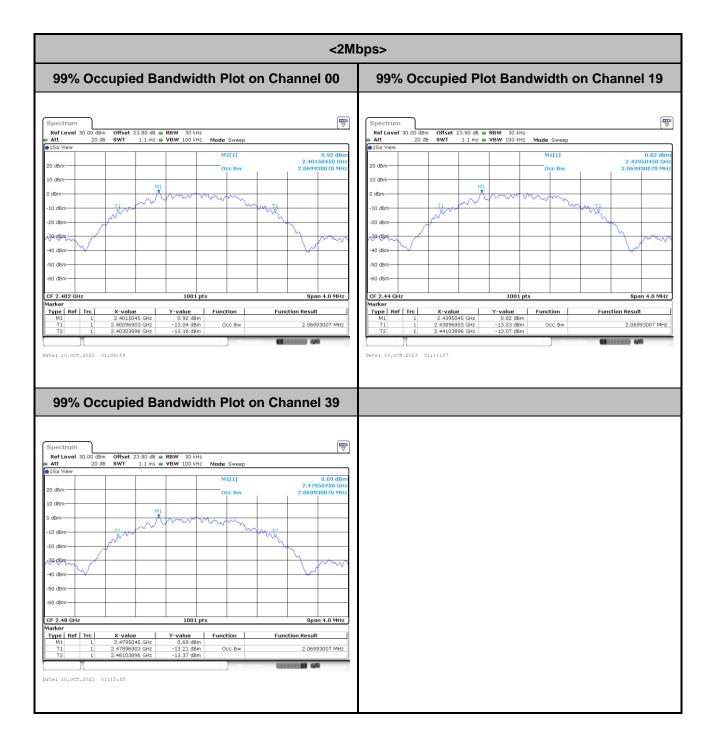
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	8.20	30.00	4.02	12.22	36.00	Pass
BLE	2Mbps	1	19	2440	7.80	30.00	4.02	11.82	36.00	Pass
BLE	2Mbps	1	39	2480	7.90	30.00	4.02	11.92	36.00	Pass


<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	2Mbps	1	0	2402	7.05	-8.23	4.02	8.00	Pass	
BLE	2Mbps	1	19	2440	6.88	-8.42	4.02	8.00	Pass	
BLE	2Mbps	1	39	2480	6.78	-8.53	4.02	8.00	Pass	

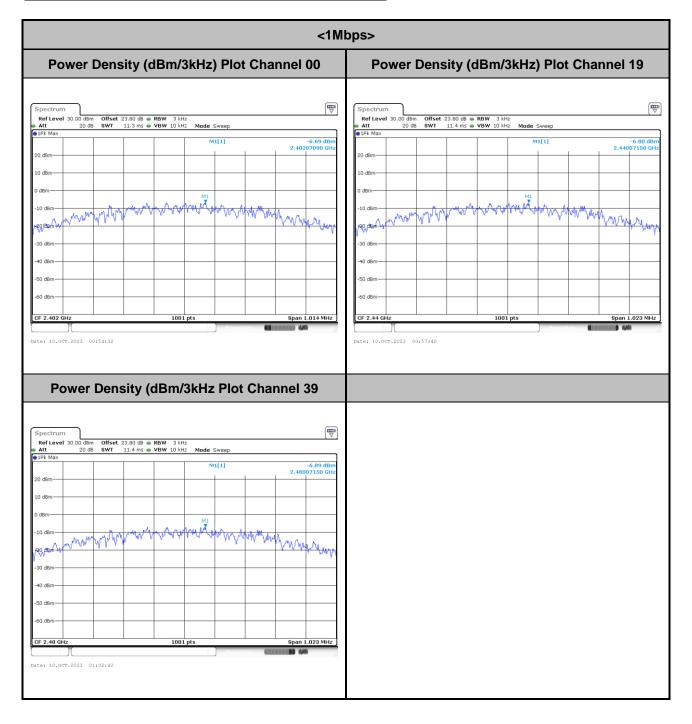
6dB Bandwidth

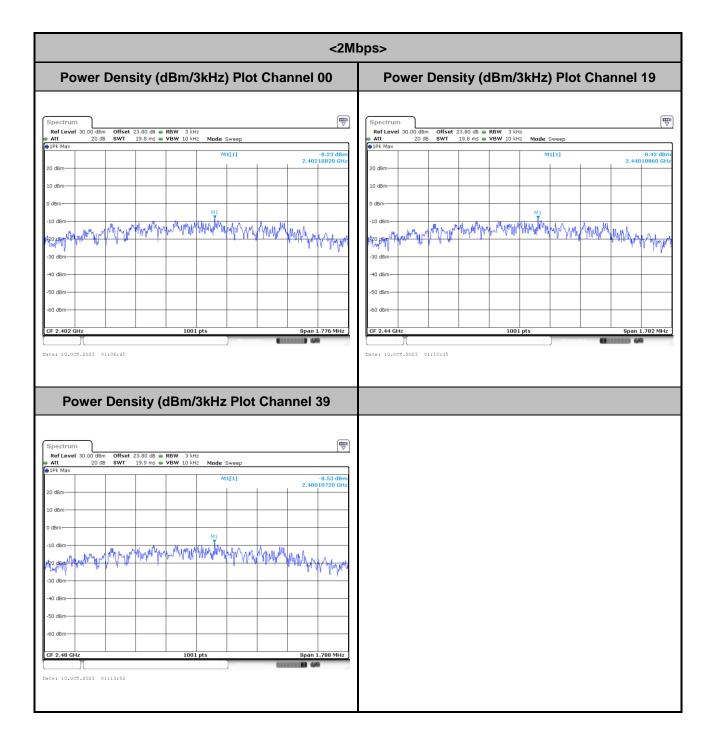

<1M	bps>
6 dB Bandwidth Plot on Channel 00	6 dB Bandwidth Plot on Channel 19
Spectrum Offert 22.00 00 00 00 00 00 00 00 00 00 00 00 00	Spertum Offset 22.800 th RBW 100 bit: Ster Level 20.000 th RBW 20.000 th RBW 200 bit: Nali 3 Company 200 bit: Ster Level 20.000 th RBW 20.000 th RBW 200 bit: Nali 3 Company 200 bit: Ster Level 20.000 th RBW 200 bit: Nali 3 Company 200 bit: Ster Level 20.000 th RBW 200 bit: Nali 3 Company 200 bit: Ster Level 20.000 th RBW 200 bit: Nali 3 Company 200 bit: Ster Level 20.000 th RBW 200 bit: Nali 3 Company 200 bit: Ster Level 20.000 th RBW 200 bit: Nali 3 Company 200 bit: Ster Level 20.000 th RBW 200 bit: Nali 3 Company 200 bit: Ster Level 20.000 th RBW 200 bit: Nali 3 Company 200 bit: Ster Level 20.000 th RBW 200 bit: Nali 200 bit:



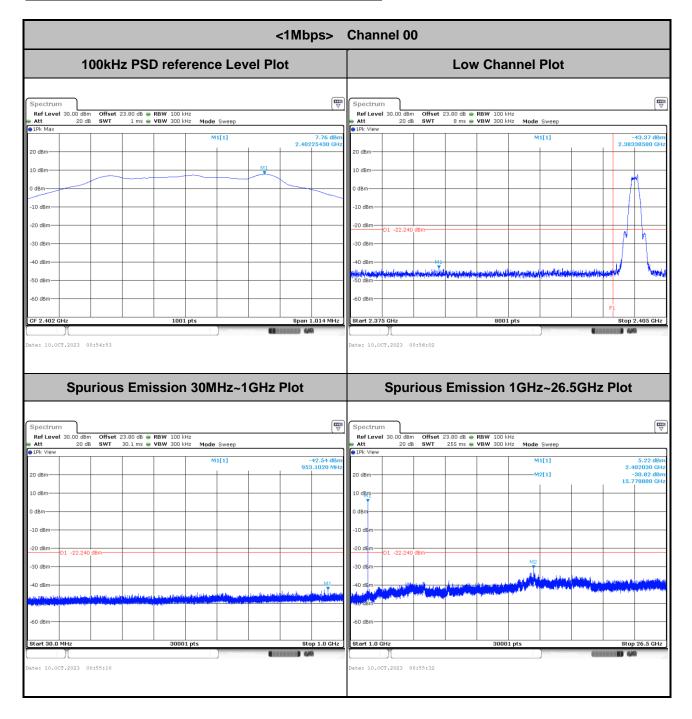

99% Occupied Bandwidth

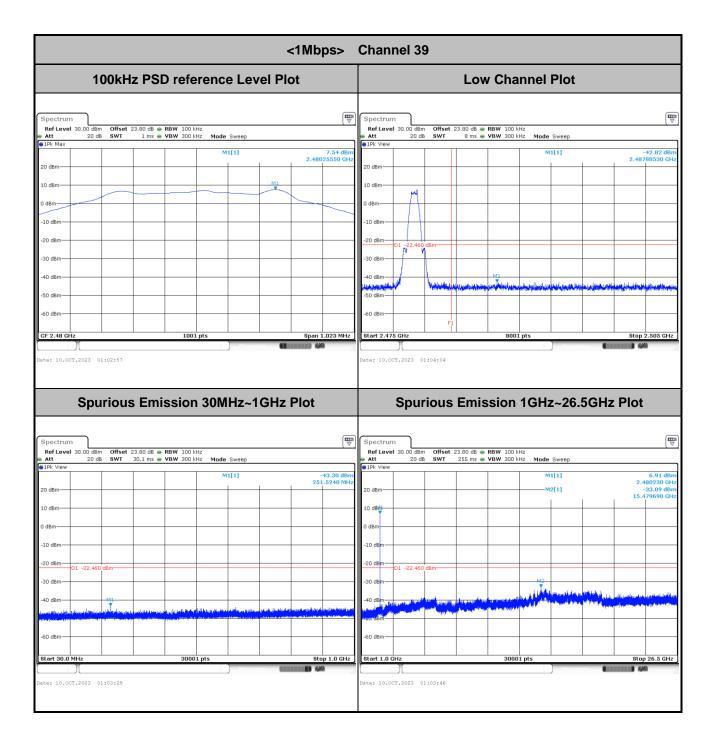
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

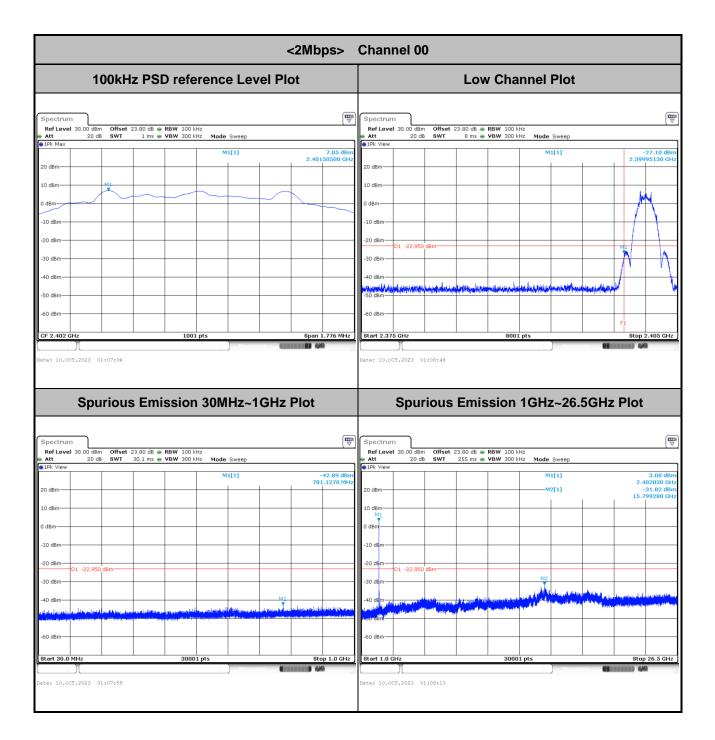




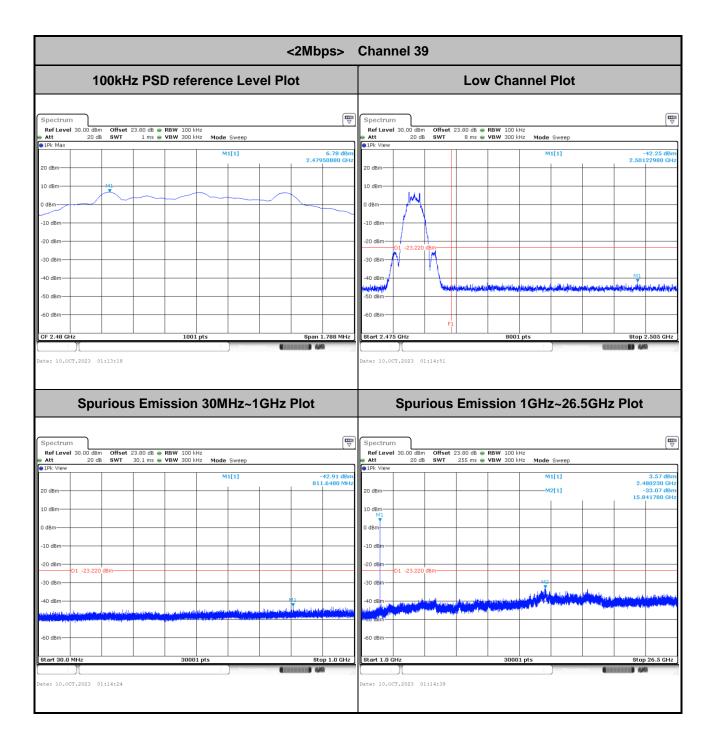
Power Spectral Density (dBm/3kHz)



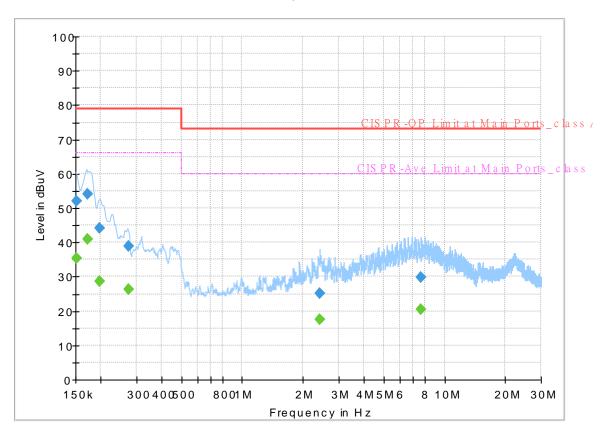

Band Edge and Spurious Emission



100kHz PSD reference Level Plot Low Channel Plot	<1Mbps>	Channel 19
Intervention Other 200 dim Other 200 dim Other 200 dim Other 200 dim 10 dim 10 dim 10 dim 10 dim 10 dim 10 dim 10 dim 10 dim<	100kHz PSD reference Level Plot	Low Channel Plot
Spectrum Image: Constraint of the second of th	Ref Level 30.00 dBm Offset 23.80 dB RBW 100 kHz • Att 20 dB SWT 1 ms WdW 300 kHz Mode Sweep • IPk Max 7.61 dBm 2.44025450 GHz 7.61 dBm 20 dBm 910 kHz M1[1] 2.44025450 GHz 10 dBm 910 kHz 910 kHz 910 kHz -10 dBm 910 kHz 910 kHz 910 kHz -20 dBm 910 kHz 910 kHz 910 kHz -10 dBm 910 kHz 910 kHz 910 kHz -20 dBm 910 kHz 910 kHz 910 kHz	
Ref Lavel 30.00 dBm Offset 23.80 dB @ RBW 100 Hz 20 dB BWT 30.1ms @ VBW 300 Hz Mode Sweep @ 1Pk View Mode Sweep @ 1Pk View M1[1] -43.29 dBm 20 dBm 947,1210 Mtz 0 dBm 947,1210 Mtz 0 dBm 947,1210 Mtz 10 dBm 947,1210 Mtz -10 dBm 947,1210 Mtz -20 dBm 947,1210 Mtz -30 dBm 947,121	Spurious Emission 30MHz~1GHz Plot	Spurious Emission 1GHz~25.5GHz Plot
20 dBm M1[1] -43.29 dBm M1[1] 2.43.29 dBm 20 dBm 947.1210 MHz 947.1210 MHz 2.440200 dBm 2.30.02 dBm 10 dBm 0 dBm 0 dBm 0 dBm 10 dBm 10 dBm 10.00 dBm 16.191120 Hz -10 dBm 0 dBm	RefLevel 30.00 dBm Offset 23.80 dB RBW 100 kHz Att 20 dB SWT 30.1 ms VBW 300 kHz Mode Sweep	Ref Level 30.00 dBm Offset 23.80 dB RBW 100 kHz Att 20 dB SWT 255 ms VBW 300 kHz Mode Sweep
Start 30.0 MHz 30001 pts Stop 1.0 GHz Start 1.0 GHz 30001 pts Stop 26.5 GHz Date: 10.0CT.2023 00:58:20 Date: 10.0CT.2023 00:58:53 Date: 10.0CT.2023 00:58:53	20 d8m 947.1210 MHz 10 d8m 947.1210 MHz 10 d8m 947.1210 MHz 0 d8m 947.1210 MHz -0 d8m 947.1210 MHz -10 d8m 947.1210 MHz -20 d8m 947.1210 MHz -20 d8m 947.1210 MHz -20 d8m 947.1210 MHz -30 d8m 9122.390 d8m -30 d8m 9122.390 d8m -30 d8m 9122.390 d8m -40 d8m 9122.390 d8m -50 d8m 9122.390 d8m -60 d8m 91.0 GHz Start 30.0 MHz 30001 pts Start 30.0 MHz 30001 pts	20 dsm M1[1] 5.83 dsm 20 dsm



<2Mbps>	Channel 19
100kHz PSD reference Level Plot	Low Channel Plot
Spectrum Image: Constraint of the second secon	
-20 dBm	
Spurious Emission 30MHz~1GHz Plot	Spurious Emission 1GHz~26.5GHz Plot
Spectrum Implementation Ref Level 30.00 dBm Offset 23.80 dB = RBW 100 kHz # At 20 dB SWT 30.1m s VBW 300 kHz Mode Sweep # IPk View M1[1] 947,4756 MH1	Act Lovel 30.00 dbm Offset 23.80 db RBW 100 HHz Att 20 db SWT 255 ms VBW 300 HHz Mode Sweep @ IPk View M1[1] 3.33 dbm 2.440280 GHz 2.440280 GHz
20 dBm	20 dBm
-20 dBm 01 -23.120 dBm	-20 dBm D1 -23.120 dBm Add and a standard and and a standard and a standard and a
-60 dBm	-60 dBm

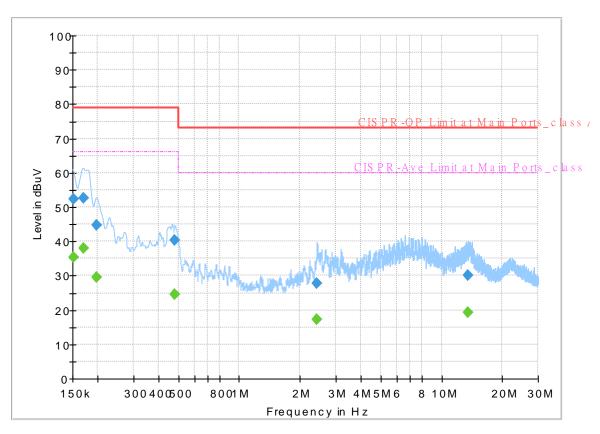


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Calvin Wang	Ten	mperature :	23~26°C
rest Engineer .	Calvin Wang	Rela	lative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 381616 Mode 1 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		35.31	66.00	30.69	L1	OFF	19.8
0.152250	52.01		79.00	26.99	L1	OFF	19.8
0.172500		40.79	66.00	25.21	L1	OFF	19.8
0.172500	53.95		79.00	25.05	L1	OFF	19.8
0.197250		28.66	66.00	37.34	L1	OFF	19.8
0.197250	44.05		79.00	34.95	L1	OFF	19.8
0.273750		26.38	66.00	39.62	L1	OFF	19.8
0.273750	38.87		79.00	40.13	L1	OFF	19.8
2.413500		17.45	60.00	42.55	L1	OFF	19.9
2.413500	25.25		73.00	47.75	L1	OFF	19.9
7.669500		20.40	60.00	39.60	L1	OFF	19.9
7.669500	29.72		73.00	43.28	L1	OFF	19.9

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 381616 Mode 1 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		35.33	66.00	30.67	Ν	OFF	19.8
0.152250	52.40		79.00	26.60	Ν	OFF	19.8
0.170250		37.87	66.00	28.13	Ν	OFF	19.8
0.170250	52.76		79.00	26.24	Ν	OFF	19.8
0.197250		29.56	66.00	36.44	Ν	OFF	19.8
0.197250	44.67		79.00	34.33	Ν	OFF	19.8
0.478500		24.64	66.00	41.36	Ν	OFF	19.8
0.478500	40.34		79.00	38.66	Ν	OFF	19.8
2.413500		17.26	60.00	42.74	Ν	OFF	19.8
2.413500	27.92		73.00	45.08	Ν	OFF	19.8
13.506000		19.26	60.00	40.74	Ν	OFF	20.0
13.506000	30.12		73.00	42.88	Ν	OFF	20.0

Appendix C. Radiated Spurious Emission

Test Engineer :	Jesse Wang, Stan Hsieh, and Ken Wu	Temperature :	23.2~27.6°C
Test Engineer .		Relative Humidity :	42.5~74%

<Sample 2>

<Internal Antenna>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2359.665	54.17	-19.83	74	38.1	32.1	18.16	34.19	323	289	Ρ	Н
		2386.545	44.87	-9.13	54	28.73	32.1	18.24	34.2	323	289	А	Н
	*	2402	104.9	-	-	88.72	32.1	18.28	34.2	323	289	Ρ	Н
BLE	*	2402	104.36	-	-	88.18	32.1	18.28	34.2	323	289	А	н
CH 00													Н
2402MHz		2365.545	54.37	-19.63	74	38.29	32.1	18.17	34.19	386	4	Р	V
		2379.615	45.02	-8.98	54	28.9	32.1	18.22	34.2	386	4	А	V
	*	2402	100.85	-	-	84.67	32.1	18.28	34.2	386	4	Р	V
	*	2402	100.25	-	-	84.07	32.1	18.28	34.2	386	4	А	V
		2386.3	54.51	-19.49	74	38.37	32.1	18.24	34.2	106	298	Ρ	Н
		2359.42	44.95	-9.05	54	28.88	32.1	18.16	34.19	106	298	А	Н
	*	2440	104.74	-	-	88.59	32.02	18.34	34.21	106	298	Р	Н
	*	2440	104.25	-	-	88.1	32.02	18.34	34.21	106	298	А	Н
		2496.57	55.1	-18.9	74	38.89	32	18.43	34.22	106	298	Р	Н
BLE CH 19		2492.02	45.07	-8.93	54	28.87	32	18.42	34.22	106	298	А	Н
2440MHz		2387	55.36	-18.64	74	39.22	32.1	18.24	34.2	364	74	Р	V
244010112		2385.32	44.85	-9.15	54	28.72	32.1	18.23	34.2	364	74	А	V
	*	2440	101.92	-	-	85.77	32.02	18.34	34.21	364	74	Ρ	V
	*	2440	101.4	-	-	85.25	32.02	18.34	34.21	364	74	А	V
		2487.26	54.51	-19.49	74	38.32	32	18.41	34.22	364	74	Ρ	V
		2494.54	45.25	-8.75	54	29.05	32	18.42	34.22	364	74	А	V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	104.26	-	-	88.08	32	18.4	34.22	299	297	Р	Н
	*	2480	103.66	-	-	87.48	32	18.4	34.22	299	297	Α	Н
		2487.8	55.52	-18.48	74	39.33	32	18.41	34.22	299	297	Р	Н
		2487.68	46.63	-7.37	54	30.44	32	18.41	34.22	299	297	А	Н
													Н
BLE													Н
CH 39 2480MHz	*	2480	101.04	-	-	84.86	32	18.4	34.22	348	3	Р	V
240010112	*	2480	100.46	-	-	84.28	32	18.4	34.22	348	3	А	V
		2488.64	55.7	-18.3	74	39.51	32	18.41	34.22	348	3	Р	V
		2487.72	45.84	-8.16	54	29.65	32	18.41	34.22	348	3	А	V
													V
													V
	1. Nc	other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line.							
			0		J -								

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Book	Pol
	Note	riequency	Levei	wargin	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)	-	
		4804	52.03	-21.97	74	64.27	34.02	12.78	59.04	287	319	Ρ	Н
		4804	48.89	-5.11	54	61.13	34.02	12.78	59.04	287	319	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	50.52	-23.48	74	62.76	34.02	12.78	59.04	400	284	Ρ	V
		4804	46.98	-7.02	54	59.22	34.02	12.78	59.04	400	284	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	47.13	-26.87	74	59.04	34.14	12.86	58.91	376	315	Р	Н
		4880	41.8	-12.2	54	53.71	34.14	12.86	58.91	376	315	А	Н
		7320	42.77	-31.23	74	49.45	35.7	15.19	57.57	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19		4000	40.47	07.00	74	50.00	04.44	40.00	50.04	400	220	Р	H V
2440MHz		4880 4880	46.17 40.88	-27.83 -13.12	74 54	58.08 52.79	34.14 34.14	12.86 12.86	58.91 58.91	400 400	238 238	A	V V
		7320	40.88	-31.43	74	49.25	35.7	12.00	57.57	-	-	P	V
		1320	42.07	-51.45	74	49.20	55.7	15.19	51.51	-	-	-	V
													V
													V
													V
													V
													V
					<u></u>								V
											<u></u>		V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	42.08	-31.92	74	53.63	34.3	12.93	58.78	-	-	Р	Н
		7440	41.63	-32.37	74	48.48	35.6	15.25	57.7	-	-	Р	Н
													н
													н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 39													Н
2480MHz		4960	42.31	-31.69	74	53.86	34.3	12.93	58.78	-	-	Р	V
		7440	42.07	-31.93	74	48.92	35.6	15.25	57.7	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spurious	e found										V
		l results are PA		Peak and	Average lim	it line							
Remark		ne emission pos					ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
		oor only.								2 0			

Emission below 1GHz

					2.40112	BLE (LF)							
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table		Pol.
		(MU-)	(dBµV/m)	(dB)	Line (dBµV/m)		Factor		Factor	Pos	Pos (deg)	Avg.	/⊔//
		(MHz) 48.09	26.56	-13.44	<u>(авруля)</u> 40	(dBµV) 39.91	(dB/m) 15.23	(dB) 1.34	(dB) 29.92	(cm)	(ueg)	P	(п/v) Н
		200.91	27.71	-15.79	43.5	40.11	14.94	2.49	29.83	-	-	P	н
		213.06	29.34	-14.16	43.5	41.74	14.9	2.53	29.83	-	-	Р	н
		796.3	31.2	-14.8	46	27.66	27.84	4.99	29.29	-	-	Р	н
		896.4	32.19	-13.81	46	27.02	28.62	5.41	28.86	-	-	Р	Н
		946.8	33.27	-12.73	46	26.36	30.1	5.5	28.69	-	-	Р	Н
													н
													Н
													Н
													н
2.4GHz													H H
BLE		30	33.03	-6.97	40	37.41	24.51	1.05	29.94	_	-	Р	V
LF		47.82	30.01	-9.99	40	43.24	15.35	1.34	29.92	-	-	P	v
		217.38	32.56	-13.44	46	45.31	14.54	2.54	29.83	-	-	Р	V
		733.3	30.57	-15.43	46	28.08	27.28	4.73	29.52	-	-	Р	V
		853	34.48	-11.52	46	29.67	28.84	5.12	29.15	-	-	Р	V
		953.1	36.78	-9.22	46	29.42	30.49	5.52	28.65	-	-	Р	V
													V
													V
													V
													V
													V V
	4 N.	othor crusicu	found										v
		o other spurious		mit line									
Remark													
		ainst limit or er											J
					-								

2.4GHz BLE (LF)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
DEL	Note	ricquency	Lever	margin	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		2370.27	55.19	-18.81	74	39.1	32.1	18.18	34.19	323	292	Ρ	Н
		2386.965	45.31	-8.69	54	29.17	32.1	18.24	34.2	323	292	А	Н
	*	2402	105.05	-	-	88.87	32.1	18.28	34.2	323	292	Ρ	Н
	*	2402	103.57	-	-	87.39	32.1	18.28	34.2	323	292	А	н
BLE													н
CH 00													н
2402MHz		2340.87	56.05	-17.95	74	40.09	32.05	18.1	34.19	387	7	Ρ	V
240210112		2386.86	44.95	-9.05	54	28.81	32.1	18.24	34.2	387	7	А	V
	*	2402	100.79	-	-	84.61	32.1	18.28	34.2	387	7	Ρ	V
	*	2402	99.25	-	-	83.07	32.1	18.28	34.2	387	7	А	V
													V
													V
		2365.58	55.54	-18.46	74	39.46	32.1	18.17	34.19	105	298	Ρ	Н
		2382.1	44.86	-9.14	54	28.74	32.1	18.22	34.2	105	298	А	Н
	*	2440	104.81	-	-	88.66	32.02	18.34	34.21	105	298	Ρ	Н
	*	2440	103.26	-	-	87.11	32.02	18.34	34.21	105	298	А	Н
		2485.51	55.8	-18.2	74	39.61	32	18.41	34.22	105	298	Р	Н
BLE CH 19		2495.24	45.06	-8.94	54	28.85	32	18.43	34.22	105	298	А	н
2440MHz		2362.36	55.33	-18.67	74	39.26	32.1	18.16	34.19	364	73	Р	V
		2389.24	44.91	-9.09	54	28.77	32.1	18.24	34.2	364	73	А	V
	*	2440	102.04	-	-	85.89	32.02	18.34	34.21	364	73	Р	V
	*	2440	99.39	-	-	83.24	32.02	18.34	34.21	364	73	А	V
		2485.93	54.83	-19.17	74	38.64	32	18.41	34.22	364	73	Р	V
		2494.89	45.03	-8.97	54	28.83	32	18.42	34.22	364	73	А	V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	104.29	-	-	88.11	32	18.4	34.22	300	297	Р	Н
	*	2480	101.83	-	-	85.65	32	18.4	34.22	300	297	А	Н
		2484.96	55.42	-18.58	74	39.24	32	18.4	34.22	300	297	Р	н
		2487.08	46.77	-7.23	54	30.58	32	18.41	34.22	300	297	А	Н
515													Н
BLE													н
CH 39 2480MHz	*	2480	101.08	-	-	84.9	32	18.4	34.22	348	2	Р	V
24000012	*	2480	98.84	-	-	82.66	32	18.4	34.22	348	2	А	V
		2490.2	54.52	-19.48	74	38.33	32	18.41	34.22	348	2	Р	V
		2486.96	45.66	-8.34	54	29.47	32	18.41	34.22	348	2	Α	V
													V
													V
	1. No	o other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line.							


BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Poak	Pol
	Note	riequency	Levei	wargin	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	52.5	-21.5	74	64.74	34.02	12.78	59.04	302	319	Ρ	Н
		4804	47.21	-6.79	54	59.45	34.02	12.78	59.04	302	319	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	50.64	-23.36	74	62.88	34.02	12.78	59.04	400	283	Р	V
		4804	45.13	-8.87	54	57.37	34.02	12.78	59.04	400	283	A	V
													V
													V
													V
													V
													V
													V V
													V V
													V V
													V
													v

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	46.68	-27.32	74	58.59	34.14	12.86	58.91	375	314	Р	Н
		4880	39.29	-14.71	54	51.2	34.14	12.86	58.91	375	314	А	Н
		7320	41.91	-32.09	74	48.59	35.7	15.19	57.57	-	-	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													Н
													H
BLE													Н
CH 19		4000	45.70	00.07	74	57.04	04.44	40.00	50.04	400	000	Р	H V
2440MHz		4880 4880	45.73 38.88	-28.27 -15.12	74 54	57.64 50.79	34.14 34.14	12.86 12.86	58.91 58.91	400 400	238 238	A	v V
		7320	42.46	-31.54	74	49.14	35.7	12.00	57.57	-	-	P	V
		1320	42.40	-51.54	74	43.14	55.7	13.19	51.51		_	-	V
													V
													V
													V
													V
													V
					<u></u>								V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	41.48	-32.52	74	53.03	34.3	12.93	58.78	-	-	Р	Н
		7440	41.28	-32.72	74	48.13	35.6	15.25	57.7	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 39													Н
2480MHz		4960	41.59	-32.41	74	53.14	34.3	12.93	58.78	-	-	Р	V
		7440	41.62	-32.38	74	48.47	35.6	15.25	57.7	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spurious	e found										V
		l results are PA		Peak and	Average lim	it line							
Remark		ne emission pos					ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
		oor only.								2 0			-

<External Antenna>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2362.185	55.04	-18.96	74	38.97	32.1	18.16	34.19	100	284	Р	Н
		2386.44	45.09	-8.91	54	28.95	32.1	18.24	34.2	100	284	Α	Н
	*	2402	107.73	-	-	91.55	32.1	18.28	34.2	100	284	Р	Н
	*	2402	107.21	-	-	91.03	32.1	18.28	34.2	100	284	Α	Н
BLE													Н
CH 00													Н
2402MHz		2331.21	55.2	-18.8	74	39.34	31.99	18.06	34.19	318	335	Р	V
240210112		2360.295	45.16	-8.84	54	29.09	32.1	18.16	34.19	318	335	А	V
	*	2402	98.65	-	-	82.47	32.1	18.28	34.2	318	335	Р	V
	*	2402	97.68	-	-	81.5	32.1	18.28	34.2	318	335	А	V
													V
													V
		2348.22	54.32	-19.68	74	38.3	32.09	18.12	34.19	100	283	Ρ	Н
		2365.58	45.04	-8.96	54	28.96	32.1	18.17	34.19	100	283	А	Н
	*	2440	107.84	-	-	91.69	32.02	18.34	34.21	100	283	Р	н
	*	2440	107.26	-	-	91.11	32.02	18.34	34.21	100	283	А	Н
		2496.22	54.72	-19.28	74	38.51	32	18.43	34.22	100	283	Ρ	Н
BLE CH 19		2492.98	45.21	-8.79	54	29.01	32	18.42	34.22	100	283	А	Н
2440MHz		2316.16	54.48	-19.52	74	38.74	31.9	18.02	34.18	354	0	Р	V
244010112		2352.28	44.95	-9.05	54	28.91	32.1	18.13	34.19	354	0	А	V
	*	2440	99.96	-	-	83.81	32.02	18.34	34.21	354	0	Р	V
	*	2440	99.39	-	-	83.24	32.02	18.34	34.21	354	0	Α	V
		2487.49	55.63	-18.37	74	39.44	32	18.41	34.22	354	0	Р	V
		2488.75	45.14	-8.86	54	28.95	32	18.41	34.22	354	0	А	V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	108.05	-	-	91.87	32	18.4	34.22	128	283	Р	Н
	*	2480	107.55	-	-	91.37	32	18.4	34.22	128	283	Α	Н
		2487.84	56.27	-17.73	74	40.08	32	18.41	34.22	128	283	Р	Н
		2487.68	48.09	-5.91	54	31.9	32	18.41	34.22	128	283	А	Н
													Н
BLE CH 39													Н
2480MHz	*	2480	99.24	-	-	83.06	32	18.4	34.22	387	185	Р	V
240011112	*	2480	98.4	-	-	82.22	32	18.4	34.22	387	185	А	V
		2487.56	55.87	-18.13	74	39.68	32	18.41	34.22	387	185	Р	V
		2487.64	45.47	-8.53	54	29.28	32	18.41	34.22	387	185	А	V
													V
													V
	1. Nc	other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line.							

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
		inequency			Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		4804	51.16	-22.84	74	63.4	34.02	12.78	59.04	400	287	Р	Н
		4804	47.2	-6.8	54	59.44	34.02	12.78	59.04	400	287	Α	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	49.06	-24.94	74	61.3	34.02	12.78	59.04	396	8	Ρ	V
		4804	44.52	-9.48	54	56.76	34.02	12.78	59.04	396	8	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)			Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	47.5	-26.5	74	59.41	34.14	12.86	58.91	377	88	Р	Н
		4880	43.31	-10.69	54	55.22	34.14	12.86	58.91	377	88	А	Н
		7320	42.31	-31.69	74	48.99	35.7	15.19	57.57	-	-	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19													Н
2440MHz		4880	46.02	-27.98	74	57.93	34.14	12.86	58.91	400	344	Р	V
		4880	42.07	-11.93	54	53.98	34.14	12.86	58.91	400	344	A	V
		7320	41.86	-32.14	74	48.54	35.7	15.19	57.57	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	46.15	-27.85	74	57.7	34.3	12.93	58.78	100	270	P	Н
		4960	40.75	-13.25	54	52.3	34.3	12.93	58.78	100	270	A	Н
		7440	41.91	-32.09	74	48.76	35.6	15.25	57.7	-	-	Р	Н
													Н
													Н
													Н
													Н
													н
													Н
													Н
													Н
BLE													Н
CH 39		4960	42.61	-31.39	74	54.16	34.3	12.93	58.78	-	-	Р	V
2480MHz		7440	40.68	-33.32	74	47.53	35.6	15.25	57.7	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	lo other spuriou	s found.			<u> </u>					<u> </u>	I	
		Il results are PA		Peak and	Average lim	it line.							
Remark		he emission pos					ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
		oor only.											

Emission below 1GHz

					2.4GHz								
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(1 1 1 1 1		(Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(118.0)
		(MHz) 49.44	(dBµV/m) 25	(dB) -15	(dBμV/m) 40	(dBµV) 38.94	(dB/m) 14.61	(dB) 1.37	(dB) 29.92	(cm)	(deg)	(P/A) P	(H/V) H
		200.64	30.78	-12.72	43.5	43.19	14.93	2.49	29.83	-	-	P	H
		226.83	32.5	-13.5	46	43.98	15.77	2.57	29.82	-	-	Р	Н
		930	32.9	-13.1	46	26.95	29.21	5.48	28.74	-	-	Р	Н
		957.3	35.12	-10.88	46	27.56	30.64	5.53	28.61	-	-	Р	Н
		985.3	34.19	-19.81	54	26.53	30.4	5.61	28.35	-	-	Р	Н
													Н
													Н
													н
													Н
													н
2.4GHz													Н
BLE		30	32.24	-7.76	40	36.62	24.51	1.05	29.94	-	-	Р	V
LF		49.44	29.42	-10.58	40	43.36	14.61	1.37	29.92	-	-	Р	V
		227.1	32.22	-13.78	46	43.67	15.8	2.57	29.82	-	-	Р	V
		836.9	35.12	-10.88	46	30.95	28.29	5.08	29.2	-	-	Р	V
		920.9	36.75	-9.25	46	31.14	28.91	5.47	28.77	-	-	Р	V
		974.8	38.27	-15.73	54	30.36	30.79	5.57	28.45	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	found										v
		results are PA		mit line									
Remark		e emission pos	-		eans no sus	nected or	ussion foun	d and om	ission lave	al has at	t least fr	IR ma	rain
		ainst limit or er								21 Has a		חוי סי	A
	ay				orny.								

2.4GHz BLE (LF)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
DEL	Note	rrequency	Levei	wargin	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	F 01.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2385.495	54.8	-19.2	74	38.67	32.1	18.23	34.2	100	284	Р	н
		2386.86	46.02	-7.98	54	29.88	32.1	18.24	34.2	100	284	А	н
	*	2402	107.72	-	-	91.54	32.1	18.28	34.2	100	284	Р	Н
	*	2402	105.9	-	-	89.72	32.1	18.28	34.2	100	284	А	Н
BLE													Н
CH 00													Н
2402MHz		2380.56	54.56	-19.44	74	38.44	32.1	18.22	34.2	318	335	Р	V
240211112		2363.865	45.09	-8.91	54	29.01	32.1	18.17	34.19	318	335	А	V
	*	2402	98.64	-	-	82.46	32.1	18.28	34.2	318	335	Р	V
	*	2402	97.1	-	-	80.92	32.1	18.28	34.2	318	335	А	V
													V
													V
		2347.94	54.87	-19.13	74	38.85	32.09	18.12	34.19	100	283	Р	Н
		2350.32	44.99	-9.01	54	28.96	32.1	18.12	34.19	100	283	А	Н
	*	2440	107.89	-	-	91.74	32.02	18.34	34.21	100	283	Р	Н
	*	2440	104.12	-	-	87.97	32.02	18.34	34.21	100	283	Α	Н
		2499.51	54.66	-19.34	74	38.45	32	18.43	34.22	100	283	Р	Н
BLE CH 19		2494.4	45.33	-8.67	54	29.13	32	18.42	34.22	100	283	А	Н
2440MHz		2387.84	54.79	-19.21	74	38.65	32.1	18.24	34.2	354	0	Ρ	V
2440101172		2389.8	45.03	-8.97	54	28.89	32.1	18.24	34.2	354	0	А	V
	*	2440	99.99	-	-	83.84	32.02	18.34	34.21	354	0	Р	V
	*	2440	98.52	-	-	82.37	32.02	18.34	34.21	354	0	А	V
		2498.88	54.2	-19.8	74	37.99	32	18.43	34.22	354	0	Р	V
		2494.75	45.2	-8.8	54	29	32	18.42	34.22	354	0	А	V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	107.25	-	-	91.07	32	18.4	34.22	300	283	Р	Н
	*	2480	104.96	-	-	88.78	32	18.4	34.22	300	283	А	Н
		2483.52	58	-16	74	41.82	32	18.4	34.22	300	283	Р	н
		2483.52	48.03	-5.97	54	31.85	32	18.4	34.22	300	283	А	Н
													Н
BLE CH 39													Н
2480MHz	*	2480	98.58	-	-	82.4	32	18.4	34.22	387	138	Р	V
240011112	*	2480	94.68	-	-	78.5	32	18.4	34.22	387	138	А	V
		2498.92	54.55	-19.45	74	38.34	32	18.43	34.22	387	138	Р	V
		2488.88	45.43	-8.57	54	29.24	32	18.41	34.22	387	138	А	V
													V
													V
	1. Nc	o other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line.							
	,		ee agamori		orago iiri								

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Poak	Pol
DLL	Note	riequency	Level	Margin	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)			(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	50	-24	74	62.24	34.02	12.78	59.04	400	288	Р	Н
		4804	45.16	-8.84	54	57.4	34.02	12.78	59.04	400	288	А	н
													н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 00 2402MHz		4804	46.61	-27.39	74	58.85	34.02	12.78	59.04	400	340	Р	V
240211172		4804	42.21	-11.79	54	54.45	34.02	12.78	59.04	400	340	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)			Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	47.55	-26.45	74	59.46	34.14	12.86	58.91	400	87	Р	Н
		4880	41.28	-12.72	54	53.19	34.14	12.86	58.91	400	87	А	н
		7320	43.13	-30.87	74	49.81	35.7	15.19	57.57	-	-	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19													Н
2440MHz		4880	46.18	-27.82	74	58.09	34.14	12.86	58.91	400	343	Ρ	V
		4880	40.18	-13.82	54	52.09	34.14	12.86	58.91	400	343	A	V
		7320	42.99	-31.01	74	49.67	35.7	15.19	57.57	-	-	Р	V
													V
													V
													V
													V
													V
												<u> </u>	V
												<u> </u>	V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	43.11	-30.89	74	54.66	34.3	12.93	58.78	-	-	Р	Н
		7440	40.84	-33.16	74	47.69	35.6	15.25	57.7	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													H
CH 39													H
2480MHz		4960	42.33	-31.67	74	53.88	34.3	12.93	58.78	-	-	P	V
		7440	41.54	-32.46	74	48.39	35.6	15.25	57.7	-	-	Р	V
													V
													V
													V
													V V
													v v
													V V
													V
													V
													V
	1. N	o other spurious	s found.										
_		Il results are PA		Peak and	Average lim	it line.							
Remark	3. TI	he emission pos	sition marked	las "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	oor only.											

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

A calculation example for radiated spurious emission is shown as below:

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

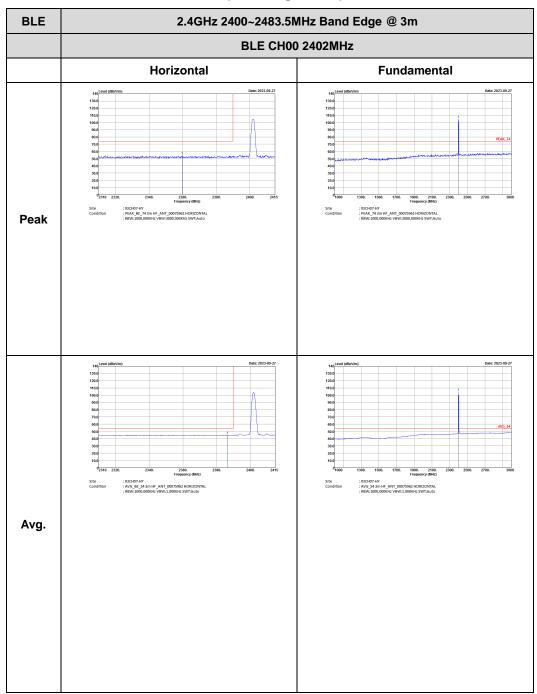
Both peak and average measured complies with the limit line, so test result is "PASS".

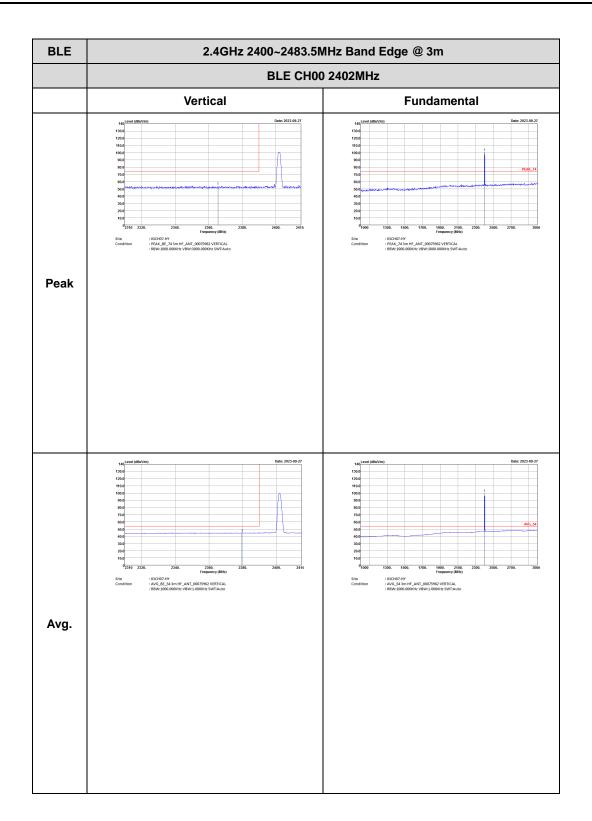
Appendix D. Radiated Spurious Emission Plots

Toot Engineer		Temperature :	23.2~27.6°C
Test Engineer :	Jesse Wang, Stan Hsieh, and Ken Wu	Relative Humidity :	42.5~74%

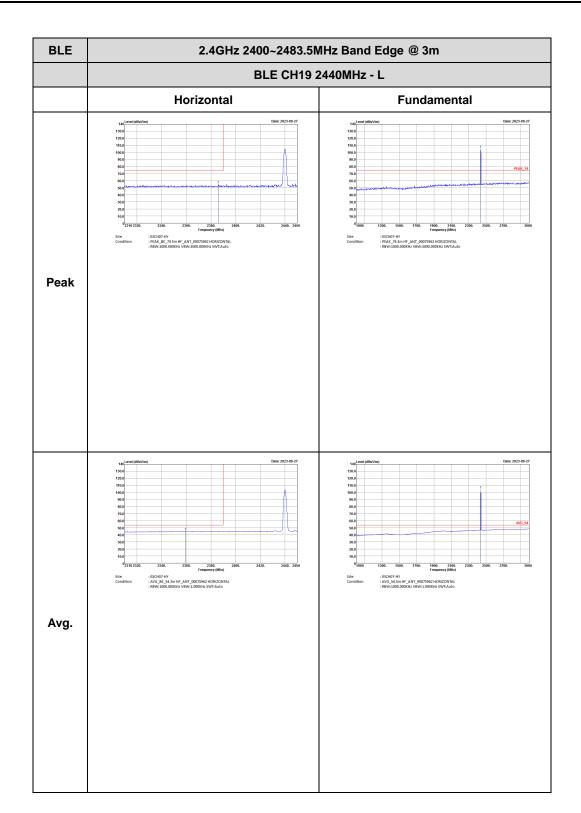
Note symbol

-L	Low channel location
-R	High channel location

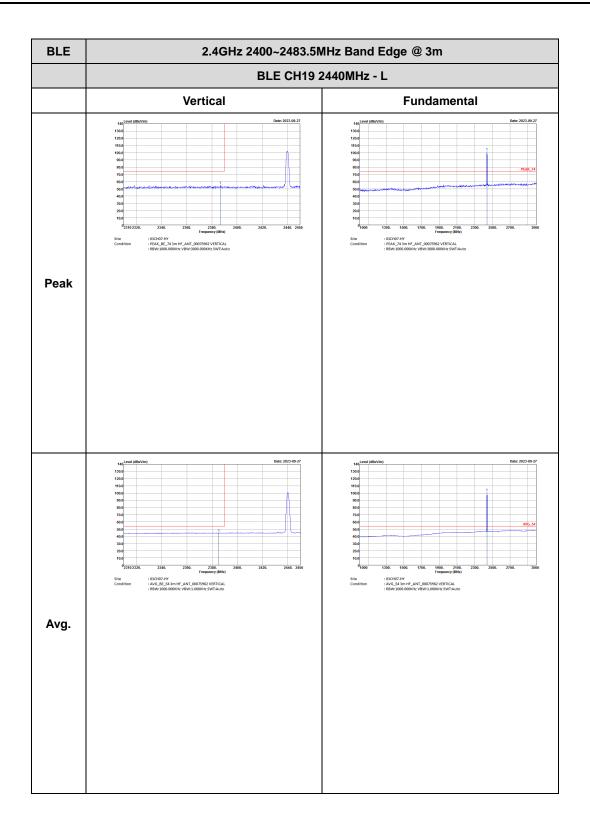



<Sample 2> <Internal Antenna>

<1Mbps>

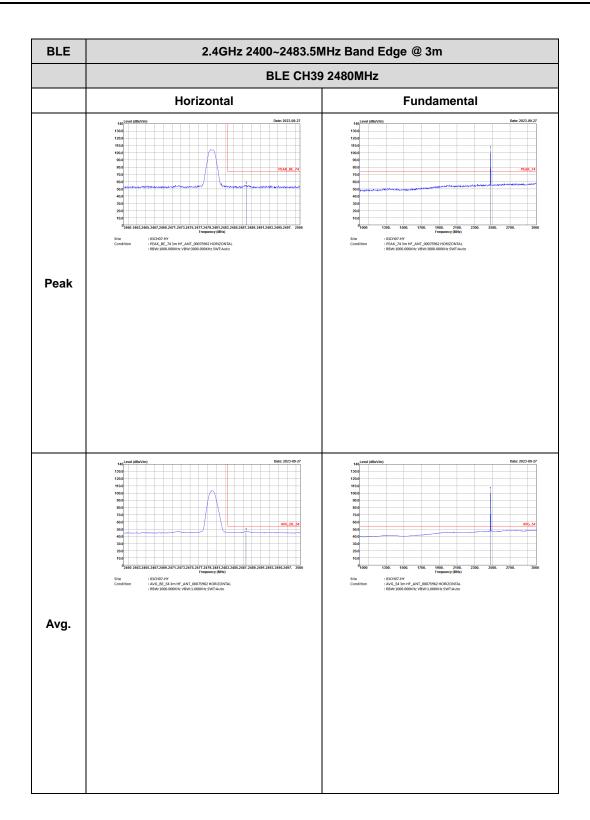

2.4GHz 2400~2483.5MHz

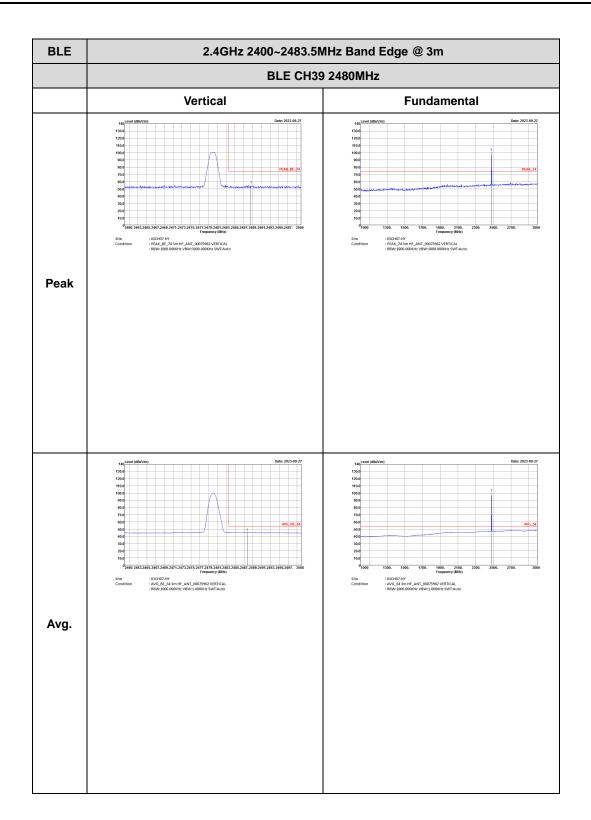




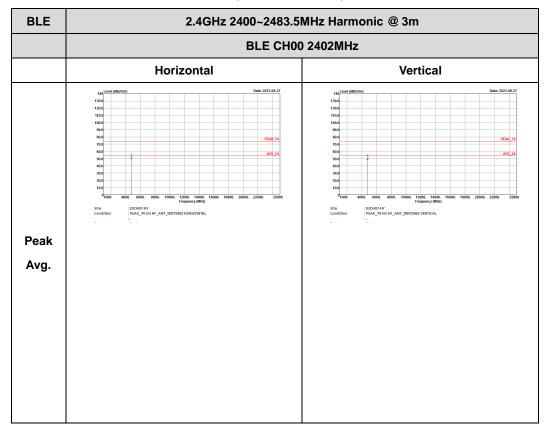


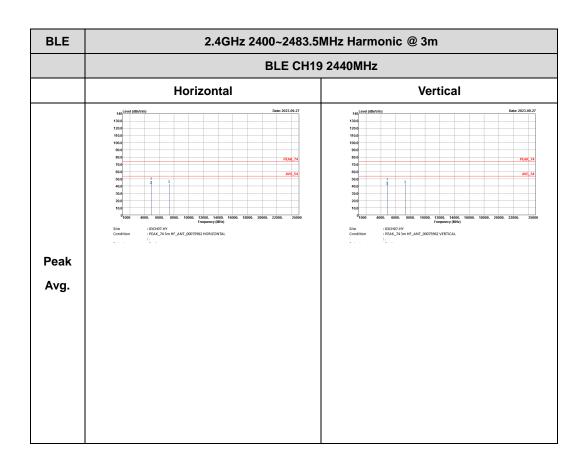
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m							
	BLE CH19 2440	MHz - R						
	Horizontal	Fundamental						
	ten zerz de 2 de 2 100 100 100 100 100 100 100 10							
Peak		Left blank						
Avg.	40 Difference (difference) 100	Left blank						

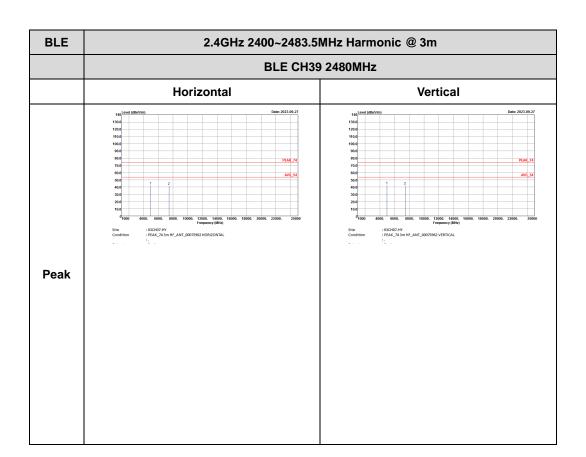


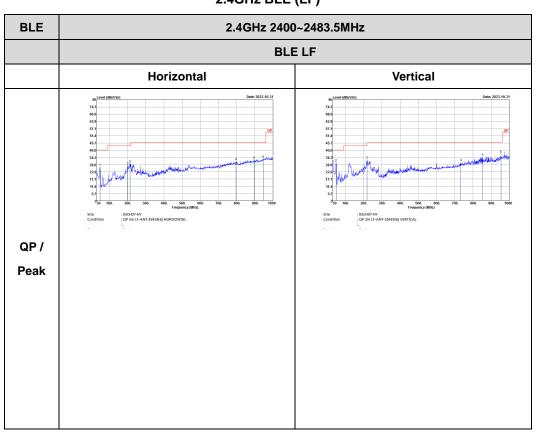


<figure> Market Contraction Sector 2000 Sector 2000</figure>	MHz - R Fundamental
Exercited disaving Date: 20/3 49-27 300	
2020 2000 2000	Left blank
	Leit blank
Apple Date: 2022 09.27 Date: 2022 09.27 Treparent pilot Date: 2022 09.27 Treparent pilot </td <td>Left blank</td>	Left blank
	200 200 200 200 200 200 200 200

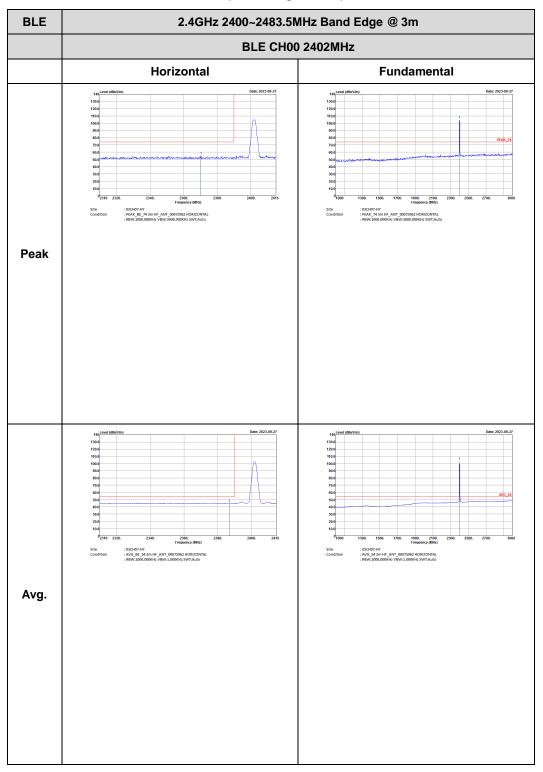


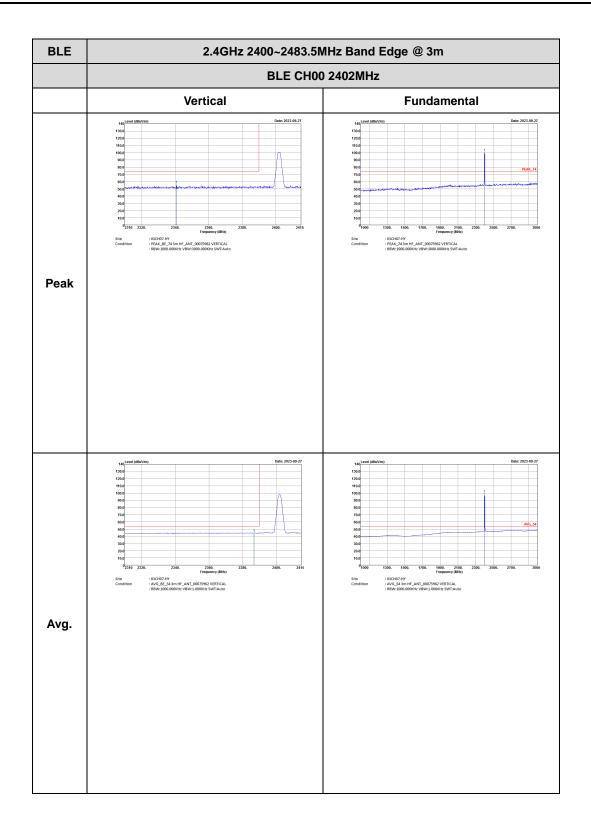




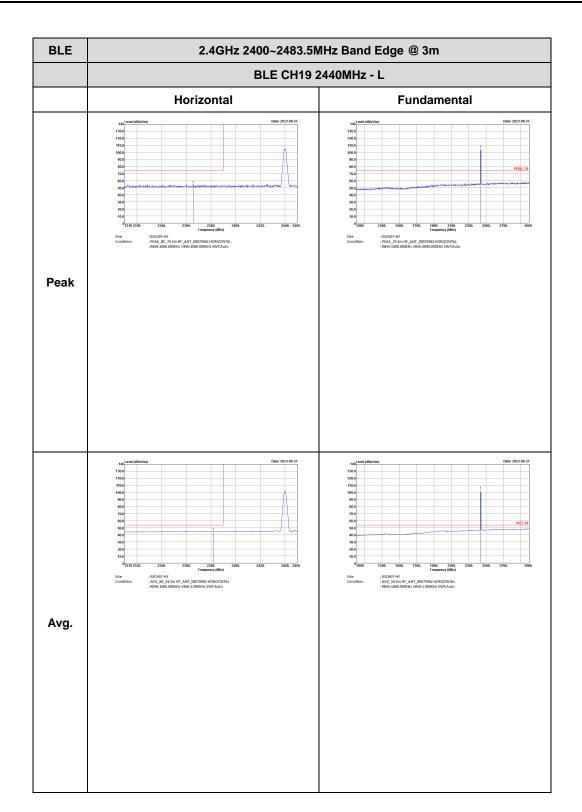


Emission below 1GHz




<2Mbps>

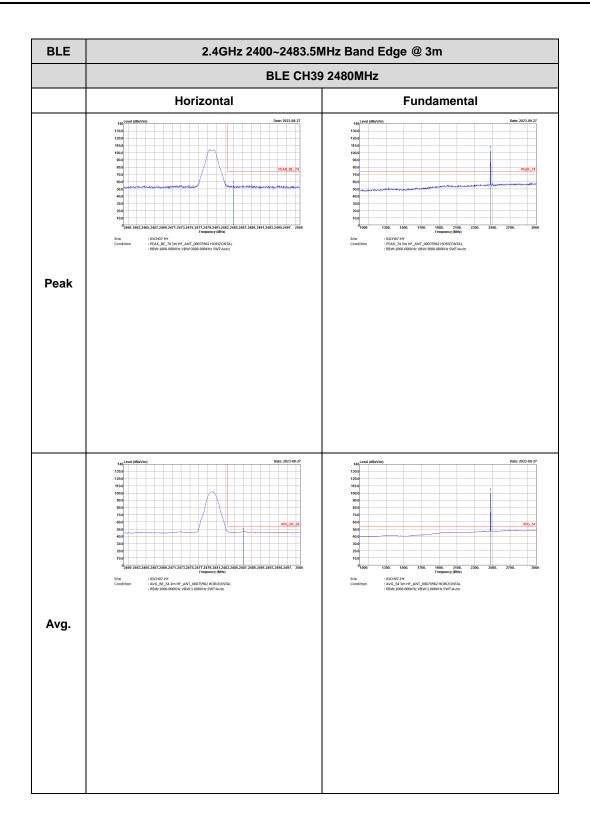
2.4GHz 2400~2483.5MHz

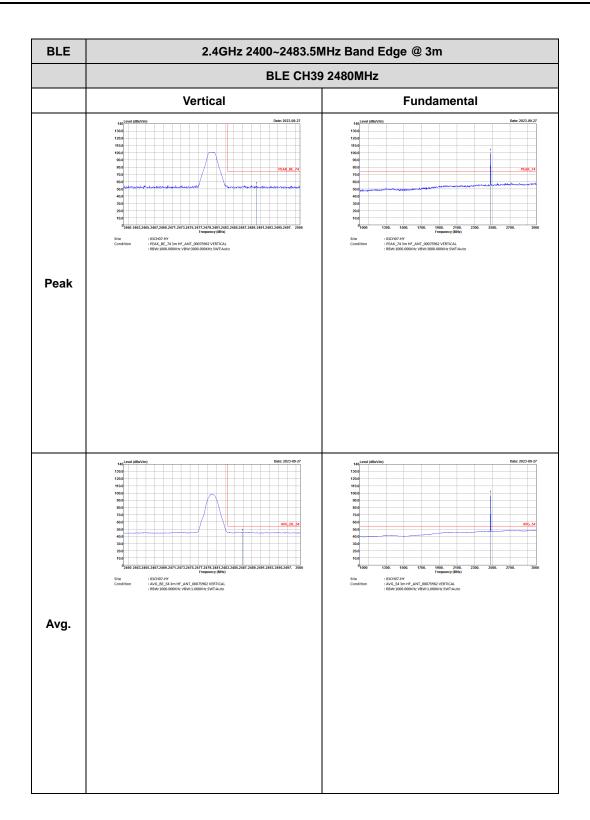

BLE (Band Edge @ 3m)



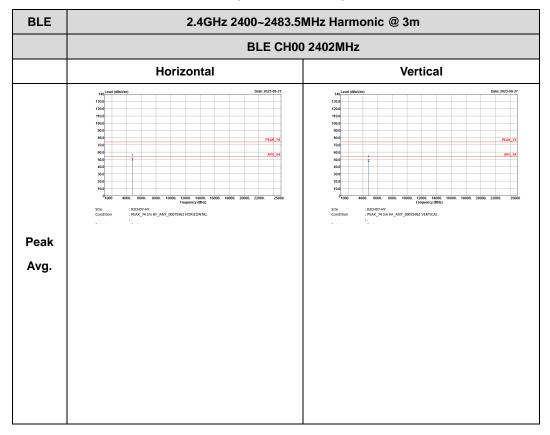


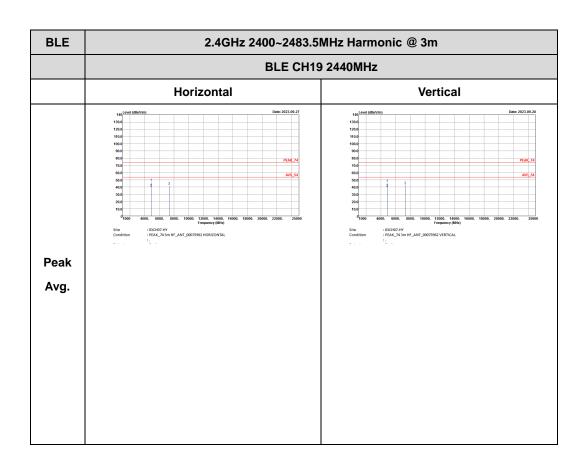
LE	2.4GHz 2400~2483.5MHz	
	BLE CH19 2440	MHz - R
	Horizontal	Fundamental
	DBIE: 2022 09-27 128.0 109.0 100.0 109.0	
eak		Left blank
/g.	met (BitVin) Der 202-09.7 10.0 10.	Left blank
/g.		Left b

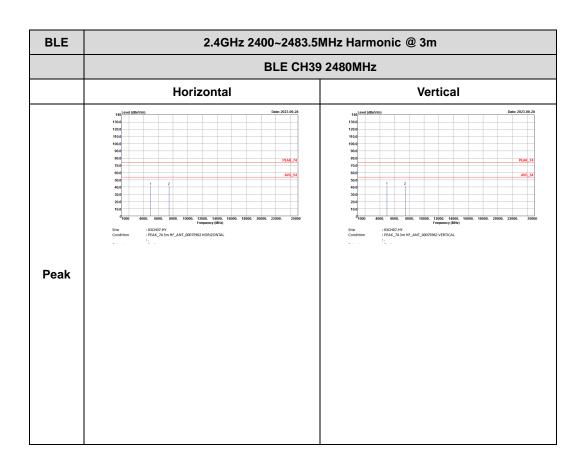


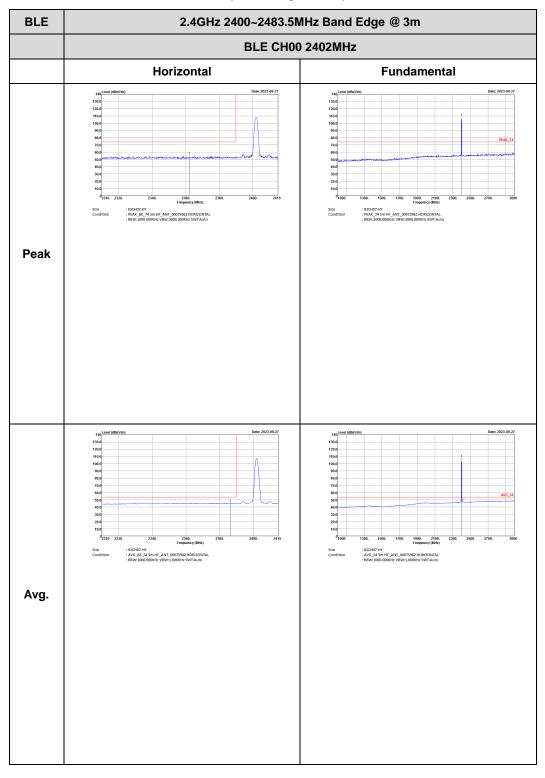


BLE	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
	BLE CH19 2440	MHz - R
	Vertical	Fundamental
	Heat Effect (EMPV/m) Date: 2022-09-27 10.0	
Peak		Left blank
Avg.	And Control of Control o	Left blank

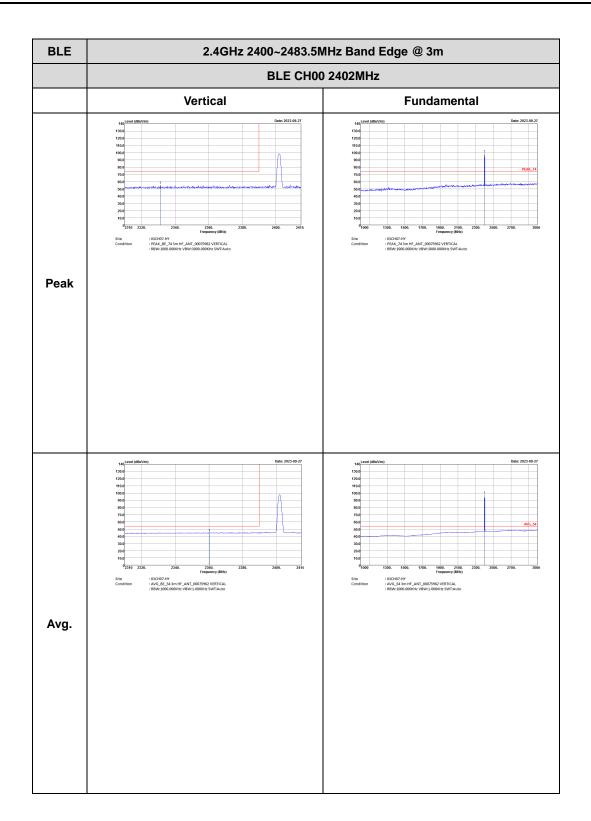




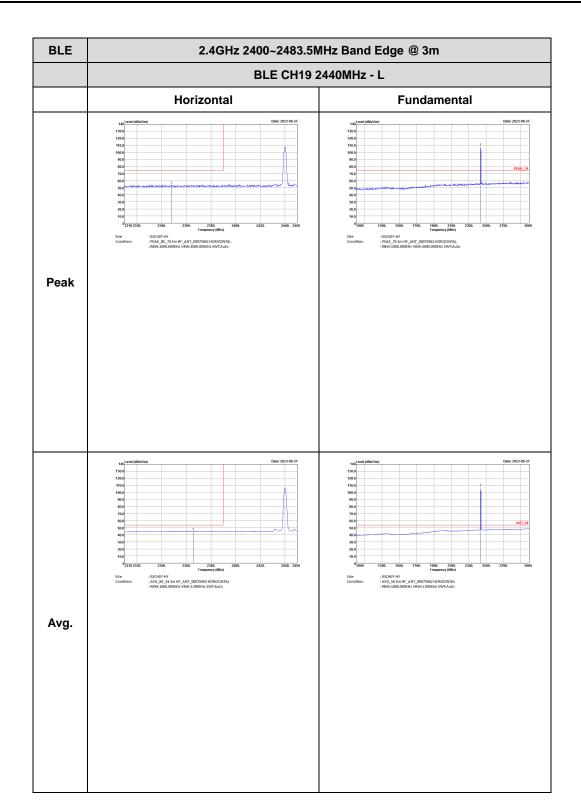


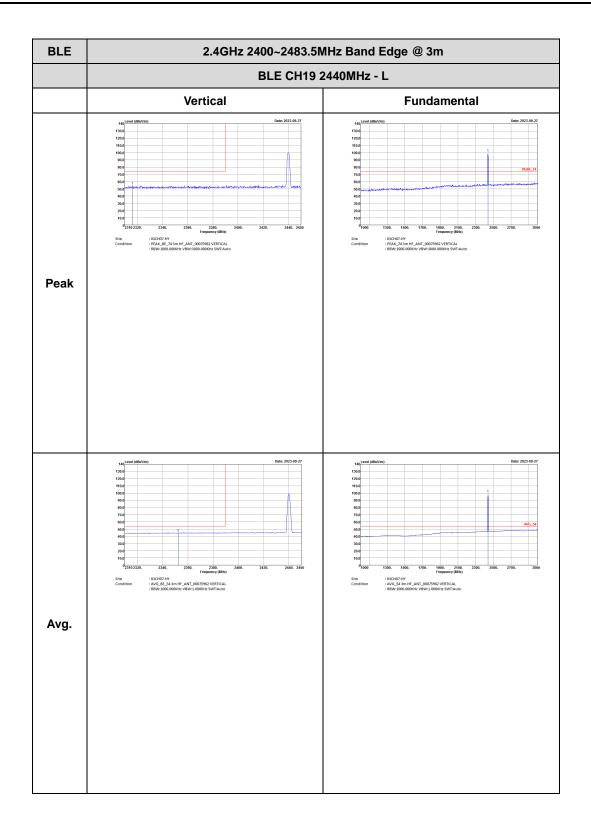


<External Antenna>

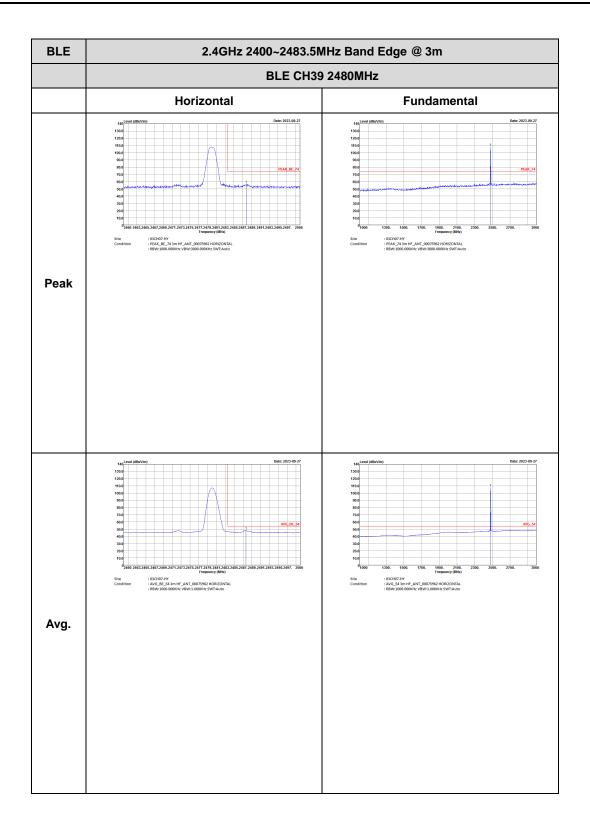

<1Mbps>

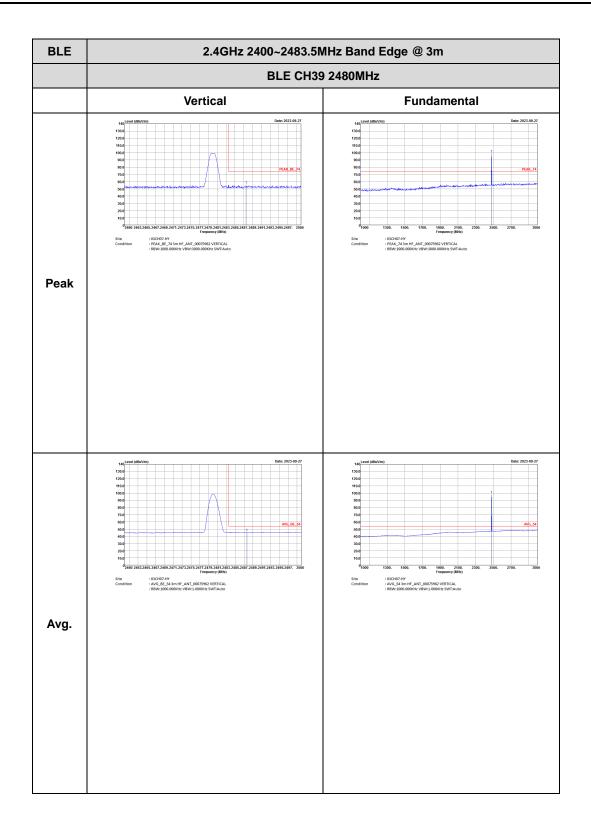
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

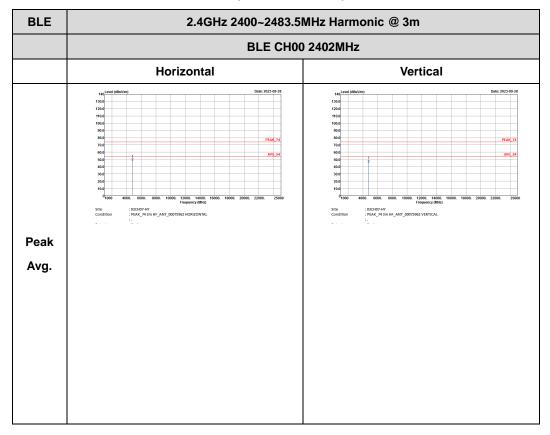


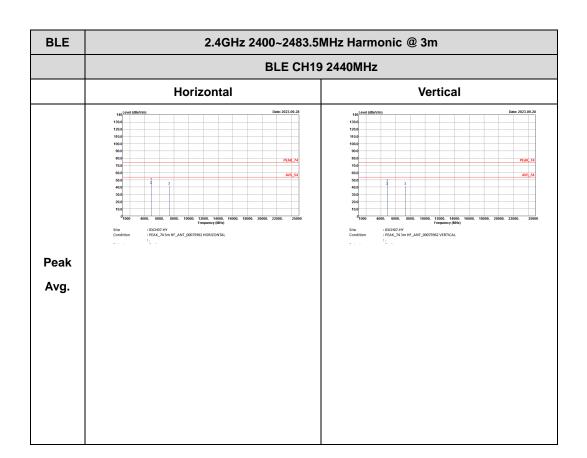
BLE	2.4GHz 2400~2483.5M	Hz Band Edge @ 3m
	BLE CH19 24	40MHz - R
	Horizontal	Fundamental
Peak	bei state of a second s	Left blank
Avg.		Left blank

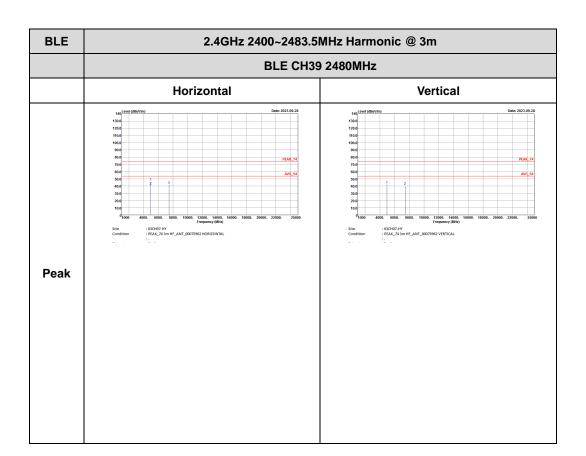


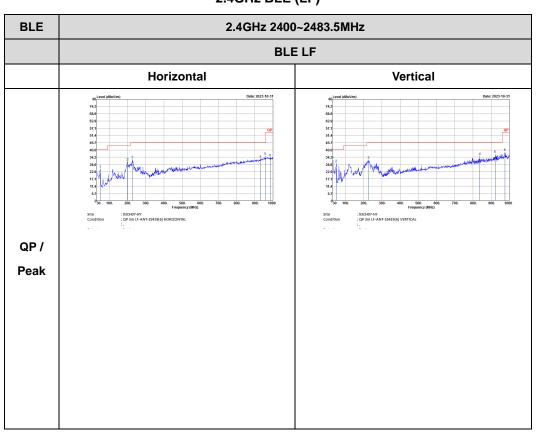


	2.4GHz 2400~2483.5MHz Band Edge @ 3m							
	BLE CH19 2440	MHz - R						
	Vertical	Fundamental						
Peak	tell tell	Left blank						
Avg.	Applementation Date: 2022 09 37 10.0 10.0 <t< td=""><td>Left blank</td></t<>	Left blank						

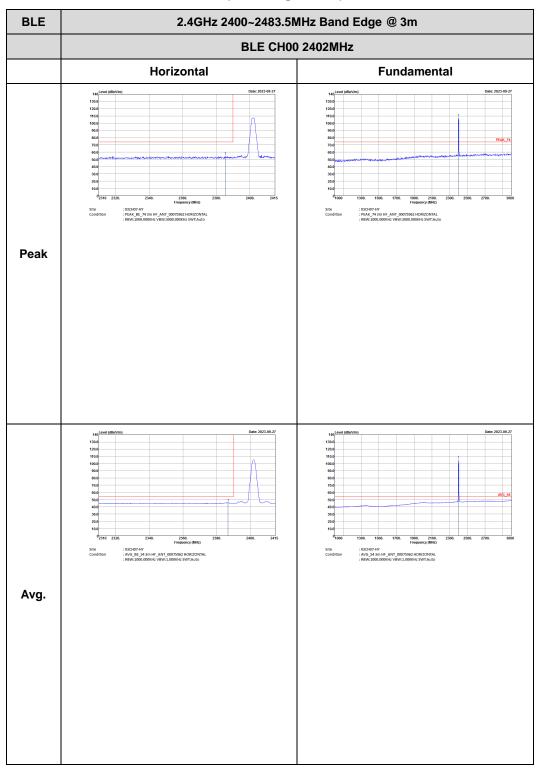


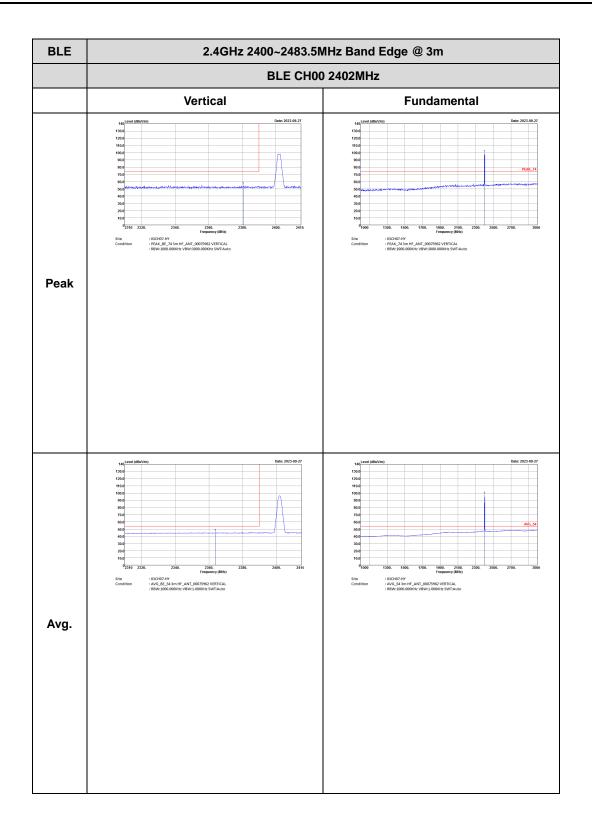




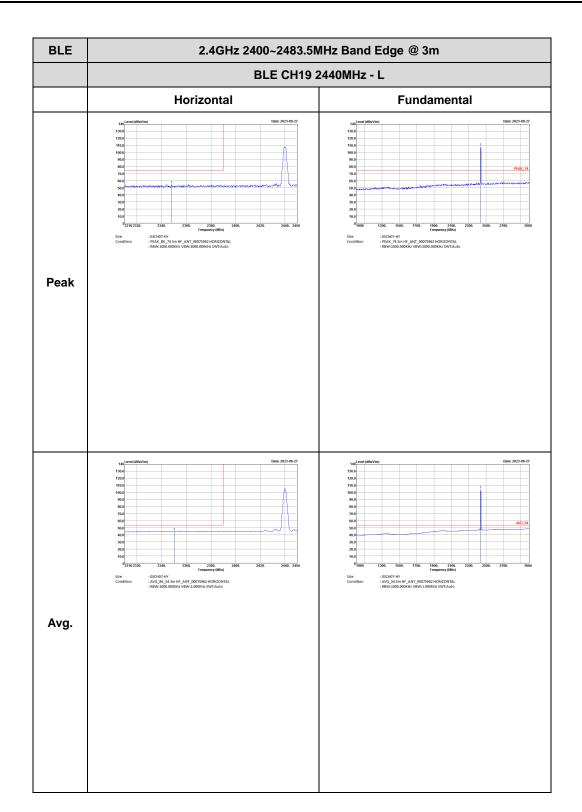


Emission below 1GHz

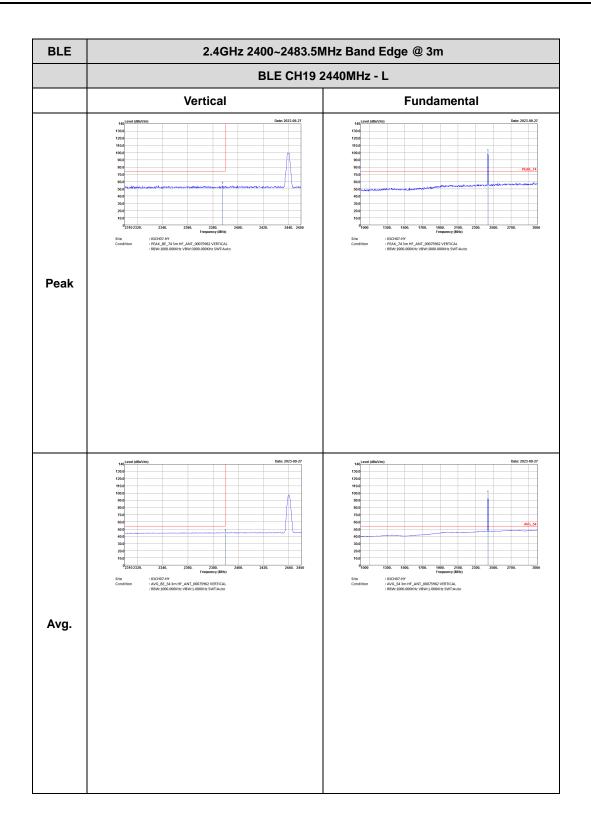



<2Mbps>

2.4GHz 2400~2483.5MHz

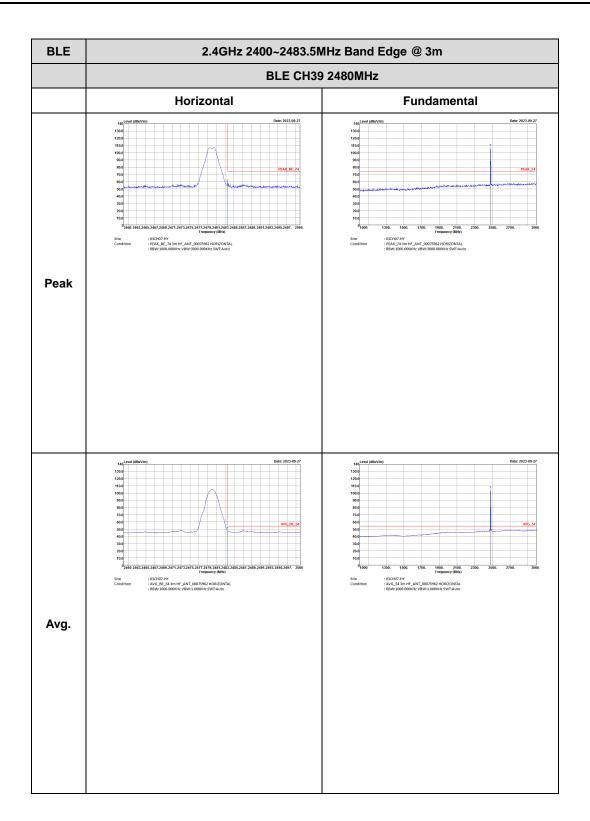

BLE (Band Edge @ 3m)

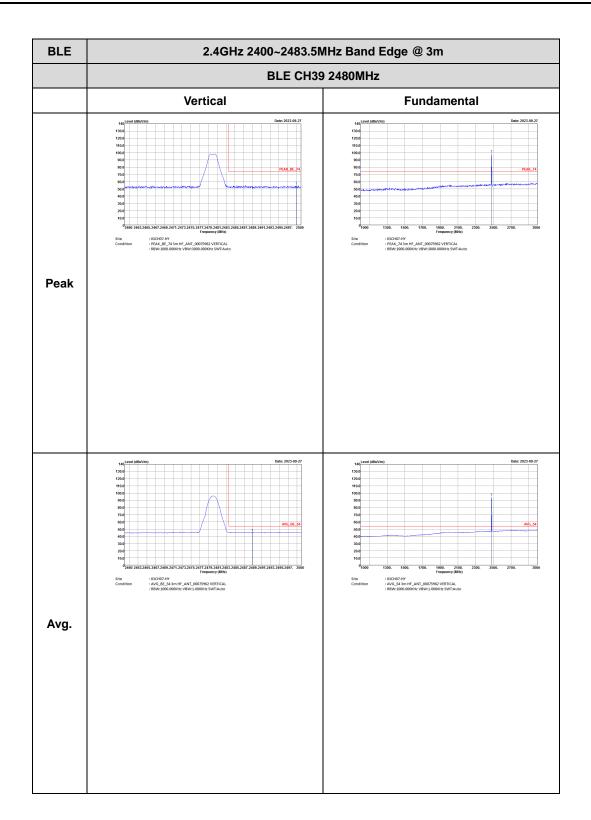




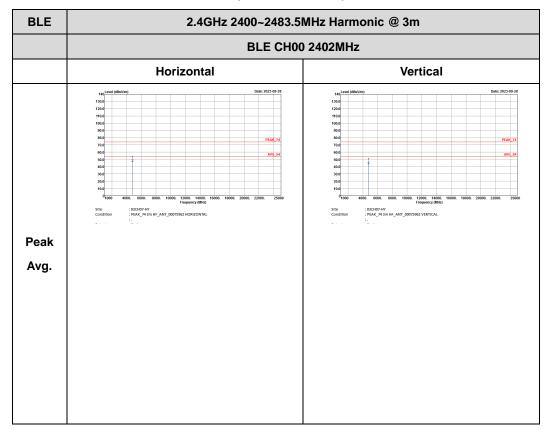


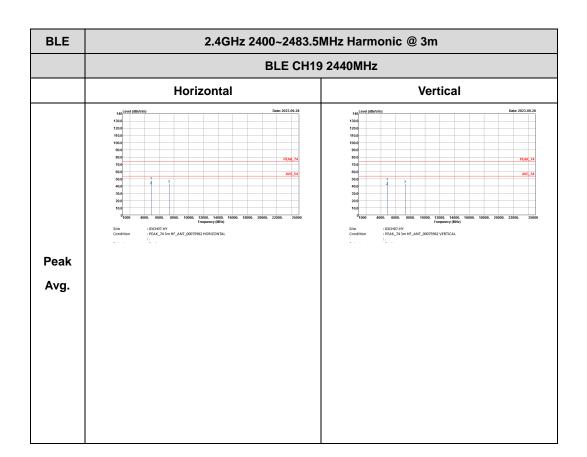
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m							
	BLE CH19 2440	MHz - R						
	Horizontal	Fundamental						
	140							
Peak		Left blank						
Avg.	Description of the second seco	Left blank						

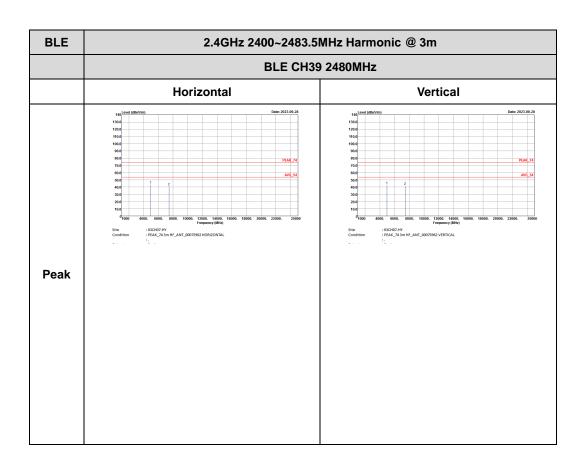




BLE	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
	BLE CH19 2440	MHz - R
	Vertical	Fundamental
Peak	the set (markin)	Left blank
	Image: 100 (mer) Date: 2023-09-27 1000 100 1000 10	
Avg.		Left blank







Appendix E. Duty Cycle Plots

<Internal Antenna>

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Left	Bluetooth - LE for 1Mbps	85.20	2130	0.47	1kHz
Left	Bluetooth - LE for 2Mbps	42.80	1070	0.93	1kHz

Bluetooth - LE for 1Mbps		Bluetooth - LE for 2Mbps		
Aglent Spectrum Andyzer Swept SA QI RL RF 150 0 C SENSE3/TI Marker 3 ∆ 2,500000 ms PH0: sat →→ ReGulat ow Br0: sat →→ ReGulat ow AvgHol			ALIGNAUTO 09:03:06 AM Sep 26, 2023 Avg Type: RMS TRACE 2 3 4 5 6 wg[Hold: 1/1 TYPE MONUMAN DET P NN NN N	Marker
In GaineLow Antern. 10 05	ΔMkr3 2.500 ms 0.002 dB	10 dB/div Ref 106.99 dBµV	ΔMkr3 2.500 ms 0.031 dB	Select Marker 3
	Normal		3Δ4	Norma
670 570 470	Delta	67.0 57.0 47.0 47.0	understand	Delt
27.0 http://www.analysia.com/an	Fixed	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0		Fixed
Center 2.480000000 GHz Res BW 8 MHz #VBW 8.0 MHz 1009[100051100] 501 X Y Patienton 7		Center 2.480000000 GHz Res BW 8 MHz #VBW 8.0 MHz	Span 0 Hz Sweep 5.000 ms (1001 pts)	o
1 Δ2 1 t (Δ) 2.130 ms (Δ) 0.001 dB 2 F t 1.195 ms 67.790 dBuV Δ4 t (Δ) 2.500 ms (Δ) 0.002 dB 4 F t 1.195 ms 87.790 dBuV	Properties►	1 Δ2 1 t (Δ) 1.070 ms (Δ) 0.313 dB 2 F 1 t 1.060 ms (Δ) 87.516 dBμ/ 3 Δ4 1 t (Δ) 2.500 ms (Δ) 0.031 dB 4 F 1 t 1.060 ms 87.516 dBμ/ 5		Properties
6 7 8 9 10	More 1 of 2	6 7 8 9 10		Moi 1 of

<External Antenna>

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
1	Bluetooth - LE for 1Mbps	85.20	2130	0.47	1kHz
1	Bluetooth - LE for 2Mbps	43.20	1080	0.93	1kHz

Bluet	ooth - L	E for	1Mbps				Blu	ieto	ooth -	LE for	2Mb	ps				
	n Analyzer - Swept SA RF 50 & DC	PNO: Fast ↔ IFGain:Low	SENSE:BVT Trig: Free Run #Atten: 10 dB	ALIGN OFF #Avg Type: RMS Avg Hold: 1/1	01:31:23 PM Sep 26, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Marker Select Marker	Agilent S (X) RL		nalyzer - Swept SA F 50 오 DC		→ Trig: Free F #Atten: 10 d	#/ Run A/	ALIGN OF Avg Type: RMS vg[Hold: 1/1	TRACE TYPE DET	123456 MWW/WWW PNNNNN	Marker Select Marker
10 dB/div 97.0 87.0	Ref 106.99 dBµV	∧ ²	1423∆4		Mkr4 2.670 ms 82.109 dBµV	4 Normal	10 dB/ 97.0 -	div R	ef 106.99 dBj	μV	Δ ²			Mkr4 4.6 73.712		4 Normal
67.0 57.0 47.0						Delta	67.0 - 57.0 - 47.0 -		Alger and a state point		X 4 y-te-stylent	Jirmila Jirmila	antopartille	Slavine and	Pipertan Ju	Delta
37.0 27.0 17.0						Fixed►	17.0									Fixed►
Res BW 8 M		2.130 ms (Δ)	0.129 dB	Sweep 1	Span 0 Hz 0.00 ms (1001 pts) FUNCTION VALUE		Res B	W 8 Mi		1.080 ms (Δ)	/ 8.0 MHz	в	Sweep FUNCTION WID	10.00 ms (1	<u> </u>	Off
2 N 1 3 Δ4 1 4 F 1 5 6	t t (Δ)	2.670 ms 2.500 ms (Δ) 2.670 ms	82.109 dBµV			Properties►	2 3 4 5 6 7	1 1 1	(Δ)	4.650 ms 2.500 ms (Δ) 4.650 ms	73.712 dBµ -0.103 di 73.712 dBµ	V B			-	Properties►
7 8 9 10 11					×	More 1 of 2	9 10 11 <								×	More 1 of 2
мsg 😢 Suffix n	not allowed			STATU	3		MSG 😣	Suffix no	t allowed				ST	ATUS		