

Report No.: FR371211A

FCC RADIO TEST REPORT

FCC ID : UZ7ET65AW

Equipment : Rugged 2 in 1 Android Tablet

Brand Name : Zebra Model Name : ET65AW

Applicant : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Manufacturer : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Standard : FCC Part 15 Subpart C §15.247

The product was received on Jul. 12, 2023 and testing was performed from Jul. 19, 2023 to Aug. 07, 2023. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

Table of Contents

Report No. : FR371211A

His	tory o	f this test reportf	3
Sur	nmary	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	7
	1.5	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	Test	Result	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	13
	3.3	Dwell Time Measurement	14
	3.4	20dB and 99% Bandwidth Measurement	15
	3.5	Output Power Measurement	16
	3.6	Conducted Band Edges Measurement	17
	3.7	Conducted Spurious Emission Measurement	18
	3.8	Radiated Band Edges and Spurious Emission Measurement	19
	3.9	AC Conducted Emission Measurement	23
	3.10	Antenna Requirements	25
4	List c	of Measuring Equipment	26
5	Meas	surement Uncertainty	28
Apı	pendix	A. Conducted Test Results	
Apı	endix	k B. AC Conducted Emission Test Result	
Apı	endix	c C. Radiated Spurious Emission	
Apı	endix	c D. Radiated Spurious Emission Plots	
Apı	endix	k E. Duty Cycle Plots	
Apı	pendix	k F. Setup Photographs	

TEL: 886-3-327-3456 Page Number : 2 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

History of this test report

Report No. : FR371211A

Report No.	Version	Description	Issue Date
FR371211A	01	Initial issue of report	Sep. 19, 2023

TEL: 886-3-327-3456 Page Number : 3 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

Summary of Test Result

Report No.: FR371211A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	6.82 dB under the limit at 30.54 MHz
3.9	15.207	AC Conducted Emission	Pass	4.38 dB under the limit at 13.56 MHz
3.10	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the
 regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who
 shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken
 into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng Report Producer: Ming Chen

TEL: 886-3-327-3456 Page Number : 4 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Rugged 2 in 1 Android Tablet			
Brand Name	Zebra			
Model Name	ET65AW			
FCC ID	UZ7ET65AW			
EUT supports Radios application	WCDMA/HSPA/LTE/5G NR/NFC/GNSS WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE			
HW Version	DV2			
SW Version	A13			
FW Version	1.1.2.0.645.4			
MFD	21JUN23			
EUT Stage	Identical Prototype			

Report No.: FR371211A

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories						
Adapter Brand Name Zebra Part Number PWR-BGA15V45W-UC2-W						
Battery 1	Brand Name	Zebra	Part Number	BT-000471-0020		
Battery 2 Brand Name Zebra Part Number BT-000471-0820						

Supported Unit Used in Test Configuration and System						
USB TYPE C to 3.5mm audio connector Zebra Part Number ADP-USBC-35MM1-01						
3.5mm Earphone	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01		
USB TYPE C Earphone	Brand Name	Zebra	Part Number	HPST-USBC-PTT1-01		
Headset Jumper	Brand Name	Zebra	Part Number	CBL-TC51-HDST35-01		

TEL: 886-3-327-3456 Page Number : 5 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	<ant. 7=""> Bluetooth BR (1Mbps): 6.31 dBm (0.043 W) Bluetooth EDR (2Mbps): 5.72 dBm (0.037 W) Bluetooth EDR (3Mbps): 5.74 dBm (0.037 W) Ant. 8> Bluetooth BR (1Mbps): 5.89 dBm (0.039 W) Bluetooth EDR (2Mbps): 7.54 dBm (0.057 W) Bluetooth EDR (3Mbps): 7.78 dBm (0.060 W)</ant.>			
99% Occupied Bandwidth	<ahref="#"><ant. 7=""> Bluetooth BR (1Mbps): 0.799 MHz Bluetooth EDR (2Mbps): 1.171 MHz Bluetooth EDR (3Mbps): 1.153 MHz <ahref="#"><ant. 8=""> Bluetooth BR (1Mbps): 0.801 MHz Bluetooth EDR (2Mbps): 1.173 MHz Bluetooth EDR (3Mbps): 1.157 MHz</ant.></ahref="#"></ant.></ahref="#">			
Antenna Type / Gain	<ahref="ant.7"><ahref="ant.7"><ahref="ant.7"><ahref="ant.7"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref="monopole"><ahref< th=""></ahref<></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="monopole"></ahref="ant.7"></ahref="ant.7"></ahref="ant.7"></ahref="ant.7">			
Type of Modulation	Bluetooth BR (1Mbps): GFSK Bluetooth EDR (2Mbps): π/4-DQPSK Bluetooth EDR (3Mbps): 8-DPSK			

Report No.: FR371211A

Remark: The above EUT's information was declared by manufacturer. Please refer to Disclaimer in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

TEL: 886-3-327-3456 Page Number : 6 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
	No.52, Huaya 1st Rd., Guishan Dist.,
Toot Site Leastion	Taoyuan City 333, Taiwan (R.O.C.)
Test Site Location	TEL: +886-3-327-3456
	FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
rest Site NO.	CO05-HY, 03CH07-HY

Report No.: FR371211A

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
rest site No.	TH05-HY (TAF Code: 3786)
Remark	The Conducted test item subcontracted to Sporton International Inc. Wensan Laboratory.

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 7 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : 8 of 28

Issue Date : Sep. 19, 2023

Report No.: FR371211A

Report Version : 01

2.2 Test Mode

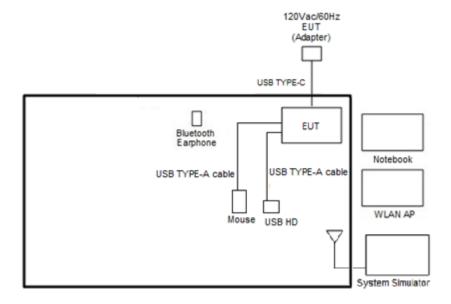
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

Report No.: FR371211A

b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

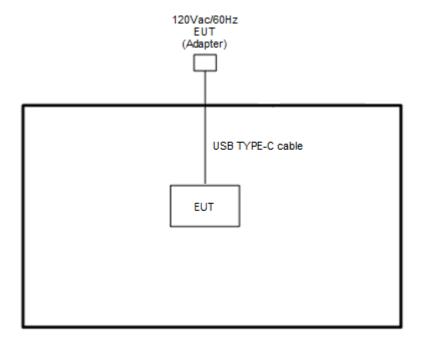
	Summary table of Test Cases							
Test Item	Data Rate / Modulation							
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK					
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz					
	Bluetooth EDR 3Mbps 8-DPSK							
Radiated	Mode 1: CH00_2402 MHz							
Test Cases	Mode 2: CH39_2441 MHz							
		Mode 3: CH78_2480 MHz						
	Mode 1 :5G NR n13 Idle	Mode 1 :5G NR n13 Idle + WLAN (2.4GHz) Link + Bluetooth Idle + NFC on +						
AC Conducted USB TYPE-A Cable (Data Link with USB HD) (Copy data								
Emission	to eMMC) + USB TYPE-A with Mouse + USB TYPE-C (Charging fro							
	AC Adapter) + Battery 1							


Remark:

- 1. For Radiated Test Cases, the worst mode data rate 3Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 3Mbps, and no other significantly frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, the tests were performed with Battery 1.
- 3. Data Link with USB HD means data application transferred mode between EUT and USB HD.

TEL: 886-3-327-3456 Page Number : 9 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

2.3 Connection Diagram of Test System


<AC Conducted Emission Mode>

Report No.: FR371211A

: 01

<Bluetooth Tx Mode>

TEL: 886-3-327-3456 Page Number : 10 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7-RD0010	N/A	N/A
2.	5G Wireless Test Platform	Anritsu	MT8000A	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	USB HD	ADATA	HV620S-1T	FCC DoC	Shielded, 1.0m	N/A
6.	Mouse	N/A	N/A	FCC DoC	Shielded, 2.0m	N/A

Report No.: FR371211A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Version 4.0.211.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 Page Number : 11 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

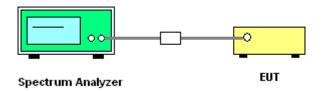
3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Report No.: FR371211A


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

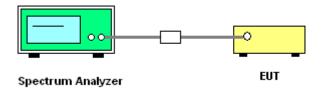
TEL: 886-3-327-3456 Page Number : 12 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR371211A


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

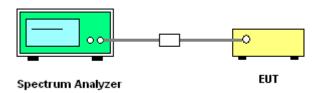
TEL: 886-3-327-3456 Page Number : 13 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: FR371211A


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 14 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.

Report No.: FR371211A

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;


Trace = max hold.

- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

3.4.4 Test Setup

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 15 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

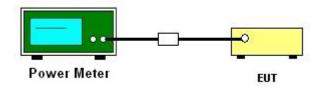
3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR371211A

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

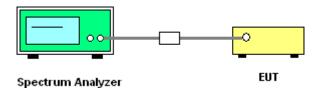
TEL: 886-3-327-3456 Page Number : 16 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR371211A


3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Please refer to Appendix A.

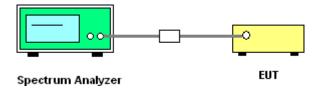
TEL: 886-3-327-3456 Page Number : 17 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR371211A


3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

3.7.5 Test Result of Conducted Spurious Emission

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 18 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR371211A

Frequency	Field Strength	Measurement Distance									
(MHz)	(microvolts/meter)	(meters)									
0.009 - 0.490	2400/F(kHz)	300									
0.490 - 1.705	24000/F(kHz)	30									
1.705 – 30.0	30	30									
30 – 88	100	3									
88 – 216	150	3									
216 - 960	200	3									
Above 960	500	3									

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

TEL: 886-3-327-3456 Page Number : 19 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.8.3 Test Procedures

1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.

Report No.: FR371211A

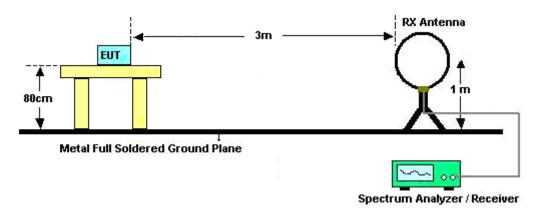
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

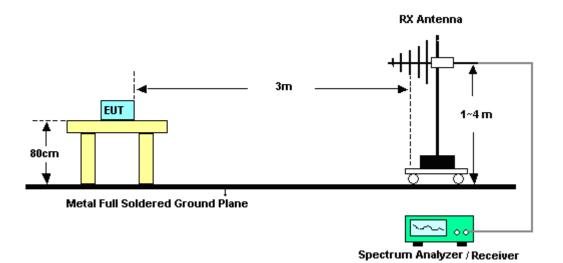
On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

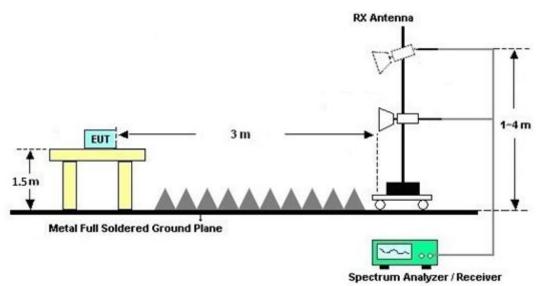
Average Emission Level = Peak Emission Level + 20*log (Duty cycle)


- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.


TEL: 886-3-327-3456 Page Number : 20 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

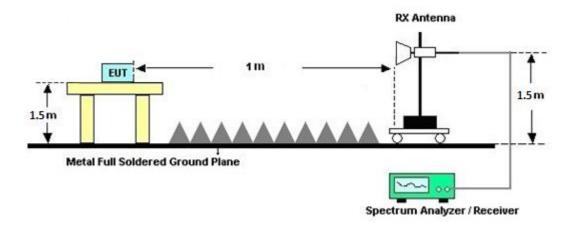
3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated test from 1GHz to 18GHz

TEL: 886-3-327-3456 Page Number FAX: 886-3-328-4978 Issue Date


Report Template No.: BU5-FR15CBT Version 2.4

: 21 of 28 : Sep. 19, 2023

Report No.: FR371211A

Report Version : 01

For radiated test above 18GHz

Report No.: FR371211A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 22 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

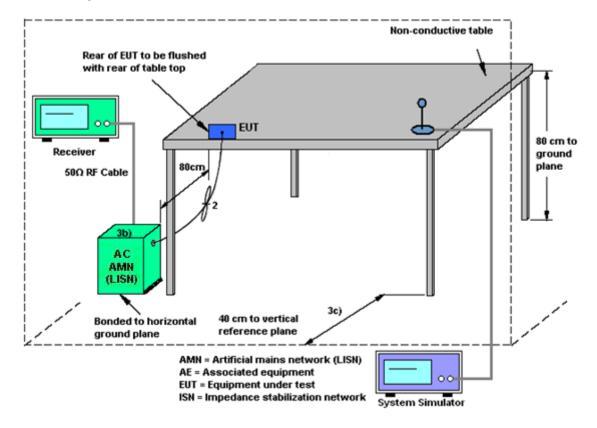
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR371211A

Frequency of emission (MHz)	Conducted	limit (dΒμV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 Page Number : 23 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.9.4 Test Setup

Report No.: FR371211A

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 24 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

3.10 Antenna Requirements

3.10.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR371211A

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

TEL: 886-3-327-3456 Page Number : 25 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jul. 20, 2023	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2022	Jul. 20, 2023	Nov. 30, 2023	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 17, 2022	Jul. 20, 2023	Nov. 16, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 01, 2022	Jul. 20, 2023	Nov. 30, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 17, 2022	Jul. 20, 2023	Nov. 16, 2023	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Jul. 20, 2023	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Aug. 01, 2022	Jul. 20, 2023	Jul. 31, 2023	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 29, 2022	Jul. 20, 2023	Dec. 28, 2023	Conduction (CO05-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Jul. 20, 2023~ Jul. 31, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Aug. 08, 2022	Jul. 20, 2023~ Jul. 31, 2023	Aug. 07, 2023	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GHz	Aug. 08, 2022	Jul. 20, 2023~ Jul. 31, 2023	Aug. 07, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 13, 2022	Jul. 20, 2023~ Jul. 31, 2023	Dec. 12, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz	Aug. 03, 2022	Jul. 20, 2023~ Jul. 31, 2023	Aug. 02, 2023	Conducted (TH05-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N-06	35419 & 03	30MHz~1GHz	Apr. 23, 2023	Jul. 19, 2023~ Aug. 07, 2023	Apr. 22, 2024	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 01, 2022	Jul. 19, 2023~ Aug. 07, 2023	Nov. 30, 2023	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Feb. 28, 2023	Jul. 19, 2023~ Aug. 07, 2023	Feb. 27, 2024	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010180 0-30-10P	1590075	1GHz~18GHz	Apr. 20, 2023	Jul. 19, 2023~ Aug. 07, 2023	Apr. 19, 2024	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	Oct. 03, 2022	Jul. 19, 2023~ Aug. 07, 2023	Oct. 02, 2023	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Mar. 24, 2023	Jul. 19, 2023~ Aug. 07, 2023	Mar. 23, 2024	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Mar. 28, 2023	Jul. 19, 2023~ Aug. 07, 2023	Mar. 27, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682/4	30MHz to 18GHz	Feb. 22, 2023	Jul. 19, 2023~ Aug. 07, 2023	Feb. 21, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/4	9kHz to 18GHz	Feb. 22, 2023	Jul. 19, 2023~ Aug. 07, 2023	Feb. 21, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4	9kHz to 18GHz	Feb. 22, 2023	Jul. 19, 2023~ Aug. 07, 2023	Feb. 21, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 16, 2022	Jul. 19, 2023~ Aug. 07, 2023	Sep. 15, 2023	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2	18GHz~40GHz	Feb. 22, 2023	Jul. 19, 2023~ Aug. 07, 2023	Feb. 21, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801606/2	9KHz ~ 40GHz	Apr. 20, 2023	Jul. 19, 2023~ Aug. 07, 2023	Apr. 19, 2024	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	N/A	Jul. 19, 2023~ Aug. 07, 2023	N/A	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Jul. 19, 2023~ Aug. 07, 2023	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	N/A	Jul. 19, 2023~ Aug. 07, 2023	N/A	Radiation (03CH07-HY)

Report No. : FR371211A

TEL: 886-3-327-3456 Page Number : 26 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Jul. 19, 2023~ Aug. 07, 2023	I N/A	Radiation (03CH07-HY)
Software	Audix	E3	N/A	N/A	N/A	Jul. 19, 2023~ Aug. 07, 2023	I NI/Δ	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A		Jul. 19, 2023~ Aug. 07, 2023	Mar. 13, 2024	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Jul. 19, 2023~ Aug. 07, 2023	Jun. 26, 2024	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170251	18GHz~40GHz	Nov. 24, 2022	Jul. 19, 2023~ Aug. 07, 2023	Nov. 23, 2023	Radiation (03CH07-HY)

Report No. : FR371211A

TEL: 886-3-327-3456 Page Number : 27 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

5 Measurement Uncertainty

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	3.5 dB
of 95% (U = 2Uc(y))	3.5 ub

Report No.: FR371211A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.5 dB
of 95% (U = 2Uc(y))	0.5 UB

<u>Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4.5 dB
of 95% (U = 2Uc(y))	4.5 UB

<u>Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4.2 dB
of 95% (U = 2Uc(y))	4.2 db

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	5.5 ub

TEL: 886-3-327-3456 Page Number : 28 of 28 FAX: 886-3-328-4978 Issue Date : Sep. 19, 2023

Report Number : FR371211A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Sylvia Li	Temperature:	21~25	°C
Test Date:	2023/7/20~2023/07/31	Relative Humidity:	51~54	%

<Ant. 7>

	-7 tile: 7								
			00 15				SULTS DATA	0, ,0	
			<u> 20aB</u>	<u>ana 99</u>	% Occup	<u>ied Bandwid</u>	<u>Ith and Hopping</u>	<u>i Cnannei Separ</u>	ation
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.874	0.799	1.003	0.5826	Pass
DH	1Mbps	1	39	2441	0.874	0.797	1.003	0.5826	Pass
DH	1Mbps	1	78	2480	0.848	0.799	0.994	0.5652	Pass
2DH	2Mbps	1	0	2402	1.270	1.169	1.003	0.8464	Pass
2DH	2Mbps	1	39	2441	1.270	1.169	1.007	0.8464	Pass
2DH	2Mbps	1	78	2480	1.291	1.171	0.994	0.8609	Pass
3DH	3Mbps	1	0	2402	1.230	1.153	0.999	0.8203	Pass
3DH	3Mbps	1	39	2441	1.248	1.153	1.003	0.8319	Pass
3DH	3Mbps	1	78	2480	1.257	1.153	0.999	0.8377	Pass

TEST RESULTS DATA

Dwell Time

Mod.	Hopping Channel Number Rate	Hops Over Occupanc y Time (hops)	0	Dwell Time (sec)	Limits (sec)	Pass/Fail
3DH5	79	106.670	2.89	0.31	0.4	Pass
3DH5 (AFH)	20	53.330	2.89	0.15	0.4	Pass

TEST RESULTS DATA

Peak Power Table

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	6.16	30.00	Pass
DH1	39	1	6.31	30.00	Pass
	78	1	5.30	30.00	Pass
	0	1	5.42	20.97	Pass
2DH1	39	1	5.72	20.97	Pass
	78	1	4.52	20.97	Pass
	0	1	5.61	20.97	Pass
3DH1	39	1	5.74	20.97	Pass
	78	1	4.70	20.97	Pass

TEST RESULTS DATA Average Power Table

(Reporting Only)

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	5.49	5.18
DH1	39	1	5.67	5.18
	78	1	4.42	5.18
	0	1	3.12	5.13
2DH1	39	1	3.60	5.13
	78	1	2.49	5.13
	0	1	3.47	5.13
3DH1	39	1	3.62	5.13
	78	1	2.64	5.13

TEST RESULTS DATA

Number of Hopping Frequency

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

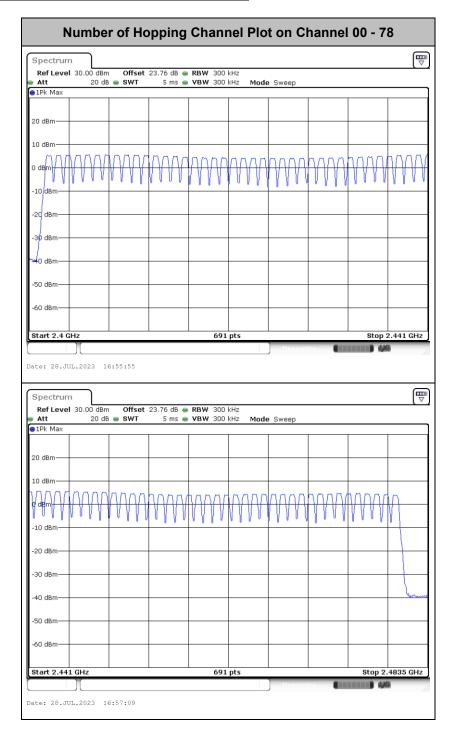
Report Number : FR371211A

<Ant. 8>

			20dB a	and 99	% Occup		SULTS DATA Ith and Hopping	Channel Sepai	ation
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.874	0.799	1.003	0.5826	Pass
DH	1Mbps	1	39	2441	0.870	0.801	1.007	0.5797	Pass
DH	1Mbps	1	78	2480	0.870	0.799	1.007	0.5797	Pass
2DH	2Mbps	1	0	2402	1.265	1.171	0.994	0.8435	Pass
2DH	2Mbps	1	39	2441	1.270	1.173	1.003	0.8464	Pass
2DH	2Mbps	1	78	2480	1.291	1.173	0.990	0.8609	Pass
3DH	3Mbps	1	0	2402	1.230	1.155	1.007	0.8203	Pass
3DH	3Mbps	1	39	2441	1.230	1.157	0.999	0.8203	Pass
3DH	3Mbps	1	78	2480	1.230	1.155	0.999	0.8203	Pass

			_	RESULTS Well Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupanc y Time (hops)	•	Dwell Time (sec)	Limits (sec)	Pass/Fail
DH5	79	106.670	2.89	0.31	0.4	Pass
DH5 (AFH)	20	53.330	2.89	0.15	0.4	Pass

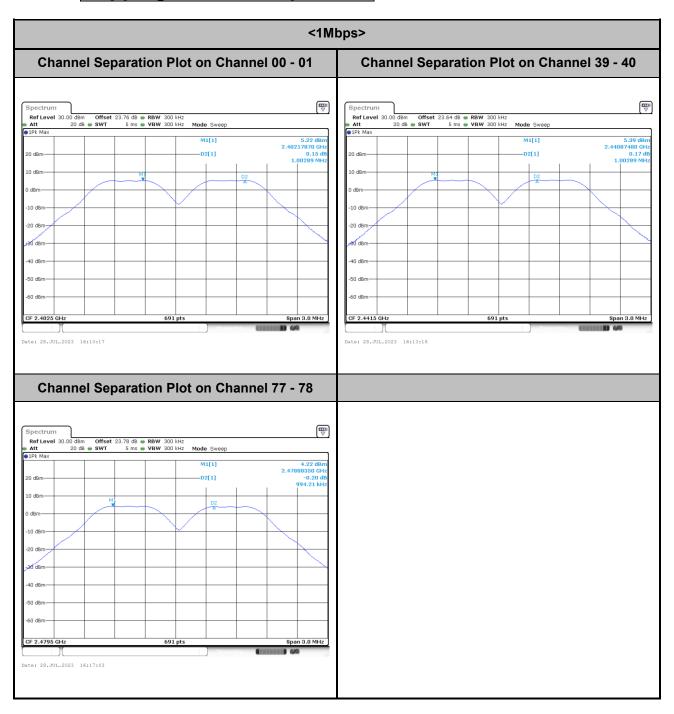
					T RESUL eak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	5.80	30.00	Pass
DH1	39	1	5.70	30.00	Pass
	78	1	5.89	30.00	Pass
	0	1	7.49	20.97	Pass
2DH1	39	1	7.33	20.97	Pass
	78	1	7.54	20.97	Pass
	0	1	7.72	20.97	Pass
3DH1	39	1	7.56	20.97	Pass
	78	1	7.78	20.97	Pass
JUHT		1			


TEST RESULTS DATA

				Ave	erage Power Table Reporting Only)
					•
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	4.86	5.20	
DH1	39	1	4.76	5.20	
	78	1	4.95	5.20	
	0	1	5.47	5.13	
2DH1	39	1	5.45	5.13	
	78	1	5.52	5.13	
	0	1	5.52	5.13	
3DH1	39	1	5.36	5.13	
	78	1	5.70	5.13	

		<u>TEST RE</u> Number of He	SULTS DA Opping Fre
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

Antenna 7


Number of Hopping Frequency

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number: A2-1 1 of 20

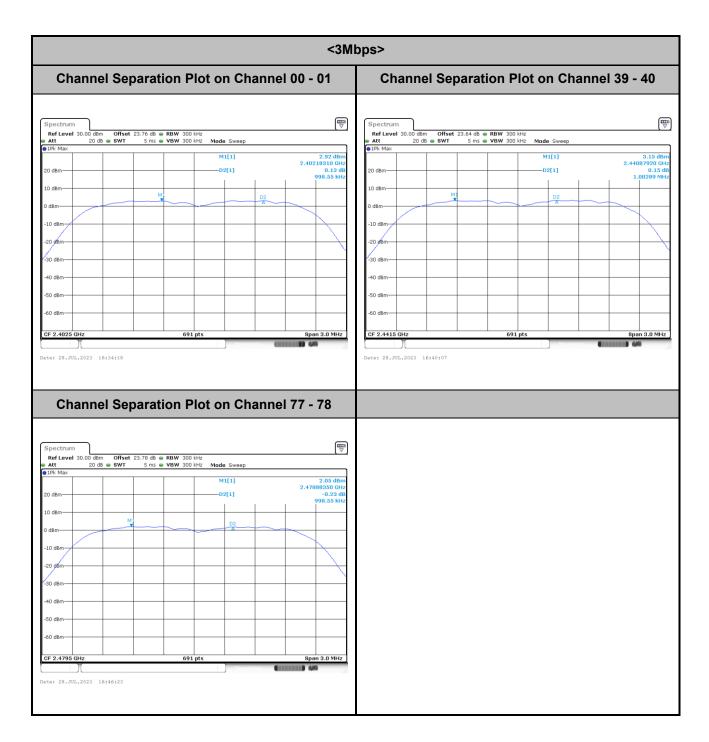
Hopping Channel Separation

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number : A2-1 2 of 20

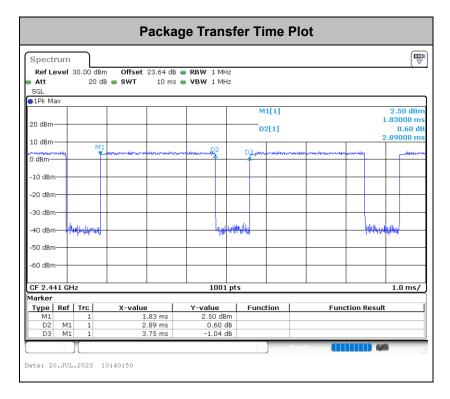
<2Mbps> Channel Separation Plot on Channel 00 - 01 **Channel Separation Plot on Channel 39 - 40**
 Spectrum
 Offset
 23.64 dB
 RBW
 300 kHz

 Att
 20 dB
 SWT
 5 ms
 VBW
 300 kHz
 M1[1] M1[1] **Channel Separation Plot on Channel 77 - 78** 02[1] -0.22 d 994.21 kl


Report No.: FR371211A

TEL: 886-3-327-3456 Page Number : A2-1 3 of 20

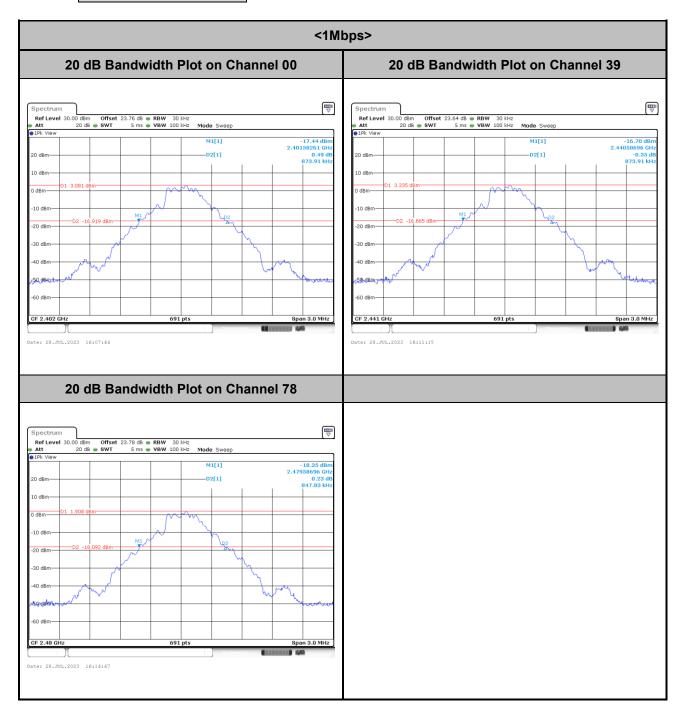
FAX: 886-3-328-4978


Date: 28.JUL.2023 16:29:16

CC RADIO TEST REPORT Report No. : FR371211A

TEL: 886-3-327-3456 Page Number : A2-1 4 of 20

Dwell Time


Report No.: FR371211A

Remark:

- **1.** In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

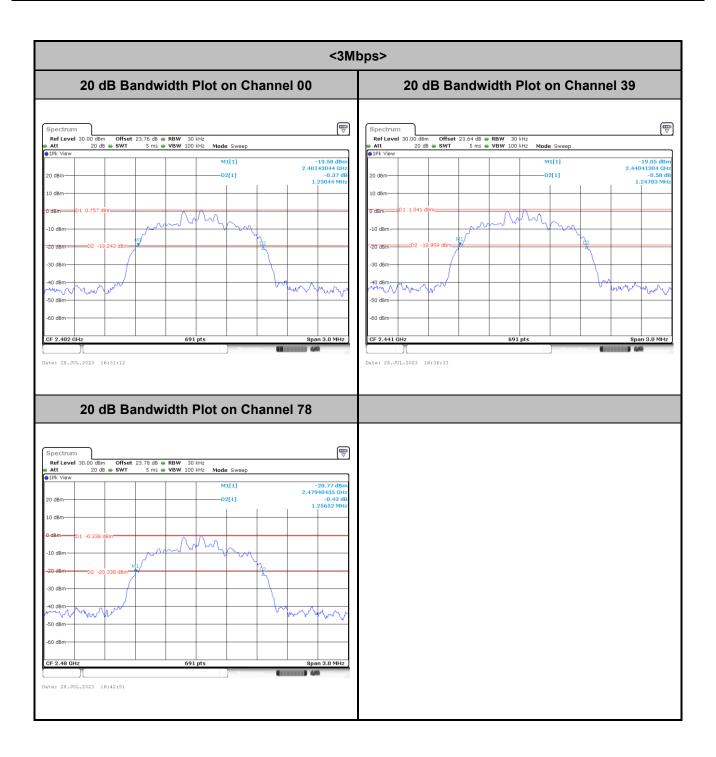
TEL: 886-3-327-3456 Page Number: A2-1 5 of 20

20dB Bandwidth

Report No.: FR371211A

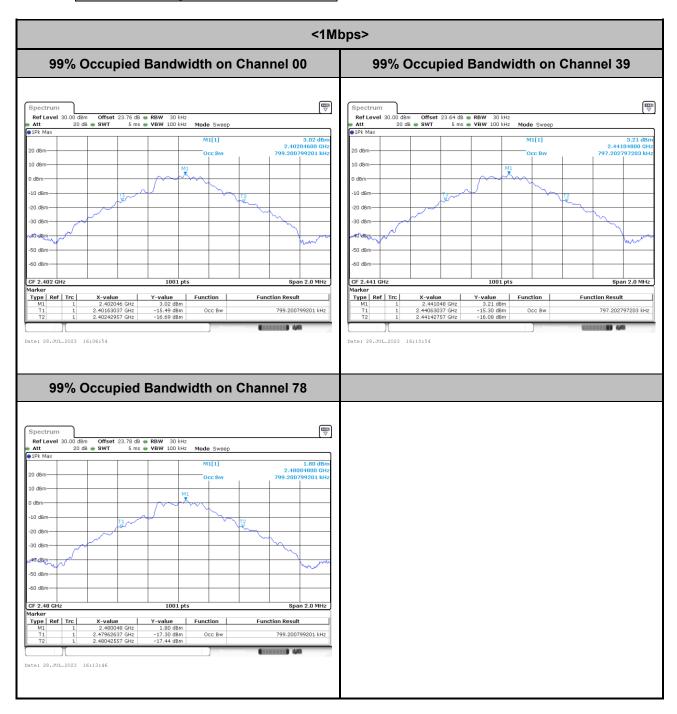
TEL: 886-3-327-3456 Page Number : A2-1 6 of 20

<2Mbps> 20 dB Bandwidth Plot on Channel 00 20 dB Bandwidth Plot on Channel 39 | Spectrum | Ref Level 30.00 dBm | Offset 23.64 dB | RBW | 30 kHz | Att | 20 dB | SWT | S ms | VBW | 100 kHz | OFFSET | SWT | M1[1] M1[1] -10 dBn 50 dBm Date: 28.JUL.2023 16:18:25 20 dB Bandwidth Plot on Channel 78 D2[1]


Report No.: FR371211A

TEL: 886-3-327-3456 Page Number : A2-1 7 of 20

FAX: 886-3-328-4978


Date: 28.JUL.2023 16:26:56

CC RADIO TEST REPORT Report No. : FR371211A

TEL: 886-3-327-3456 Page Number : A2-1 8 of 20

99% Occupied Bandwidth

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number: A2-1 9 of 20

<2Mbps> 99% Occupied Bandwidth on Channel 00 99% Occupied Bandwidth on Channel 39 Ref Level 30.00 dBm Offset
Att 20 dB SWT Offset 23.76 dB ● RBW 30 kHz SWT 5 ms ● VBW 100 kHz Mode Sweep M1[1] M1[1] 10 dBn 19. JB207 1001 pts Type | Ref | Trc | Y-value Function 0.69 dBm -14.83 dBm Occ Bw -14.50 dBm Type Ref Trc Y-value Function **Function Result** Function Result 1.168831169 MHz 1.168831169 MHz 99% Occupied Bandwidth on Channel 78 -0.41 dBi 2.48005000 GF 1.170829171 MF M1[1] Y-value Function
-0.41 dBm
-15.98 dBm Occ BW
-15.52 dBm 1.170829171 MHz

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number : A2-1 10 of 20

FAX: 886-3-328-4978

Date: 28.JUL.2023 16:26:05

<3Mbps> 99% Occupied Bandwidth on Channel 00 99% Occupied Bandwidth on Channel 39 Ref Level 30.00 dBm Offse Att 20 dB SWT Offset 23.76 dB • RBW 30 kHz SWT 5 ms • VBW 100 kHz Mode Sweep
 Ref Level
 30.00 dBm
 Offset
 23.64 dB
 ■ RBW
 30 kHz

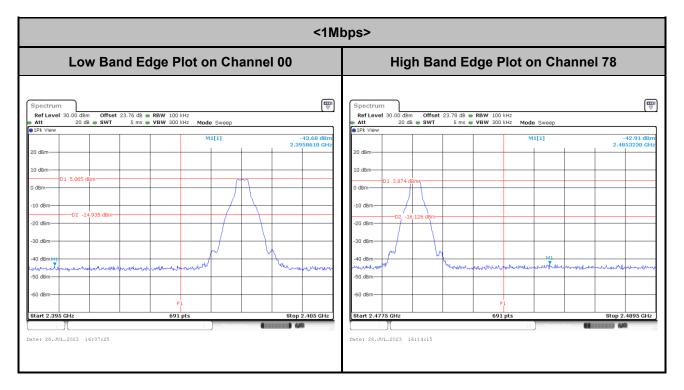
 Att
 20 dB
 ■ SWT
 5 ms
 ■ VBW
 100 kHz
 M1[1] M1[1] 10 dBn 1001 pts Type Ref Trc Type Ref Trc Y-value Function

0.73 dBm

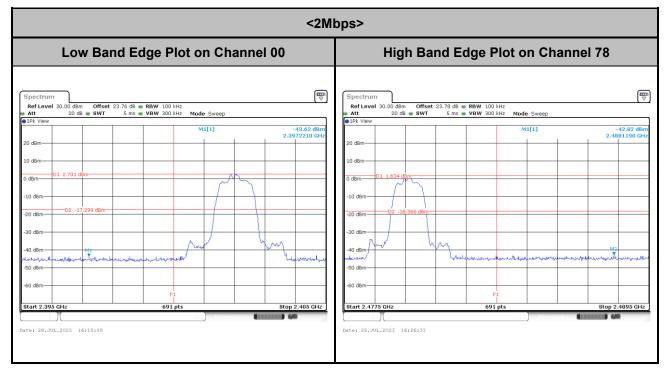
-13.95 dBm Occ Bw

-14.68 dBm **Function Result** Y-value 0.94 dBm Function Function Result 1.152847153 MHz 1.152847153 MHz 99% Occupied Bandwidth on Channel 78 -0.41 dB 2.48005190 GF 1.152847153 MF M1[1] 10 dBn Y-value Function
-0.41 dBm
-15.28 dBm Occ Bw
-16.23 dBm 1.152847153 MHz

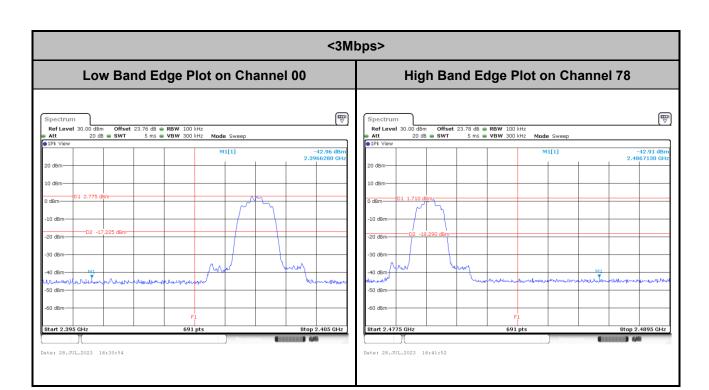
Report No.: FR371211A


Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

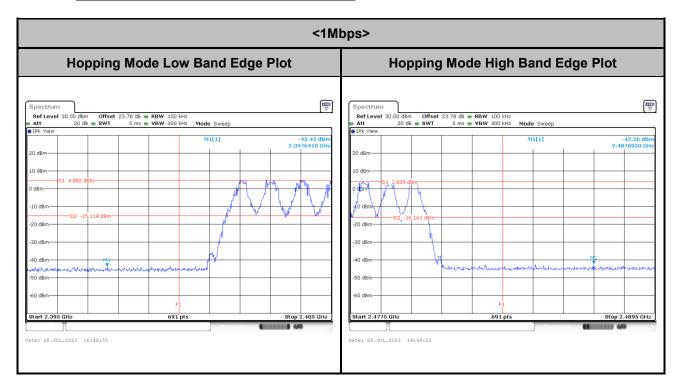
TEL: 886-3-327-3456 Page Number : A2-1 11 of 20


FAX: 886-3-328-4978

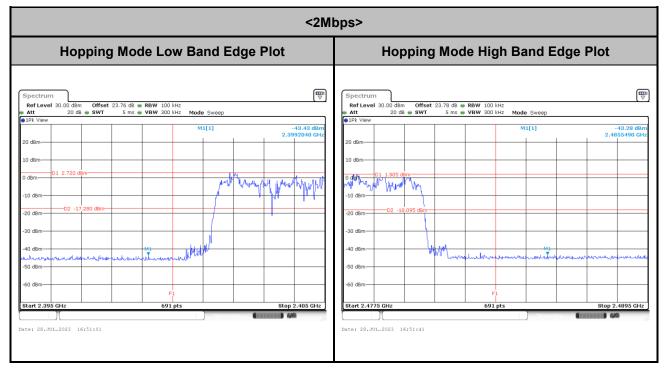
Date: 28.JUL.2023 16:41:22


Band Edges

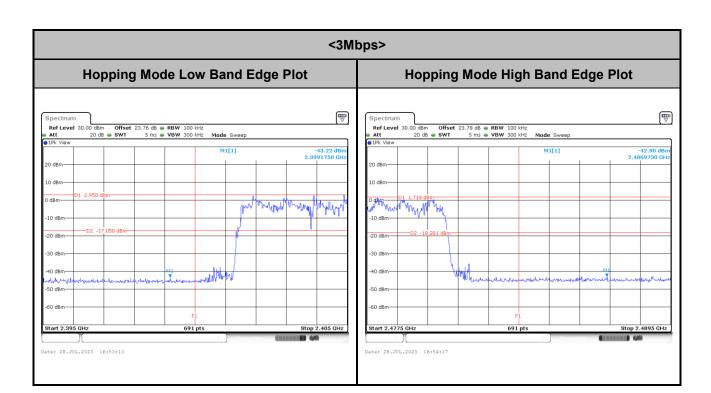
Report No.: FR371211A



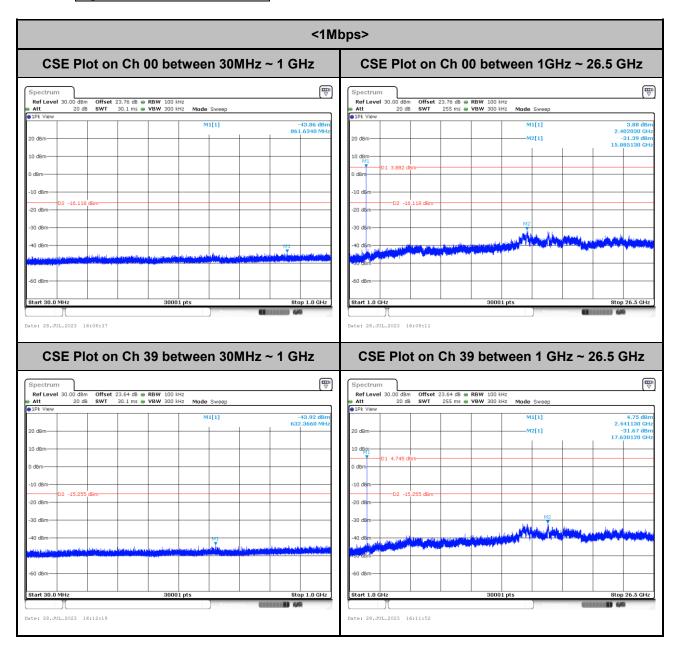
TEL: 886-3-327-3456 Page Number: A2-1 12 of 20



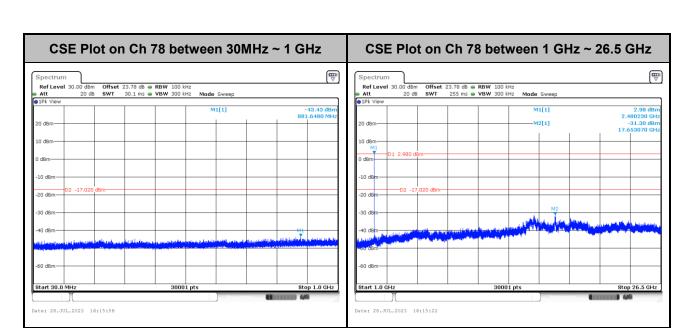
TEL: 886-3-327-3456 Page Number : A2-1 13 of 20

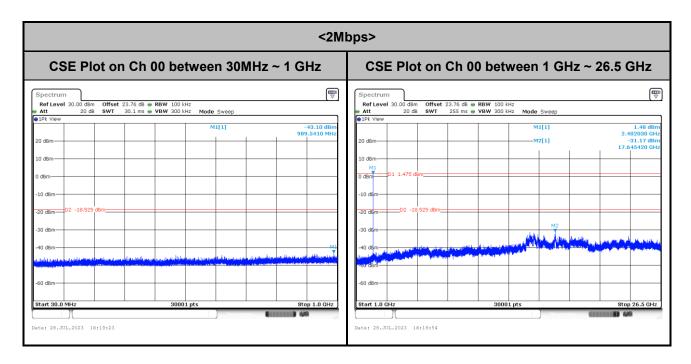

Hopping Mode Band Edges

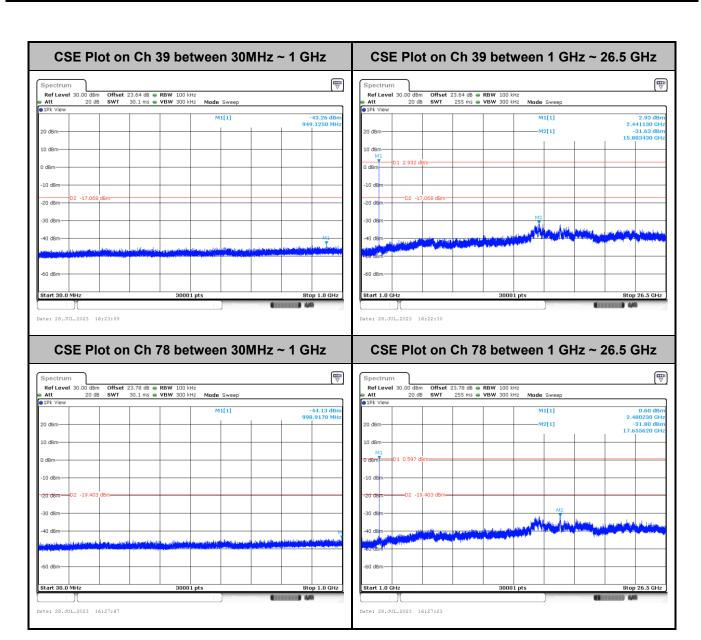
Report No.: FR371211A



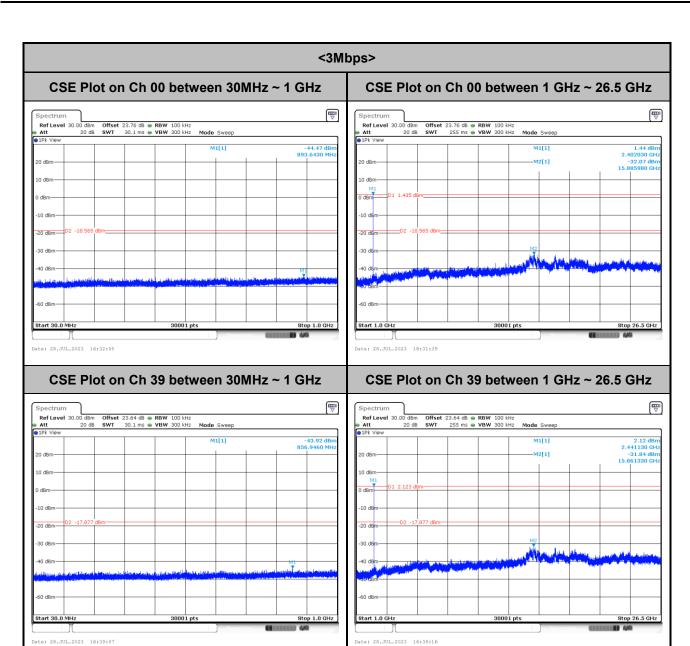
TEL: 886-3-327-3456 Page Number: A2-1 14 of 20

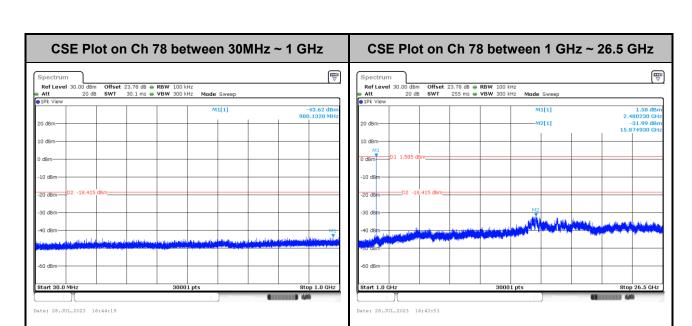

TEL: 886-3-327-3456 Page Number : A2-1 15 of 20


Spurious Emission

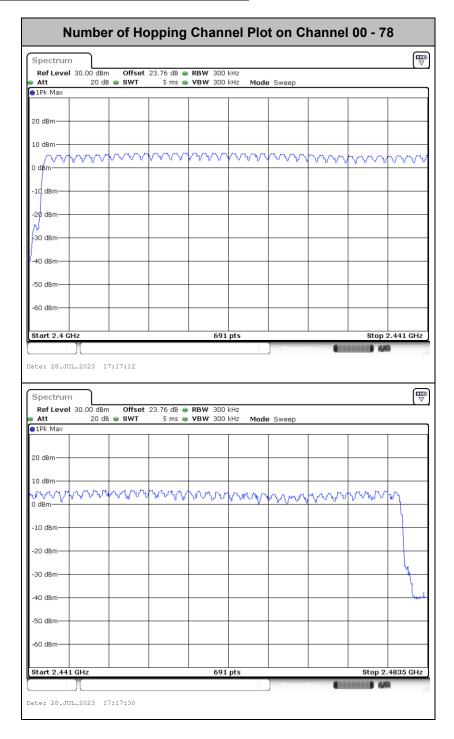

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number: A2-1 16 of 20



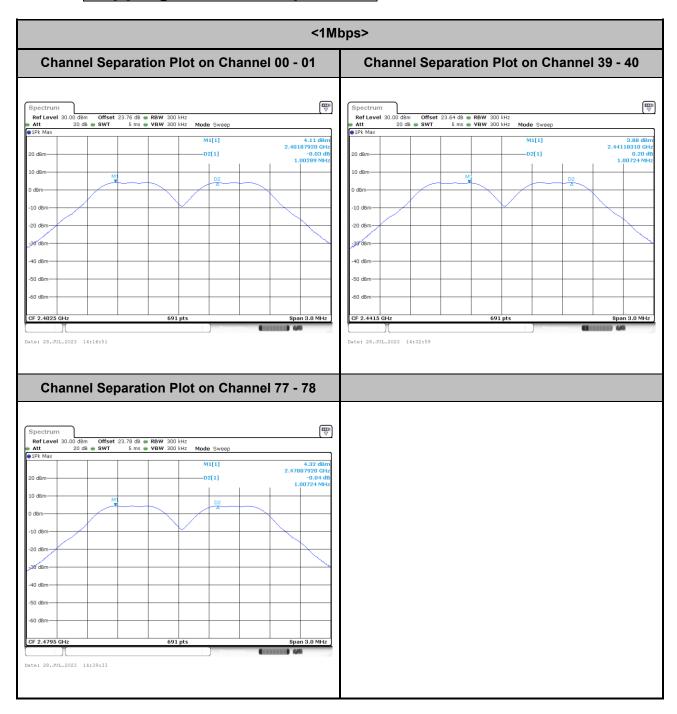

TEL: 886-3-327-3456 Page Number: A2-1 17 of 20

TEL: 886-3-327-3456 Page Number : A2-1 18 of 20


TEL: 886-3-327-3456 Page Number : A2-1 19 of 20

TEL: 886-3-327-3456 Page Number : A2-1 20 of 20

Antenna 8


Number of Hopping Frequency

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number : A2-2 1 of 20

Hopping Channel Separation

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number : A2-2 2 of 20

<2Mbps> Channel Separation Plot on Channel 00 - 01 **Channel Separation Plot on Channel 39 - 40**
 Spectrum
 Ref Level
 30.00 dBm
 Offset
 23.64 dB
 RBW
 300 kHz
 Mode
 Sweep

 Att
 20 dB
 SWT
 5 ms
 VBW
 300 kHz
 Mode
 Sweep

 Ref Level 30.00 dBm
 Offset 23.76 dB • RBW 300 kHz

 att
 20 dB • SWT
 5 ms • VBW 300 kHz
 Mode Sweep

 1Fk Max
 M1[1] M1[1] -10 dBm **Channel Separation Plot on Channel 77 - 78** 2[1]

Report No.: FR371211A

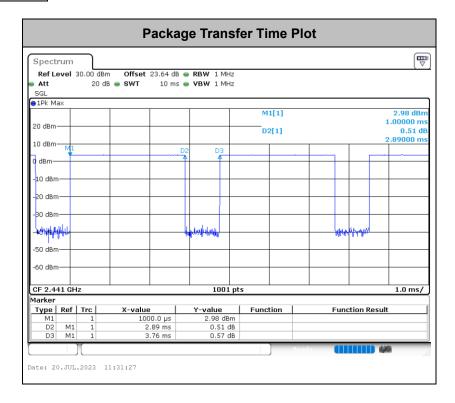
TEL: 886-3-327-3456 Page Number: A2-2 3 of 20

FAX: 886-3-328-4978

Date: 28.JUL.2023 14:52:26

<3Mbps> Channel Separation Plot on Channel 00 - 01 **Channel Separation Plot on Channel 39 - 40** | Spectrum | Ref Level 30.00 dbm | Offset 23.64 db | RBW 300 kHz | Att | 20 db | SWT | S ms | VBW 300 kHz | SPI kMax | SWT | S
 Spectrum
 Ref Level 30.00 dBm
 Offset 23.76 dB • RBW 300 kHz
 300 kHz
 Mode Sweep

 • Att
 20 dB • SWT
 5 ms • VBW 300 kHz
 Mode Sweep
 M1[1] M1[1] 10 dBm **Channel Separation Plot on Channel 77 - 78** 2[1]

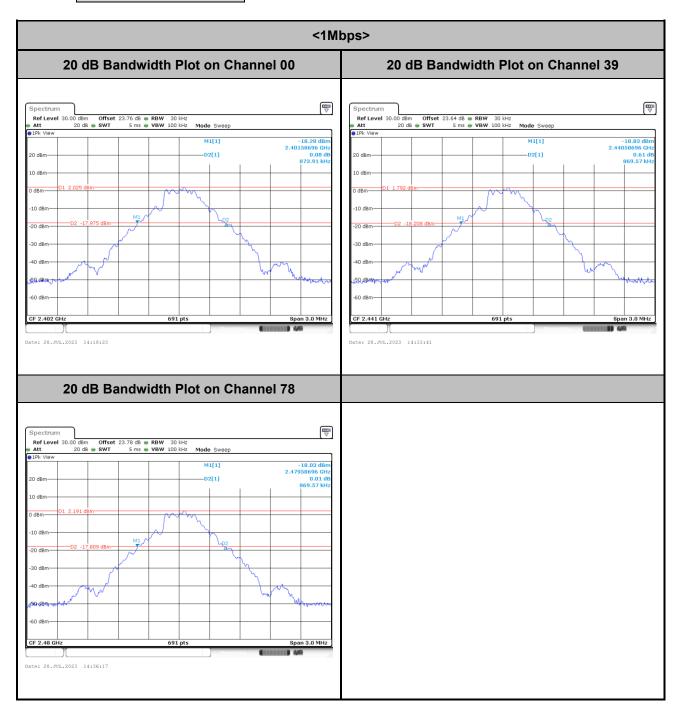

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number : A2-2 4 of 20

FAX: 886-3-328-4978

Date: 28.JUL.2023 15:06:21

Dwell Time


Report No.: FR371211A

Remark:

- **1.** In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-3456 Page Number : A2-2 5 of 20

20dB Bandwidth

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number: A2-2 6 of 20

<2Mbps> 20 dB Bandwidth Plot on Channel 00 20 dB Bandwidth Plot on Channel 39 | Spectrum | Ref Level 30.00 dBm | Offset 23.76 dB | RBW | 30 kHz | with 20 dB | SWT | S ms | VBW | 100 kHz | Mode Sweep | SPK View | SWEEP | | Spectrum | Ref Level 30.00 dbm | Offset 23.64 db | RBW | 30 kHz | Att | 20 db | SWT | S ms | VBW | 100 kHz | 101 kHz | 102 kHz | 103 kHz | 103 kHz | 103 kHz | 104 kHz | 105 k M1[1] M1[1] dBm 10 dBm 20 dB Bandwidth Plot on Channel 78 02[1]

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number : A2-2 7 of 20

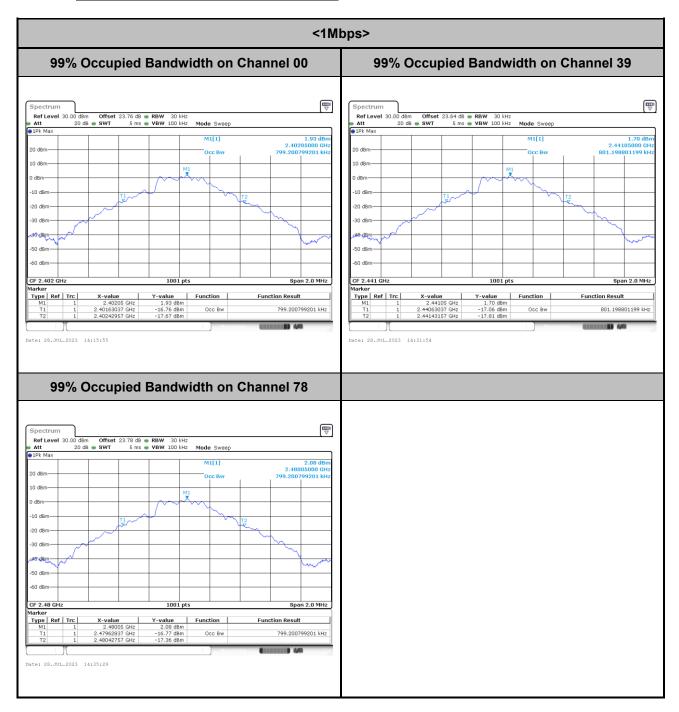
FAX: 886-3-328-4978

CF 2.48 GF

Date: 28.JUL.2023 14:50:25

<3Mbps> 20 dB Bandwidth Plot on Channel 00 20 dB Bandwidth Plot on Channel 39 M1[1] M1[1] dBm 10 dBm 1 40 dBn 20 dB Bandwidth Plot on Channel 78 D2[1]

Report No.: FR371211A


TEL: 886-3-327-3456 Page Number : A2-2 8 of 20

FAX: 886-3-328-4978

CF 2.48 GF

Date: 28.JUL.2023 15:03:12

99% Occupied Bandwidth

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number : A2-2 9 of 20

<2Mbps> 99% Occupied Bandwidth on Channel 00 99% Occupied Bandwidth on Channel 39 Ref Level 30.00 dBm Offset
Att 20 dB SWT
 Offset
 23.76 dB
 ■ RBW
 30 kHz

 SWT
 5 ms
 ■ VBW
 100 kHz
 Mode
 Sweep
 M1[1] 10 dBn 1001 pts Type | Ref | Trc | Type | Ref | Trc | Y-value Function

3.21 dBm
-12.44 dBm Occ BW
-12.07 dBm Y-value Function
3.06 dBm **Function Result** Function Result 1.170829171 MHz 1.172827173 MHz 99% Occupied Bandwidth on Channel 78 3.49 dBi 2.48005000 GF 1.172827173 MF Y-value Function
3.49 dBm
-12.26 dBm Occ BW
-12.02 dBm 1.172827173 MHz

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number: A2-2 10 of 20

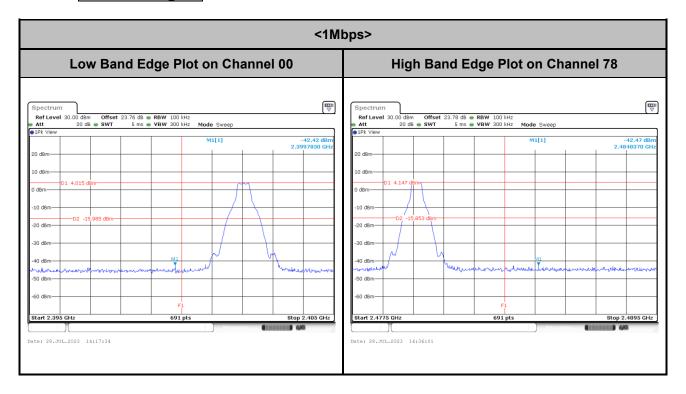
FAX: 886-3-328-4978

Date: 28.JUL.2023 14:49:35

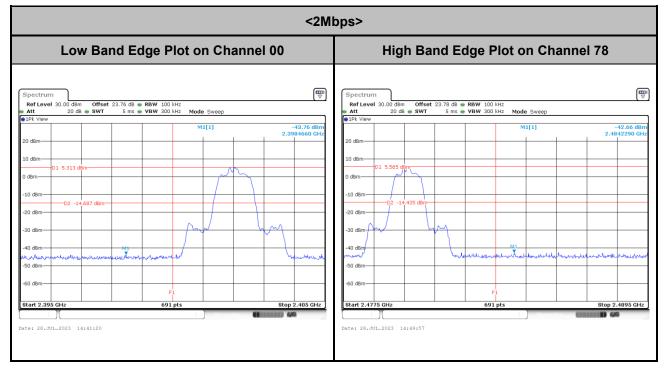
<3Mbps> 99% Occupied Bandwidth on Channel 00 99% Occupied Bandwidth on Channel 39 Ref Level 30.00 dBm Offse Att 20 dB SWT Offset 23.76 dB ● RBW 30 kHz SWT 5 ms ● VBW 100 kHz
 Ref Level
 30.00 dBm
 Offset
 23.64 dB ● RBW
 30 kHz

 Att
 20 dB ● SWT
 5 ms ● VBW
 100 kHz
 Mode Sweep M1[1] M1[1] 10 dBn 1001 pts Y-value Type Ref Trc Type Ref Trc Y-value Function
3.30 dBm
-11.59 dBm Occ Bw
-12.12 dBm **Function Result** Function Function Result 1.154845155 MHz 1.156843157 MHz 99% Occupied Bandwidth on Channel 78 3.50 dB 2.48005000 GF 1.154845155 MF Y-value Function
3,50 dBm
-11.44 dBm Occ Bw
-12.12 dBm Type Ref Trc 1.154845155 MHz

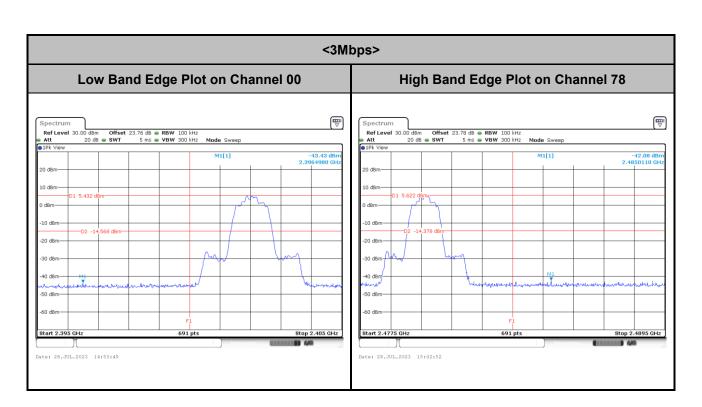
Report No.: FR371211A


Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

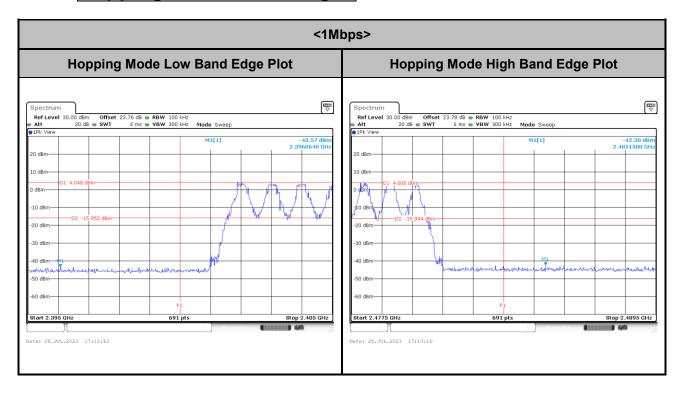
TEL: 886-3-327-3456 Page Number: A2-2 11 of 20


FAX: 886-3-328-4978

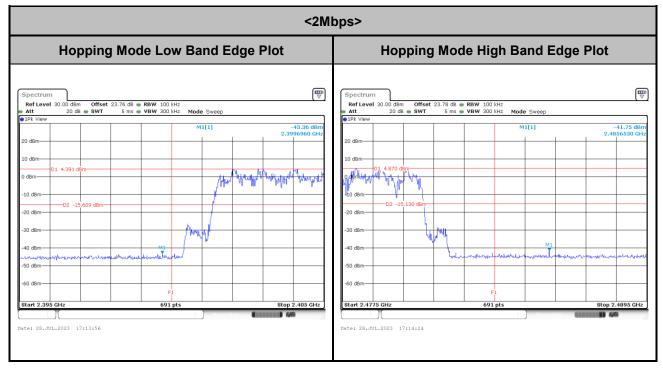
Date: 28.JUL.2023 15:02:24


Band Edges

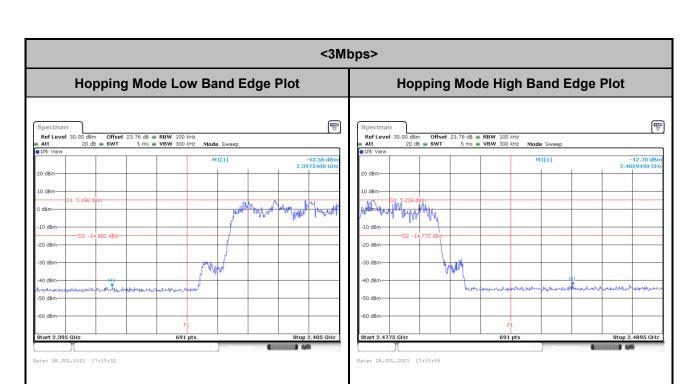
Report No.: FR371211A



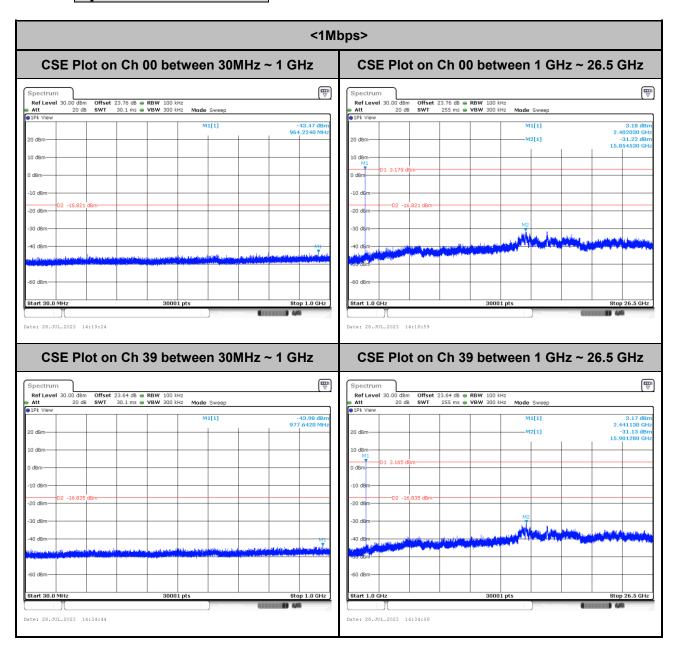
TEL: 886-3-327-3456 Page Number: A2-2 12 of 20



TEL: 886-3-327-3456 Page Number : A2-2 13 of 20


Hopping Mode Band Edges

Report No.: FR371211A



TEL: 886-3-327-3456 Page Number: A2-2 14 of 20

TEL: 886-3-327-3456 Page Number : A2-2 15 of 20

Spurious Emission

Report No.: FR371211A

TEL: 886-3-327-3456 Page Number: A2-2 16 of 20