

FCC RADIO TEST REPORT

FCC ID	: UZ7ET60AW
Equipment	: Rugged 2 in 1 Android Tablet
Brand Name	: Zebra
Model Name	: ET60AW
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Mar. 30, 2023 and testing was performed from Apr. 24, 2023 to May 20, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Win

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

Hi	story o	f this test report	3
Su	mmary	/ of Test Result	4
1	Gener	al Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	8
	1.4	Testing Location	8
	1.5	Applicable Standards	8
2	Test C	Configuration of Equipment Under Test	9
	2.1	Carrier Frequency and Channel	9
	2.2	Test Mode	10
	2.3	Connection Diagram of Test System	12
	2.4	Support Unit used in test configuration and system	13
	2.5	EUT Operation Test Setup	13
	2.6	Measurement Results Explanation Example	13
3	Test F	Result	14
	3.1	6dB and 99% Bandwidth Measurement	.14
	3.2	Output Power Measurement	.17
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	21
	3.5	Radiated Band Edges and Spurious Emission Measurement	22
	3.6	AC Conducted Emission Measurement	26
	3.7	Antenna Requirements	28
4	List o	f Measuring Equipment	29
5	Meas	urement Uncertainty	30
Ap	pendix	A. Conducted Test Results	
Ар	pendix	B. AC Conducted Emission Test Result	
Ар	pendix	C. Radiated Spurious Emission	
Ap	pendix	CD. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR332310C	01	Initial issue of report	Jun. 07, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	99% Occupied Bandwidth Reporting only	
3.2	15.247(b)	Power Output Measurement	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4		Conducted Band Edges	Pass	-
3.4	15.247(d)	Conducted Spurious Emission Pas		-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	1.31 dB under the limit at 2389.840 MHz
3.6	15.207	AC Conducted Emission	AC Conducted Emission Pass u	
3.7	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng Report Producer: Clio Lo

^{2.} The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Rugged 2 in 1 Android Tablet			
Brand Name	Zebra			
Model Name	ET60AW			
FCC ID	UZ7ET60AW			
Sample 1	Standard sku			
Sample 2	FRZ sku			
EUT supports Radios application	NFC WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE			
HW Version	EV2.1			
SW Version	A13			
FW Version	1.1.2.0.645.4			
MFD	27MAR23			
EUT Stage	Identical Prototype			

Remark: The EUT's information above is declared by manufacturer.

Specification of Accessories					
AdapterBrand NameZebraPart NumberPWR-BGA15V4					
Battery 1	Brand Name	Zebra	Part Number	BT-000471-0020	
Battery 2	Brand Name	Zebra	Part Number	BT-000471-0820	

Supported Unit Used in Test Configuration and System						
USB TYPE C to 3.5mm audio connector Brand Name Zebra Part Number ADP-USBC-35MM1-01						
3.5mm Earphone	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01		
USB TYPE C Earphone	Brand Name	Zebra	Part Number	HPST-USBC-PTT1-01		
Headset Jumper	Brand Name	Zebra	Part Number	CBL-TC51-HDST35-01		

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard				
Tx/Rx Channel Frequency Range	2412 MHz ~ 2462 MHz			
Maximum Output Power to Antenna	MIMO <ant. 7+8=""> 802.11b : 25.67 dBm / 0.3690 W 802.11g : 23.06 dBm / 0.2023 W 802.11n HT20 : 23.16 dBm / 0.2070 W 802.11n HT40 : 22.07 dBm / 0.1611 W 802.11ac VHT20 : 23.26 dBm / 0.2118 W 802.11ac VHT40 : 22.17 dBm / 0.1648 W 802.11ax HE20 : 23.36 dBm / 0.2168 W 802.11ax HE40 : 22.27 dBm / 0.1687 W</ant.>			
Antenna Type / Gain	<ant. 7="">: Monopole Antenna with gain 2.60 dBi<ant. 8="">: Monopole Antenna with gain 2.49 dBi</ant.></ant.>			
Type of Modulation	802.11b : DSSS (DBPSK / DQPSK / CCK) 802.11g/n : OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM) 802.11ax : OFDMA (BPSK / QPSK / 16QAM / 64QAM / 256QAM / 1024QAM)			
Antenna Function Description	Ant. 7Ant. 8802.11b/g/n/ac/axVVVMIMOV			

Remark:

- 1. MIMO Ant. 7+8 Directional Gain is a calculated result from MIMO Ant. 7 and MIMO Ant. 8. The formula used in calculation is documented in section 1.2.1.
- 2. Power of MIMO Ant. 7 + Ant. 8 is a calculated result from sum of the power MIMO Ant. 7 and MIMO Ant. 8.
- 3. The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2.1 Antenna Directional Gain

<For CDD Mode>

Follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)ii)

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

 $G_{\mbox{\scriptsize ANT}}$ is set equal to the gain of the antenna having the highest gain.

For PSD measurements, the directional gain calculation.

$$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

 N_{SS} = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the *k*th antenna is being fed by spatial stream *j*, or zero if it is not; G_k is the gain in dBi of the kth antenna.

As minimum $N_{SS}=1$ is supported by EUT, the formula can be simplified as:

Directional gain = $10^{10} \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2 / N_{ANT}] dBi$

Where G1, G2....GN denote single antenna gain.

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 7	Ant 8	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
2.4GHz	2.60	2.49	2.60	5.56	0.00	0.00

Calculation example:

If a device has two antenna, G_{ANT1} = 2.60dBi; G_{ANT2} =2.49dBi Directional gain of power measurement = max(2.60, 2.49) + 0 = 2.60 dBi Directional gain of PSD derived from formula which is 10 x log { { [10^ (2.60 dBi / 20) + 10^ (2.49 dBi / 20)] ^ 2 } / 2 } = 5.56 dBi Power and PSD limit reduction = Composite gain – 6dBi, (min = 0)

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site LocationNo.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No.	Sporton Site No.
Test Sile NO.	CO05-HY (TAF Code: 1190)
RemarkThe AC Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
1651 5116 140.	TH05-HY, 03CH11-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
2400-2483.5 MHz	2	2417	8	2447
	3	2422	9	2452
	4	2427	10	2457
	5	2432	11	2462
	6	2437		

2.2 Test Mode

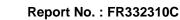
This device support 26/52/106/242/484-tone RU.

The PSD of partial RU is reduced to be smaller than full RU according to TCB workshop interim guidance Oct. 2018.

The 802.11ax mode is investigated among different tones, full resource units (RU), partial resource units. The partial RU has no higher power than full RU's, thus the full RU is chosen as main test configuration.

The 242-tone RU is covered by 20MHz channel and 484-tone RU is covered by 40MHz channel.

The SISO mode conducted power is covered by MIMO mode per chain, so only the MIMO mode is tested.


The power for 802.11n and 802.11ac mode is smaller than 802.11ax mode, so all other conducted and radiated test is covered by 802.11ax mode.

The final test modes include the worst data rates for each modulation shown in the table below.

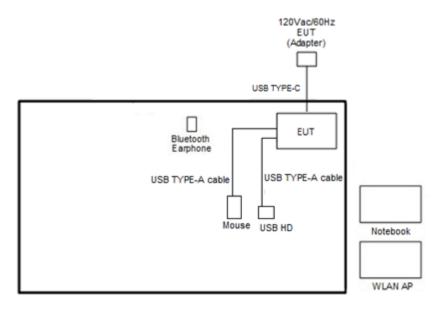
Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20 (Covered by HE20)	MCS0
802.11n HT40 (Covered by HE40)	MCS0
802.11ac VHT20 (Covered by HE20)	MCS0
802.11ac VHT40 (Covered by HE40)	MCS0
802.11ax HE20	MCS0
802.11ax HE40	MCS0

MIMO Antenna

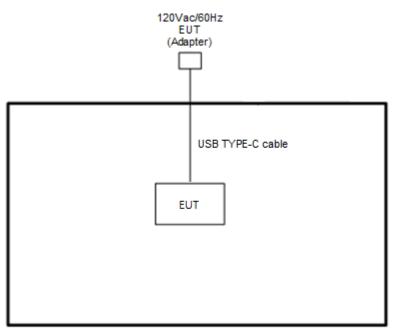
Remark: The conducted power level of each chain in MIMO mode is equal or higher than SISO mode.

Test Cases				
AC	Mode 1 :Bluetooth Link + WLAN (2.4GHz) Link + NFC On + USB TYPE-A cable			
	(Data Link with USB HD) (Copy data from USB HD to eMMC) + USB			
Conducted	TYPE-A with Mouse + Battery 1 + USB TYPE-C (Charging from Adapter) for			
Emission	Emission Sample 1			
Remark: 1. For Rad	iated Test Cases, the tests were performed with Battery 1 and Sample 1.			

2. Data Link with USB HD means data application transferred mode between EUT and USB HD.


Ch. #	2400-2483.5 MHz			
Ch. #	802.11b	802.11g	802.11ax HE20	802.11ax HE40
Low	01	01	01	03
Middle	06	06	06	06
High	11	11	11	09

Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.



2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<WLAN Tx Mode>

TEL: 886-3-327-0868	Page Number	: 12 of 30
FAX: 886-3-327-0855	Issue Date	: Jun. 07, 2023
Report Template No.: BU5-FR15CWL AC MA Version 2.4	Report Version	: 01

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7-RD0010	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	USB HD	ADATA	HV620S-1T	FCC DoC	Shielded, 1.0m	N/A
5.	Mouse	MSI	S12-0400C40-AA3	FCC DoC	Shielded, 2.0m	N/A
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
7.	USB TYPE-C cable	N/A	N/A	N/A	N/A	N/A
8.	USB TYPE-A cable	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Version 4.0.00206.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

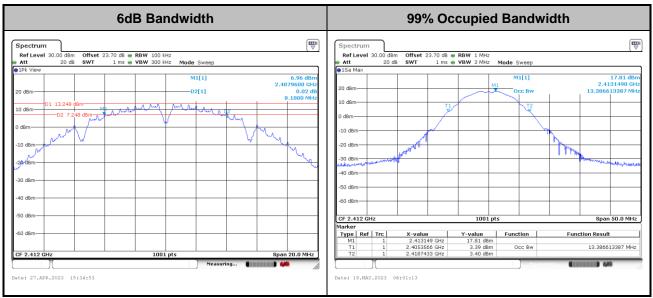
3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

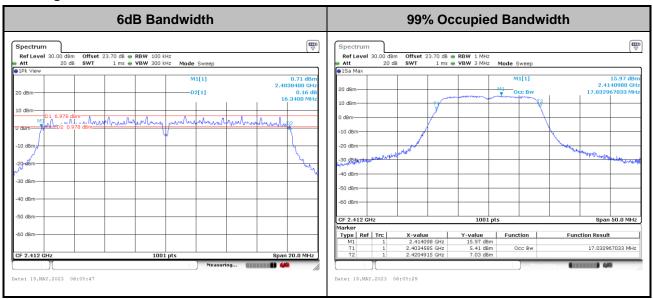
EUT

Spectrum Analyzer



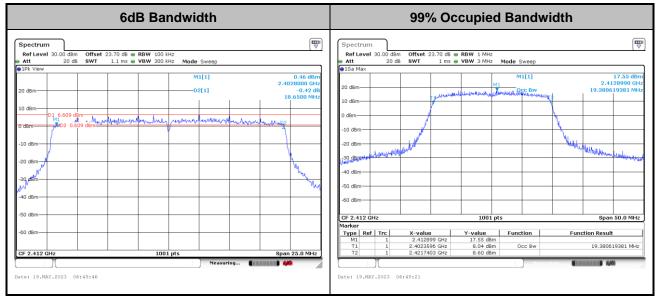
3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

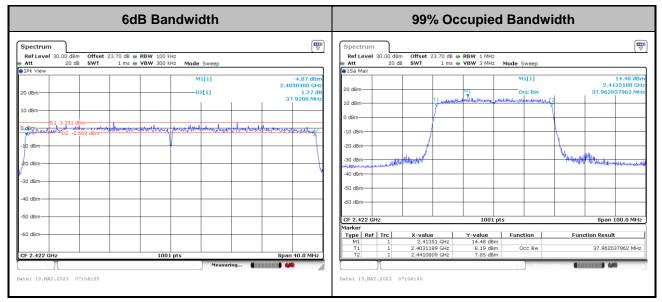
Please refer to Appendix A.

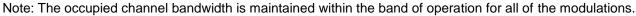

MIMO <Ant. 7+8>

<802.11b>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<802.11g>


Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<802.11ax HE20>

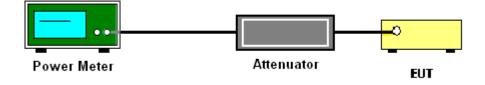
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

<802.11ax HE40>

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna with directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

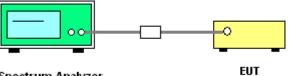
3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

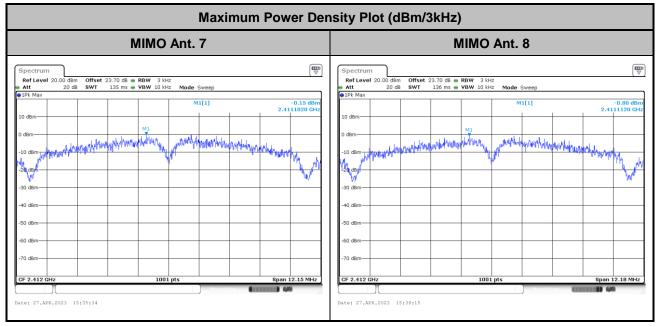

3.3.3 Test Procedures

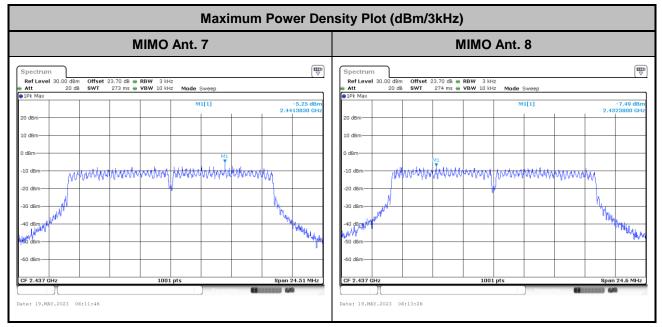
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (c): Measure and add 10 $log(N_{ANT})$ dB.

With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity 10 $log(N_{ANT})$ dB is added to each spectrum value before comparing to the emission limit. The addition of 10 $log(N_{ANT})$ dB serves to apportion the emission limit among the N_{ANT} outputs so that each output is permitted to contribute no more than 1/N_{ANT} th of the PSD limit.

3.3.4 Test Setup

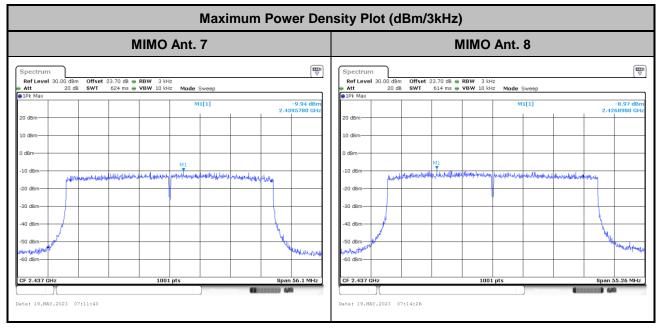

Spectrum Analyzer


3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

<802.11b>

<802.11g>



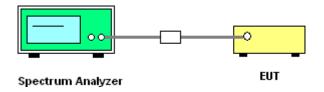
<802.11ax HE20>

<802.11ax HE40>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Please refer to Appendix A.

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

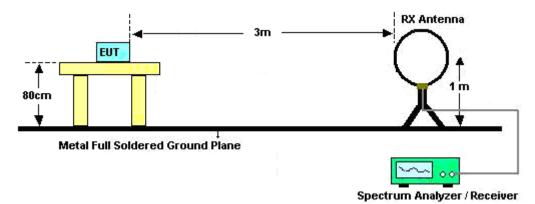
3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

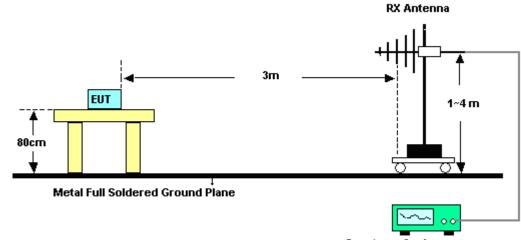
- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".

FCC RADIO TEST REPORT

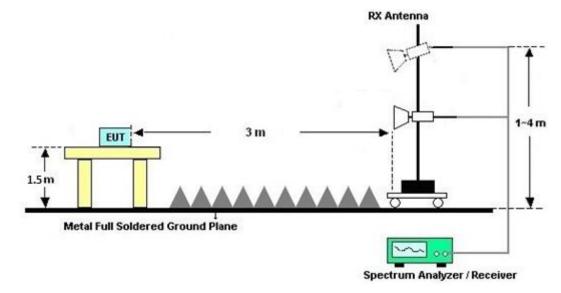

- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3 MHz for $f \geq$ 1 GHz for peak measurement.

For average measurement:

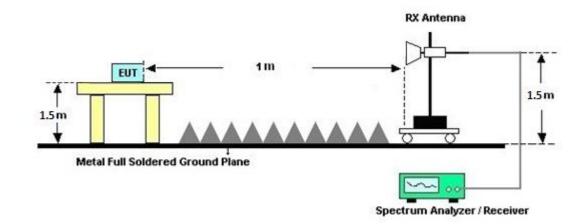
- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.


3.5.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz


Spectrum Analyzer / Receiver

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

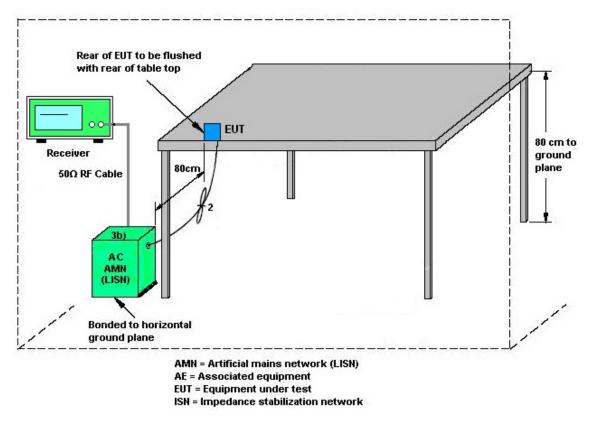
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Apr. 27, 2023~ May 20, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 13, 2022	Apr. 27, 2023~ May 20, 2023	Dec. 12, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz(amp)	Aug. 03, 2022	Apr. 27, 2023~ May 20, 2023	Aug. 02, 2023	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	May 15, 2023~ May 20, 2023	Sep. 19, 2023	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Aug. 24, 2022	May 15, 2023~ May 20, 2023	Aug. 23, 2023	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	1223	18GHz~40GHz	Jul. 05, 2022	May 15, 2023~ May 20, 2023	Jul. 04, 2023	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 09, 2022	May 15, 2023~ May 20, 2023	Nov. 08, 2023	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	17100018000 55007	1GHz~18GHz	Jun. 15, 2022	May 15, 2023~ May 20, 2023	Jun. 14, 2023	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 28, 2022	May 15, 2023~ May 20, 2023	Jun. 27, 2023	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 07, 2022	May 15, 2023~ May 20, 2023	Oct. 06, 2023	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	May 15, 2023~ May 20, 2023	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	May 15, 2023~ May 20, 2023	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	May 15, 2023~ May 20, 2023	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	May 15, 2023~ May 20, 2023	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 07, 2023	May 15, 2023~ May 20, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801595/2	30MHz~40GHz	Mar. 07, 2023	May 15, 2023~ May 20, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 07, 2023	May 15, 2023~ May 20, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 07, 2023	May 15, 2023~ May 20, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN11	1.53GHz Low Pass Filter	Sep. 12, 2022	May 15, 2023~ May 20, 2023	Sep. 11, 2023	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN3	3GHz High Pass Filter	Sep. 12, 2022	May 15, 2023~ May 20, 2023	Sep. 11, 2023	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Nov. 07, 2022	May 15, 2023~ May 20, 2023	Nov. 06, 2023	Radiation (03CH11-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Apr. 24, 2023	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2022	Apr. 24, 2023	Nov. 30, 2023	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 17, 2022	Apr. 24, 2023	Nov. 16, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 17, 2022	Apr. 24, 2023	Nov. 16, 2023	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Apr. 24, 2023	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Aug. 01, 2022	Apr. 24, 2023	Jul. 31, 2023	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 29, 2022	Apr. 24, 2023	Dec. 28, 2023	Conduction (CO05-HY)

: 29 of 30 Page Number Issue Date Report Version : 01

: Jun. 07, 2023

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.50 dB
of 95% (U = 2Uc(y))	3.30 GB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6 20 dB
of 95% (U = 2Uc(y))	6.30 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.40 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.80 dB
of 95% (U = 2Uc(y))	4.80 aB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.30 dB
of 95% (U = 2Uc(y))	5.30 UB

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Sylvia Li and Hank Hsu	Temperature:	21~25	°C
Test Date:	2023/04/27~2023/05/20	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band MIMO														
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Оссі (MI	•	6dB (Mi	BW Hz)	6dB BW Limit (MHz)	Pass/Fail					
					Ant7	Ant8	Ant7	Ant8							
11b	1Mbps	2	1	2412	13.39	13.64	8.10	8.12	0.50	Pass					
11b	1Mbps	2	6	2437	13.29	13.39	8.08	7.62	0.50	Pass					
11b	1Mbps	2	11	2462	13.44	13.19	8.12	8.12	0.50	Pass					
11g	6Mbps	2	1	2412	17.03	17.18	16.34	16.36	0.50	Pass					
11g	6Mbps	2	6	2437	17.08	17.18	16.34	16.40	0.50	Pass					
11g	6Mbps	2	11	2462	17.08	17.08	16.38	16.36	0.50	Pass					

Report Number : FR332310C

TEST RESULTS DATA Average Output Power

	2.4GHz Band MIMO															
Mod.	Mod. Data Rate		CH.	Freq. (MHz)		Average conducte Power (dBm)		Po ^r Lii	ucted wer mit 3m)	D (dl	G Bi)	Elf Pov (dB	ver	Elf Pov Lir (dB	wer mit	Pass /Fail
					Ant7	Ant8	SUM	Ant7	Ant8	Ant7	Ant8	Ant7	Ant8	Ant7	Ant8	
11b	1Mbps	2	1	2412	22.90	22.40	25.67	30	.00	2.	60	28.	27	36.	.00	Pass
11b	1Mbps	2	6	2437	20.80	20.10	23.47	30	.00	2.	60	26.	07	36.	.00	Pass
11b	1Mbps	2	11	2462	20.60	20.20	23.41	30	.00	2.	60	26.	01	36.	.00	Pass
11g	6Mbps	2	1	2412	19.20	19.20	22.21	30	30.00		60	24.81		36.00		Pass
11g	6Mbps	2	6	2437	20.00	20.10	23.06	30	.00	2.	60	25.66		36.00		Pass
11g	6Mbps	2	11	2462	18.70	19.30	22.02	30	.00	2.60		24.62		36.00		Pass
HT20	MCS0	2	1	2412	18.50	18.50	21.51	30	.00	2.60		24.11		36.00		Pass
HT20	MCS0	2	6	2437	20.20	20.10	23.16	30	.00	2.60		25.76		36.00		Pass
HT20	MCS0	2	11	2462	17.60	18.10	20.87	30	.00	2.	2.60 23.47		36.00		Pass	
HT40	MCS0	2	3	2422	18.00	17.80	20.91	30	.00	2.	60	23.51		36.00		Pass
HT40	MCS0	2	6	2437	18.80	19.30	22.07	30	.00	2.	60	24.	67	36.	.00	Pass
HT40	MCS0	2	9	2452	18.30	18.40	21.36	30	.00	2.	60	23.	96	36.	.00	Pass
VHT20	MCS0	2	1	2412	18.60	18.60	21.61	30	.00	2.	60	24.	21	36.	.00	Pass
VHT20	MCS0	2	6	2437	20.30	20.20	23.26	30	.00	2.	60	25.	86	36.	.00	Pass
VHT20	MCS0	2	11	2462	17.70	18.20	20.97	30	30.00		60	23.	57	36.	.00	Pass
VHT40	MCS0	2	3	2422	18.10	17.90	21.01	30	.00	2.	60	23.	61	36.00		Pass
VHT40	MCS0	2	6	2437	18.90	19.40	22.17	30	.00	2.	2.60 24.77		36.00		Pass	
VHT40	MCS0	2	9	2452	18.40	18.50	21.46	30	.00	2.	60	24.	06	36.	.00	Pass

Note: Measured power (dBm) has offset with cable loss.

TEST RESULTS DATA Peak Power Spectral Density

	2.4GHz Band MIMO													
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)		Peak PSD (dBm/3kHz)		D (dl		Peak Lir (dBm/	Pass/Fail			
	Nato			(1011 12)	Ant7	Ant8	Worse + 3.01	Ant7	Ant8	Ant7	Ant8			
11b	1Mbps	2	1	2412	-0.15	-0.80	2.86	5.5	56	8.00		Pass		
11b	1Mbps	2	6	2437	-2.46	-3.27	0.55	5.5	56	8.00		Pass		
11b	1Mbps	2	11	2462	-2.51	-2.75	0.50	5.5	56	8.0	00	Pass		
11g	6Mbps	2	1	2412	-7.45	-7.75	-4.44	5.56		-4.44 5.56 8.00		00	Pass	
11g	6Mbps	2	6	2437	-5.25	-7.49	-2.24	5.56		5.56 8.00		Pass		
11g	6Mbps	2	11	2462	-6.67	-7.65	-3.66	5.5	56	8.0	Pass			

Measured power density (dBm) has offset with cable loss.

Report Number : FR332310C

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band MIMO														
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	RU Config	99% Occi (Mi	•		BW Hz)	6dB BW Limit (MHz)	Pass/Fail				
						Ant7	Ant8	Ant7	Ant8						
HE20	MCS0	2	1	2412	Full	19.38	19.43	18.65	18.78	0.50	Pass				
HE20	MCS0	2	6	2437	Full	19.43	19.48	18.80	18.63	0.50	Pass				
HE20	MCS0	2	11	2462	Full	19.48	19.33	19.03	18.55	0.50	Pass				
HE40	MCS0	2	3	2422	Full	37.96	37.86	37.92	37.20	0.50	Pass				
HE40	MCS0	2	6	2437	Full	37.96	37.96	37.40	36.84	0.50	Pass				
HE40	MCS0	2	9	2452	Full	37.96	37.96	37.56	38.08	0.50	Pass				

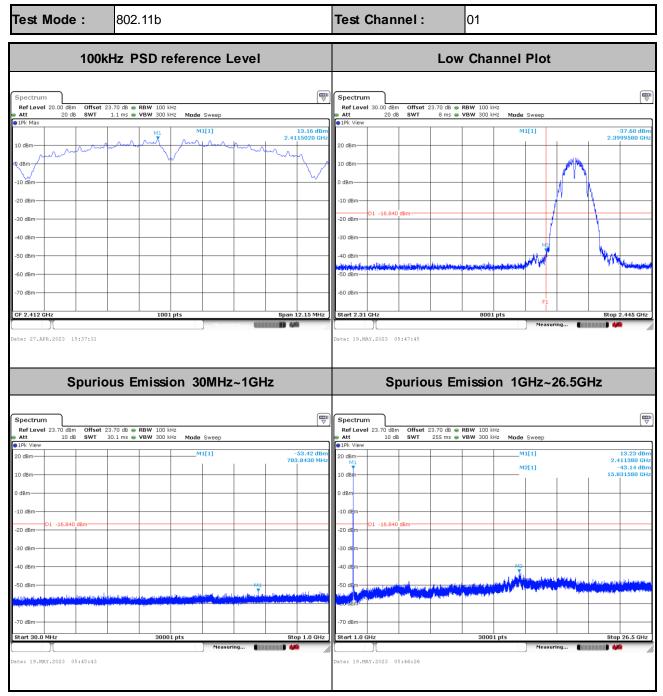
Report Number : FR332310C

TEST RESULTS DATA Average Output Power

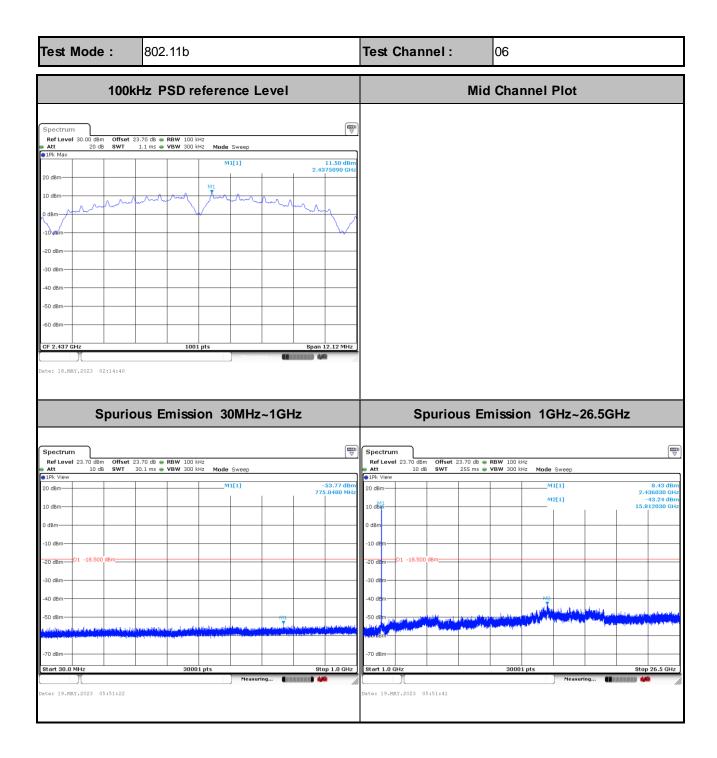
	2.4GHz Band MIMO																	
Mod. Data Rate	Ntx	CH.	Freq. (MHz)	RU Config		Average onducte Power (dBm)		Conducted Power Limit (dBm)	Do (dE	-	Ell Pov (dE		Elf Pov Lir (dB	wer nit	Pass /Fail			
						Ant7	Ant8	SUM	Ant7 Ant8	Ant7	Ant8	Ant7	Ant8	Ant7	Ant8			
HE20	MCS0	2	1	2412	Full	18.70	18.70	21.71	30.00	2.6	60	24	.31	36	.00	Pass		
HE20	MCS0	2	1	2412	26/0	9.30	8.40	11.88	30.00	2.6	60	14	.48	36	.00	Pass		
HE20	MCS0	2	1	2412	52/37	12.20	11.90	15.06	30.00	30.00 2.60		17.	.66	36.	.00	Pass		
HE20	MCS0	2	1	2412	106/53	14.50	14.30	17.41	30.00	2.60		20.01		36.00		Pass		
HE20	MCS0	2	6	2437	Full	20.40	20.30	23.36	30.00	2.60		25.96		36.00		Pass		
HE20	MCS0	2	6	2437	26/4	11.50	11.90	14.71	30.00	2.60		17.31		36.00		Pass		
HE20	MCS0	2	6	2437	52/38	13.40	14.30	16.88	30.00	2.60		2.60 19.48		.48	36.	.00	Pass	
HE20	MCS0	2	6	2437	106/53	16.60	17.50	20.08	30.00	2.6	2.60		.68	36.	.00	Pass		
HE20	MCS0	2	11	2462	Full	17.80	18.30	21.07	30.00	2.6	2.60		2.60 23.67		.67	36.	.00	Pass
HE20	MCS0	2	11	2462	26/8	8.40	8.50	11.46	30.00	2.6	60	14	.06	36.	.00	Pass		
HE20	MCS0	2	11	2462	52/40	10.80	11.30	14.07	30.00	2.6	60	16	.67	36.	.00	Pass		
HE20	MCS0	2	11	2462	106/54	14.30	14.90	17.62	30.00	2.6	60	20	.22	36	.00	Pass		
HE40	MCS0	2	3	2422	Full	18.20	18.00	21.11	30.00	2.6	60	23	.71	36.	.00	Pass		
HE40	MCS0	2	3	2422	242/61	15.20	14.90	18.06	30.00	2.6	60	20	.66	36.	.00	Pass		
HE40	MCS0	2	6	2437	Full	19.00	19.50	22.27	30.00	2.6	2.60		2.60 24.8		.87	36.	.00	Pass
HE40	MCS0	2	6	2437	242/61	16.00	16.80	19.43	30.00	2.6	2.60		2.60		.03	36.	.00	Pass
HE40	MCS0	2	9	2452	Full	18.50	18.60	21.56	30.00	2.6	2.60		2.60 24.16		.16	36.	.00	Pass
HE40	MCS0	2	9	2452	242/62	15.20	15.90	18.57	30.00	2.60 21.17		36.	.00	Pass				

Note: Measured power (dBm) has offset with cable loss.

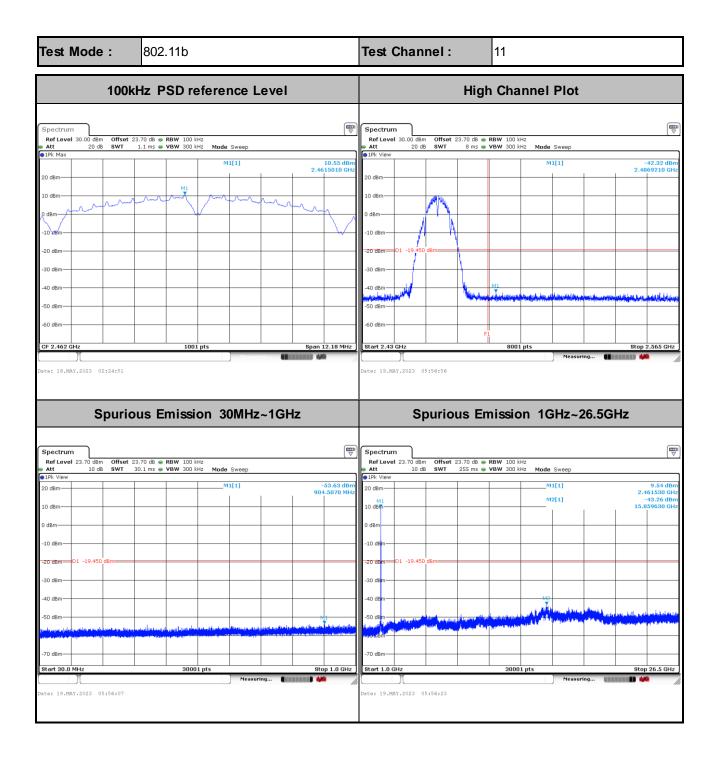
<u>TEST RESULTS DATA</u> <u>Peak Power Spectral Density</u>

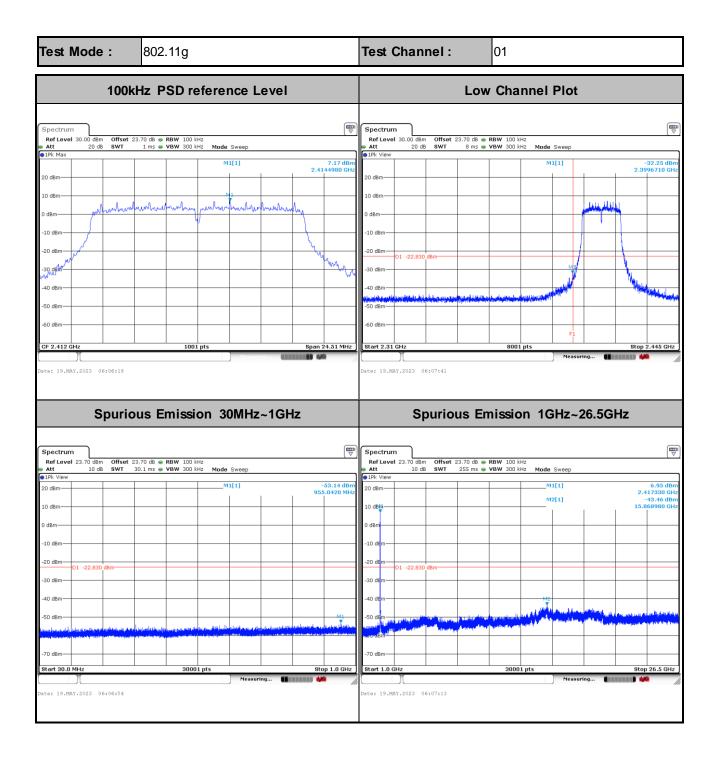

							2.4GHz	Band MIMO)				
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	RU Config		Peak PSD (dBm/3kHz)		D (dl		Peak PSD Limit (dBm/3kHz)		Pass/Fail
	Nato			(10112)	·	Ant7	Ant8	Worse + 3.01	Ant7	Ant8	Ant7	Ant8	
HE20	MCS0	2	1	2412	Full	-8.26	-7.89	-4.88	5.5	56	8.0	00	Pass
HE20	MCS0	2	1	2412	26/0	-8.09	-9.34	-5.08	5.5	56	8.0	00	Pass
HE20	MCS0	2	1	2412	52/37	-8.19	-8.33	-5.18	5.5	56	8.0	00	Pass
HE20	MCS0	2	1	2412	106/53	-8.33	-8.67	-5.32	5.5	56	8.0	00	Pass
HE20	MCS0	2	6	2437	Full	-5.42	-5.43	-2.41	5.5	56	8.0	00	Pass
HE20	MCS0	2	6	2437	26/4	-6.87	-5.81	-2.80	5.5	56	8.0	00	Pass
HE20	MCS0	2	6	2437	52/38	-7.00	-5.68	-2.67	5.5	56	8.0	00	Pass
HE20	MCS0	2	6	2437	106/53	-6.53	-5.50	-2.49	5.5	56	8.0	00	Pass
HE20	MCS0	2	11	2462	Full	-8.82	-8.06	-5.05	5.5	56	8.0	00	Pass
HE20	MCS0	2	11	2462	26/8	-9.35	-8.32	-5.31	5.5	56	8.0	00	Pass
HE20	MCS0	2	11	2462	52/40	-8.75	-8.18	-5.17	5.5	56	8.0	00	Pass
HE20	MCS0	2	11	2462	106/54	-8.84	-8.38	-5.37	5.5	56	8.0	00	Pass
HE40	MCS0	2	3	2422	Full	-10.84	-11.11	-7.83	5.5	56	8.0	00	Pass
HE40	MCS0	2	3	2422	242/61	-11.14	-11.53	-8.13	5.5	56	8.0	00	Pass
HE40	MCS0	2	6	2437	Full	-9.94	-8.97	-5.96	5.5	56	8.0	00	Pass
HE40	MCS0	2	6	2437	242/61	-10.40	-9.17	-6.16	5.5	56	8.0	00	Pass
HE40	MCS0	2	9	2452	Full	-10.89	-10.30	-7.29	5.5	56	8.0	00	Pass
HE40	MCS0	2	9	2452	242/62	-11.67	-10.33	-7.32	5.5	56	8.0	00	Pass

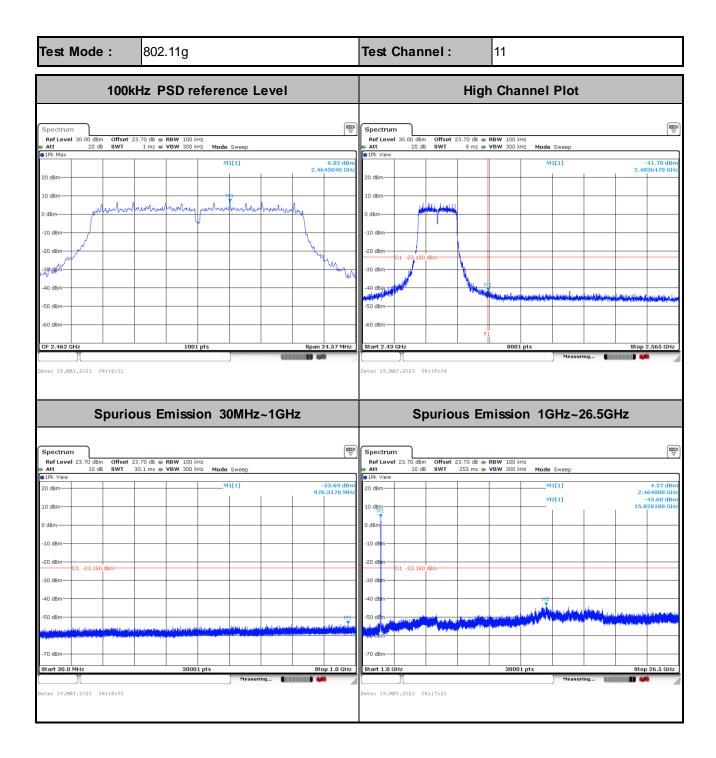
Measured power density (dBm) has offset with cable loss.

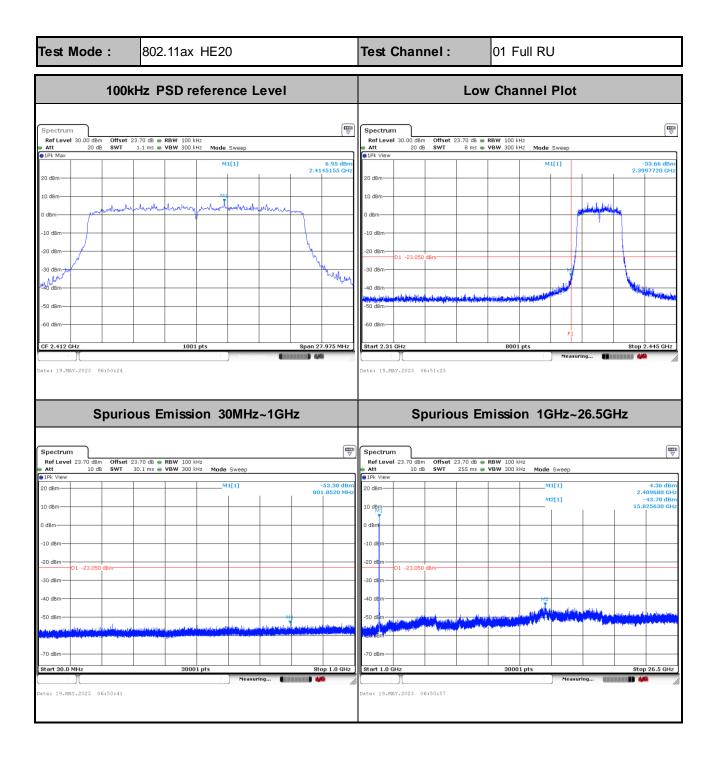


Band Edges and Spurious Emission

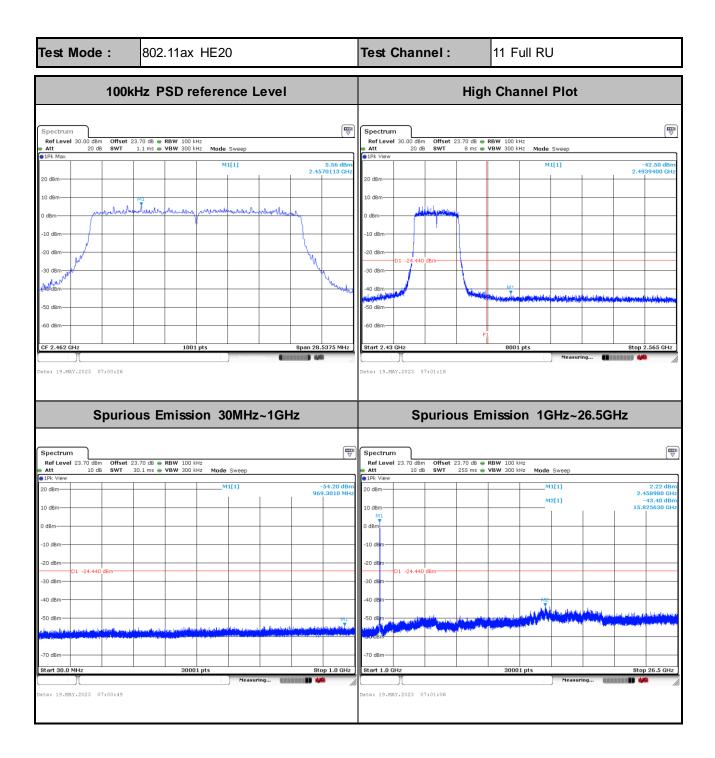

Number of TX = 2, Ant. 7 (Measured)

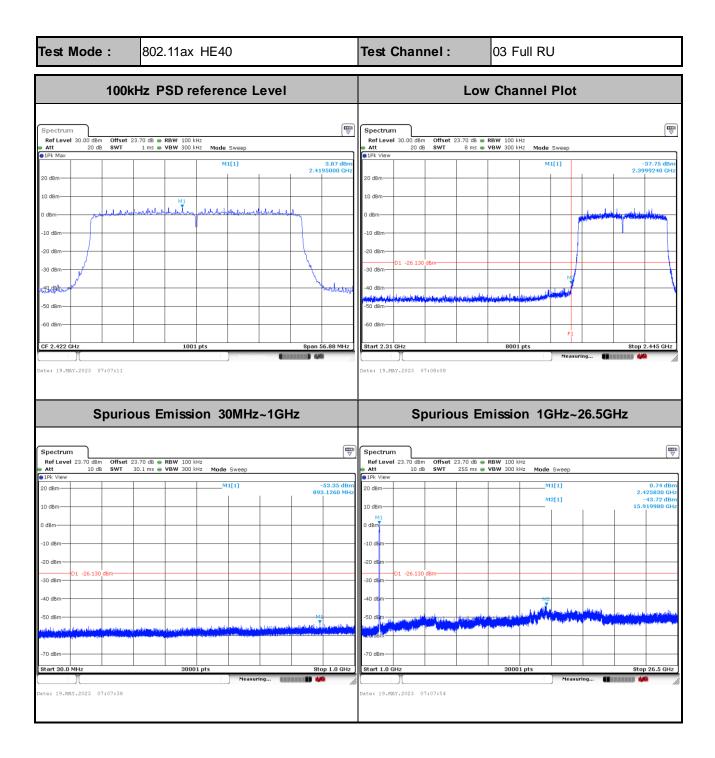




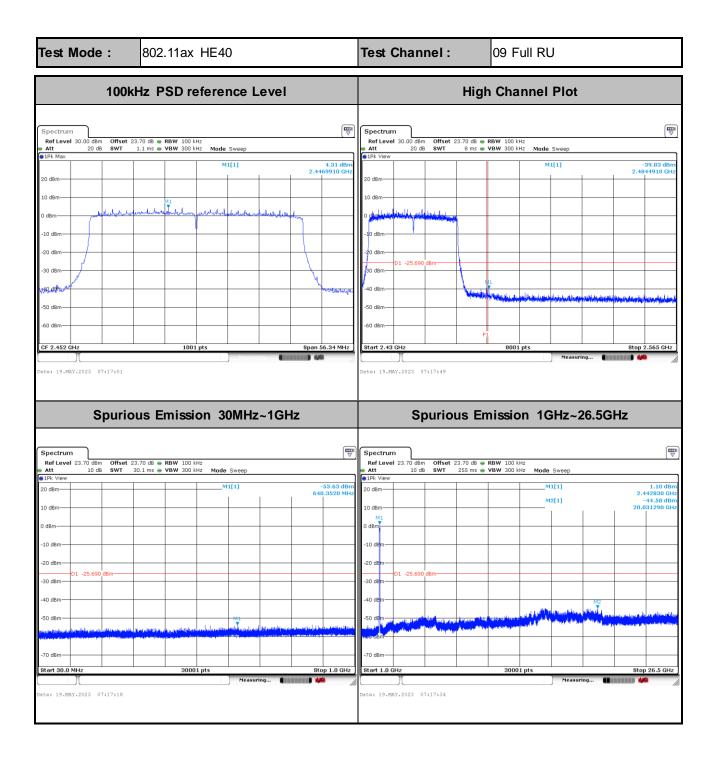


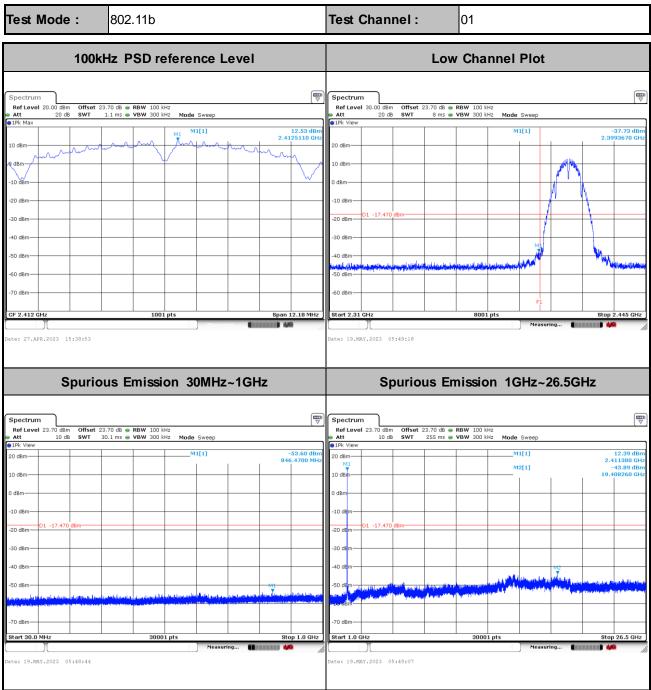
Test Mode :	802.11g	Test Channel : 06
100	kHz PSD reference Level	Mid Channel Plot
Att 20 dB SWT 1Pk Max 20 dBm 10 dBm	1 23.70 dB RBW 100 KHz 1ms VBW 300 KHz Mode Sweep M1[1] 8.03 c 2.4395220 N1	
0 dBm -10 dBm -20 dBm -20 dBm -40 dBm		
-50 dBm -60 dBm CF 2.437 GHz Date: 19.MAY.2023 06:12:03	1001 pts Span 24.51 M	
Spuri	ous Emission 30MHz~1GHz	Spurious Emission 1GHz~26.5GHz
Att 10 dB SWT	t 23.70 dB 🖷 RBW 100 kHz	TTTE TTTE TTTE Ref Level 23.70 dBm Offset 23.70 dB RBW 100 kHz TTTE ▲ Att 10 dB SWT 255 ms VBW 300 kHz Mode Sweep
1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm 01 -21.970 dBm -30 dBm	MI[1] -53.64 (950.0300 / 100	Ip: Ip: View M1[1] 6.47 dbm 20 dbm 20 dbm 2.429/200 GHz 2.429/200 GHz 10 dbm M2[1] -43.82 dbm 15.854530 GHz 0 dbm 0 dbm 10 dbm 10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -20 dbm 01 - 21.970 dbm -10 dbm -10 dbm
-40 dBm	30001 pts	-70 dBm
Date: 19.MAY.2023 06:12:26		Date: 19.MAY.2023 06:12:45

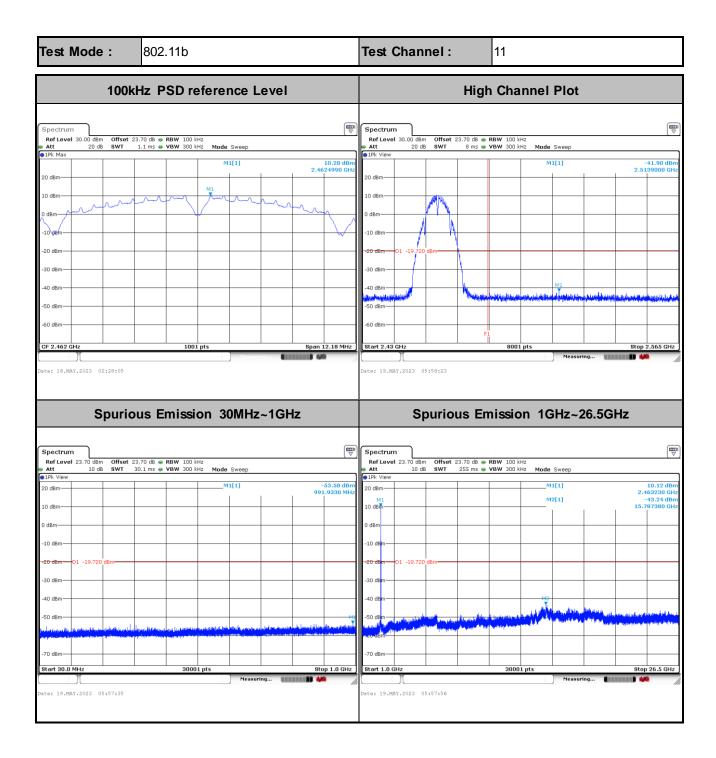


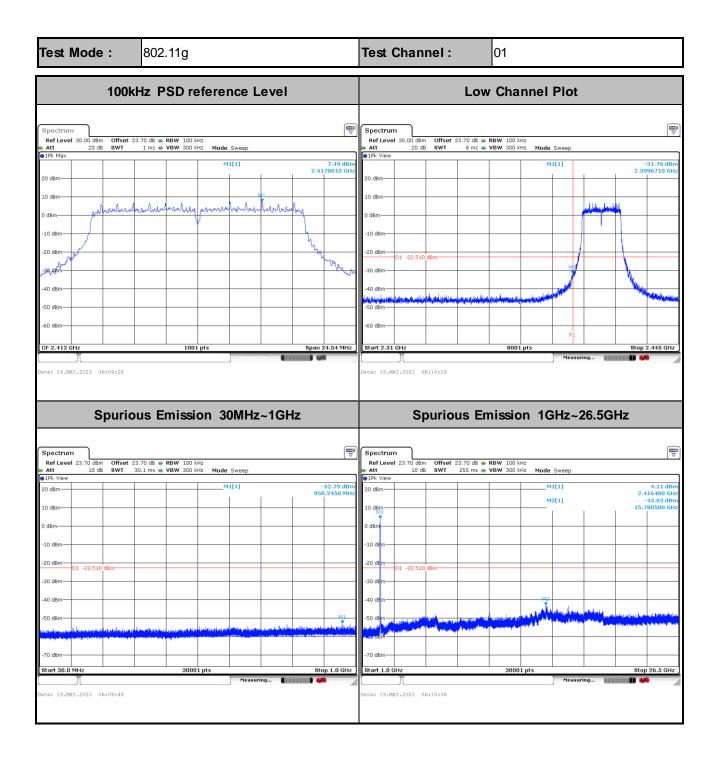


Test Mode : 802.11ax HE20	Test Channel : 06 Full RU
100kHz PSD reference Level	Mid Channel Plot
Spectrum Image: Constraint of the state of	
Spurious Emission 30MHz~1GHz	Spurious Emission 1GHz~26.5GHz
Spectrum Image: Constraint of the second secon	Spectrum Image: Constraint of the second secon

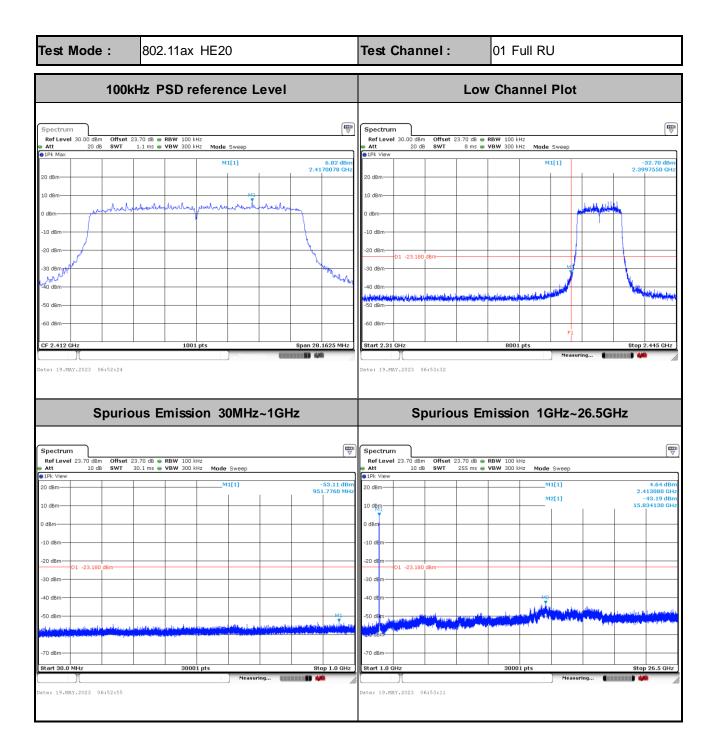



Test Mode :	802.11ax HE40		Test Channel :	06	Full RU	
100	kHz PSD reference Level			Mid Cha	annel Plot	
	: 23.70 dB 👄 RBW 100 kHz					
Att 20 dB SWT IPk Max	1.1 ms VBW 300 kHz Mode Sweep					
	M1[1]	4.89 dBm 2.4420440 GHz				
20 dBm-						
10 dBm	M1					
0 dBm polleder but	www.hand. the hand and hand have have have hard a start of the second second second second second second second	a drug				
-10 dBm						
-20 dBm						
-30 dBm						
Apple allower of the second se		understall				
-40 dBm						
-50 dBm						
-60 dBm-						
CF 2.437 GHz	1001 pts	Span 56.1 MHz				
	Measuring					
Date: 19.MAY.2023 07:11:59						
Spuri	ous Emission 30MHz~1G	H7	Spurio	e Emissi	on 1GHz~26.50	3H7
Opun		12	Opunot			5112
	: 23.70 dB 🖷 RBW 100 kHz		Spectrum Ref Level 23.70 dBm Offset 23	1.70 dB 👄 RBW 100	kHz	
Att 10 dB SWT IPk View	30.1 ms VBW 300 kHz Mode Sweep]	Att 10 dB SWT IPk View	255 ms 👄 VBW 300	kHz Mode Sweep	
20 dBm	M1[1]	-53.29 dBm 931.8270 MHz	20 dBm		M1[1]	3.32 dBm 2.445380 GHz
10 dBm		<u> </u>	10 dBm		M2[1]	-43.35 dBm 15.802680 GHz
0 dBm			0 dBm			
-10 dBm			-10 dBm			
-20 dBmD1 -25.110 dBm			-20 dBm D1 -25.110 dBm			
-30 dBm		<u> </u>	-30 dBm			+
-40 dBm		┼──┤	-40 dBm		M2	
-50 dBm			-50 dSm	VINE TO DESCRIPTION		ويستعنيه والمحاصر والمحاصر وستعر والمح
ne trademarks to be all the steps of the shift of a	ومعارضته المرج والمرجع فأحمد فالمراجع والمراجع والمكابل ويروع المعاملا والمراجع	and the state of the state of the	A STATE AND A STAT	an a		A DI TRANSPORT
-70 d9m						
-70 dBm	20001 st-	Pto- 1.5 Oli-	-70 dBm		001 ste	Phone Dis Frontie
Start 30.0 MHz	30001 pts Measuring	Stop 1.0 GHz		300	001 pts Measuring	Stop 26.5 GHz
Date: 19.MAY.2023 07:12:47		m	Date: 19.MAY.2023 07:13:18			m
l						

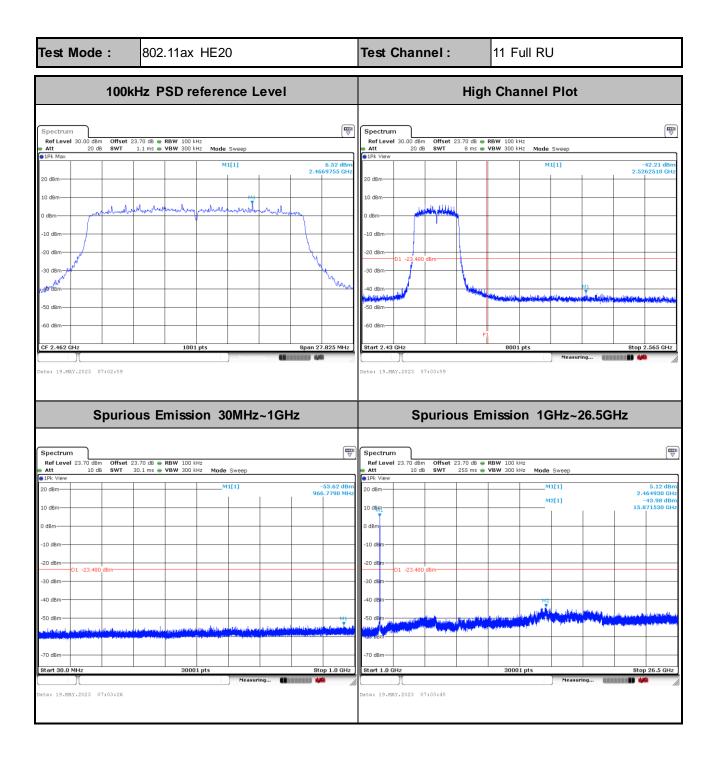

Number of TX = 2, Ant. 8 (Measured)

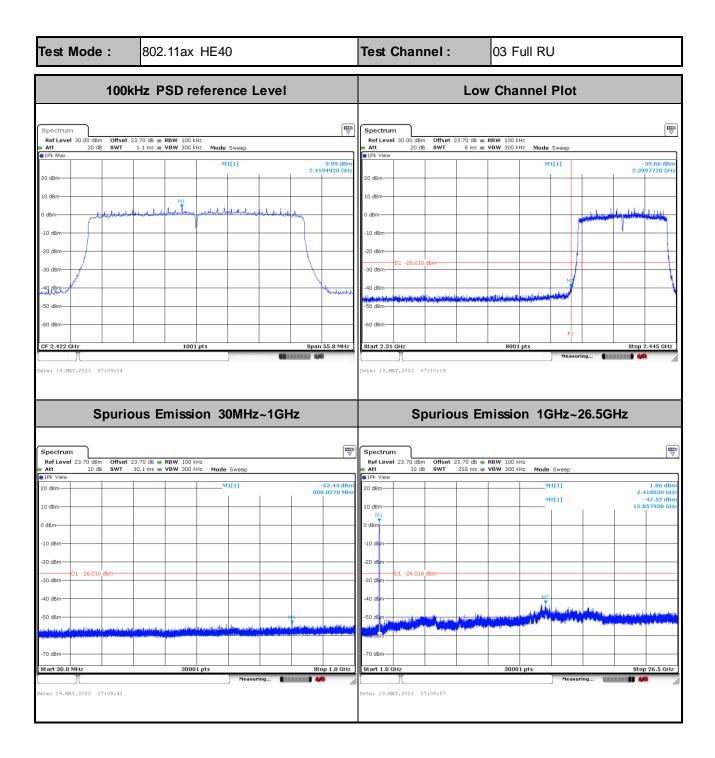


Test Mode : 802.11b	Test Channel : 06
100kHz PSD reference Level	Mid Channel Plot
Spectrum Ref Level 30.00 dBm Offset 23.70 dB = RBW 100 kHz *Att 20 dB DFK Max M1[1] 20 dBm M1[1] 10 dBm M1 0 dBm M1 10 dBm M1 20 dBm M1 10 dBm M1 0 dBm M1 -20 dBm -20 dBm -30 dBm	
Spurious Emission 30MHz~1GHz	Spurious Emission 1GHz~26.5GHz
935.8 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm	Spectrum Image: Construction of the sector of

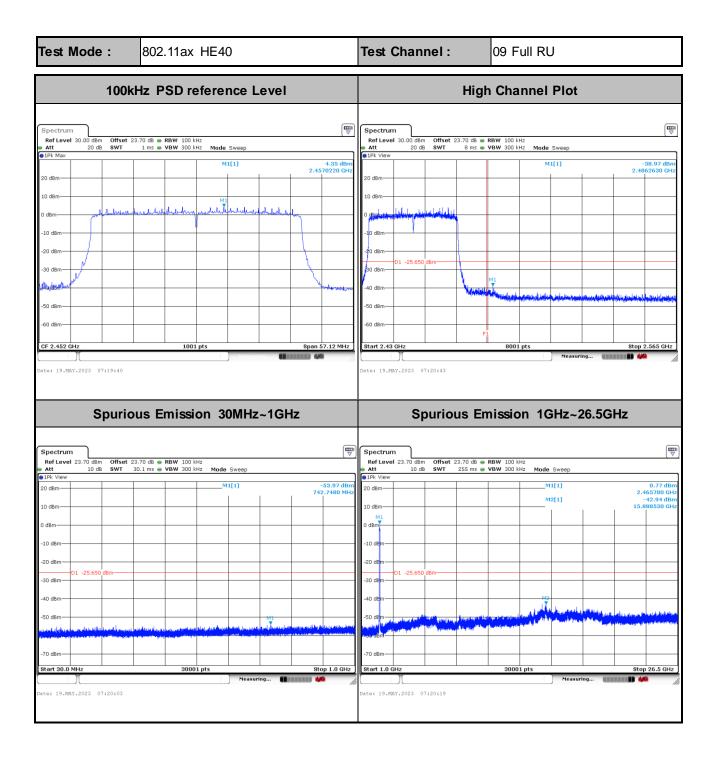


Test Mode : 802.11g	Test Channel : 06
100kHz PSD reference Level	Mid Channel Plot
Spectrum Image: Spectrum Ref Lovel 30.00 dBm Offset 23.70 dB = RBW 100 lHz	
Spurious Emission 30MHz~1GHz	Spurious Emission 1GHz~26.5GHz
Spectrum Image: Construction of the construle of the construction of the construle of the construction of	Spectrum Image: Construct of the second

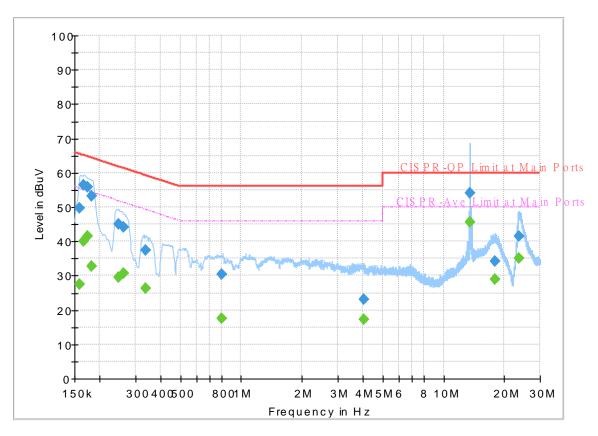




Test Mode : 802.11ax HE20	Test Channel : 06 Full RU
100kHz PSD reference Level	Mid Channel Plot
Spectrum W Ref Lovel 20.00 dBm Offset 23.70 dB RBW 100 kHz • 1Pk Max 0.74 dBm • 1Pk Max 0.74 dBm • 10 dBm 0.74 dBm • 10 dBm 0.74 dBm • 10 dBm 0.74 dBm • 0 dBm	
Spurious Emission 30MHz~1GHz	Spurious Emission 1GHz~26.5GHz
Spectrum Image: Constraint of the second secon	Spectrum Two Ref Level 23.70 dBm Offset 23.70 dB RBW 100 kHz Att 10 dB SWT 255 ms VBW 300 kHz Mode Sweep 9.1Pk View 20 dBm



Test Mode :	802.11ax HE40		Test Channel	: 06	Full RU	
100	kHz PSD reference Leve	I		Mid Cha	annel Plot	
	: 23.70 dB 👄 RBW 100 kHz					
Att 20 dB SWT 1Pk Max	1.1 ms e VBW 300 kHz Mode Sweep					
20 dBm	M1[1]	5.70 dBm 2.4319760 GHz				
10 dBm	and mark harden berry and a harden be all and harden be					
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
40 dBm		Muharbor				
-50 dBm-						
-60 dBm						
-oo usin						
CF 2.437 GHz	1001 pts	Span 55.26 MHz				
Date: 19.MAY.2023 07:14:43		10				
Spuri	ous Emission 30MHz~10	GHz	Spuri	ous Emissi	on 1GHz~26.50	GHz
Spectrum			Spectrum			
Att 10 dB SWT	: 23.70 dB RBW 100 kHz 30.1 ms VBW 300 kHz Mode Sweep		Att 10 dB SW1	et 23.70 dB 👄 RBW 10 255 ms 👄 VBW 30	0 kHz 0 kHz Mode Sweep	
1Pk View 20 dBm	M1[1]	-53.60 dBm	● 1Pk View 20 dBm		M1[1]	2.30 dBm
10 dBm		556.0300 MHz	10 dBm		M2[1]	2.432630 GHz -43.83 dBm 15.881730 GHz
			M1			
0 dBm			0 dBm			
-10 dBm			-10 dBm			
-20 dBm			-20 dBm			
-30 dBm			-30 dBm			
-40 dBm			-40 dBm		M2	
-50 dBm			-50 d5m	THE REPORT OF THE REPORT OF	والمنظر ومعلو والأقروب ال	and a start of the st
ورجالا موقعت والباريج المعالية		ويحاد بالأد والمريا ليلول وتماريني فراديهم	and a second sec	alou di kanal ⁱⁿ di salati sala	APPENDED TO A PROPERTY OF A	
and the start have a second						
-70 dBm			-70 dBm			
Start 30.0 MHz	30001 pts Measuring	Stop 1.0 GHz	Start 1.0 GHz	30	001 pts Measuring 📲	Stop 26.5 GHz
Date: 19.MAY.2023 07:15:00		m	Date: 19.MAY.2023 07:15:16	5		m



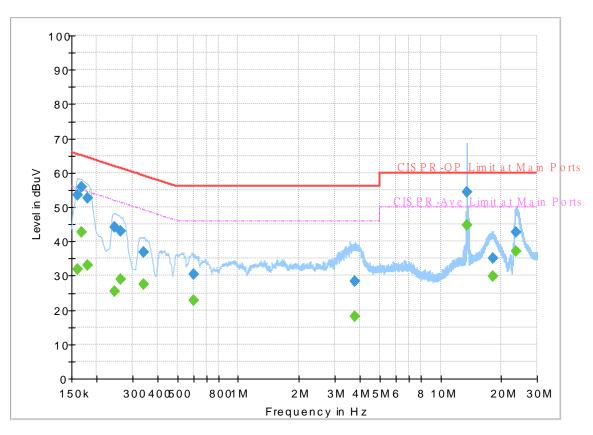
Appendix B. AC Conducted Emission Test Results

Test Engineer :	Calvin Wang	Temperature :	23~26 ℃
Test Engineer.	Calvin Wang	Relative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 332310 Mode 1 120Vac/60Hz Line

FullSpectrum


Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.159000		27.62	55.52	27.90	L1	OFF	19.8
0.159000	49.80		65.52	15.72	L1	OFF	19.8
0.165750		40.19	55.17	14.98	L1	OFF	19.8
0.165750	56.43		65.17	8.74	L1	OFF	19.8
0.174750		41.50	54.73	13.23	L1	OFF	19.8
0.174750	55.94		64.73	8.79	L1	OFF	19.8
0.181500		32.79	54.42	21.63	L1	OFF	19.8
0.181500	53.30		64.42	11.12	L1	OFF	19.8
0.249000		29.67	51.79	22.12	L1	OFF	19.8
0.249000	45.06		61.79	16.73	L1	OFF	19.8
0.262500		30.64	51.35	20.71	L1	OFF	19.8
0.262500	44.29		61.35	17.06	L1	OFF	19.8
0.336750		26.38	49.28	22.90	L1	OFF	19.8
0.336750	37.43		59.28	21.85	L1	OFF	19.8
0.804750		17.56	46.00	28.44	L1	OFF	19.8
0.804750	30.34		56.00	25.66	L1	OFF	19.8
4.029000		17.29	46.00	28.71	L1	OFF	19.9
4.029000	23.00		56.00	33.00	L1	OFF	19.9
13.560000		45.51	50.00	4.49	L1	OFF	20.0
13.560000	54.08		60.00	5.92	L1	OFF	20.0
17.868750		29.01	50.00	20.99	L1	OFF	20.0

17.868750	34.30		60.00	25.70	L1	OFF	20.0
23.498250		35.10	50.00	14.90	L1	OFF	20.0
23.498250	41.40		60.00	18.60	L1	OFF	20.0

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 332310 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.161250		31.94	55.40	23.46	Ν	OFF	19.8
0.161250	53.37		65.40	12.03	Ν	OFF	19.8
0.168000		42.65	55.06	12.41	Ν	OFF	19.8
0.168000	55.86		65.06	9.20	Ν	OFF	19.8
0.179250		32.93	54.52	21.59	Ν	OFF	19.8
0.179250	52.60		64.52	11.92	Ν	OFF	19.8
0.244500		25.31	51.94	26.63	Ν	OFF	19.8
0.244500	44.25		61.94	17.69	Ν	OFF	19.8
0.262500		29.07	51.35	22.28	Ν	OFF	19.8
0.262500	42.98		61.35	18.37	Ν	OFF	19.8
0.341250		27.48	49.17	21.69	Ν	OFF	19.8
0.341250	36.98		59.17	22.19	Ν	OFF	19.8
0.602250		22.70	46.00	23.30	Ν	OFF	19.8
0.602250	30.48		56.00	25.52	Ν	OFF	19.8
3.756750		18.24	46.00	27.76	Ν	OFF	19.9
3.756750	28.36		56.00	27.64	Ν	OFF	19.9
13.560000		44.74	50.00	5.26	Ν	OFF	20.1
13.560000	54.35		60.00	5.65	Ν	OFF	20.1
18.154500		29.70	50.00	20.30	Ν	OFF	20.1
18.154500	35.08		60.00	24.92	Ν	OFF	20.1
23.617500		37.03	50.00	12.97	Ν	OFF	20.2

23.617500	42.68		60.00	17.32	Ν	OFF	20.2
-----------	-------	--	-------	-------	---	-----	------