

Report No.: FR1N2539A

FCC RADIO TEST REPORT

FCC ID : UZ7ET45CB

Equipment : Tablet **Brand Name** : Zebra **Model Name** : ET45CB

Applicant : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Manufacturer : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Standard : FCC Part 15 Subpart C §15.247

The product was received on Jun. 01, 2022 and testing was performed from Jun. 09, 2022 to Jul. 05, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Lunis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868 Page Number : 1 of 55 FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022 : 02

Table of Contents

His	tory o	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	
	1.4	Testing Location	6
	1.5	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	.12
	2.4	Support Unit used in test configuration and system	.13
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	
3	Test	Result	.14
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	
	3.6	Conducted Band Edges Measurement	.34
	3.7	Conducted Spurious Emission Measurement	.39
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
		Antenna Requirements	
4		of Measuring Equipment	
5	Unce	rtainty of Evaluation	.55
Apı	pendix	A. AC Conducted Emission Test Result	
Apı	pendix	B. Radiated Spurious Emission	
App	pendix	C. Radiated Spurious Emission Plots	
App	pendix	D. Duty Cycle Plots	
App	pendix	c E. Setup Photographs	

TEL: 886-3-327-0868 FAX: 886-3-327-0855

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : 2 of 55 Issue Date : Aug. 16, 2022

Report No. : FR1N2539A

Report Version : 02

History of this test report

Report No. : FR1N2539A

Report No.	Version	Description	Issue Date
FR1N2539A	01	Initial issue of report	Aug. 09, 2022
FR1N2539A	02	Revise Product Feature of Equipment Under Test	Aug. 16, 2022

TEL: 886-3-327-0868 Page Number : 3 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

Summary of Test Result

Report No.: FR1N2539A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	25.43 dB under the limit at 2483.680 MHz
3.9	15.207	AC Conducted Emission	Pass	16.85 dB under the limit at 0.178 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen Report Producer: Cindy Liu

TEL: 886-3-327-0868 Page Number : 4 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature						
Equipment	Tablet					
Brand Name	Zebra					
Model Name	ET45CB					
FCC ID	UZ7ET45CB					
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA/LTE/5G NR/NFC/GNSS WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 WLAN 11ax HE20/HE40/HE80 Bluetooth BR/EDR/LE Note: 2.4G doesn't support BW 40/80.					
HW Version	EV2-2					
SW Version	ET45-userdebug 11 11-10-12.00-RG-U00-PRD-GSE MXJ release-keys					
MFD	30APR22					
EUT Stage	Identical Prototype					

Report No.: FR1N2539A

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories						
Battery	Brand Name	Zebra	Model Name	BT-000456		

Supported Unit Used in Test Configuration and System						
AC Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US		
Earphone 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01		
Earphone 2	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01		
USB Cable (Type C to Type A)	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01		
Type C-Audio Cable (Type C to 3.5mm)	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01		

TEL: 886-3-327-0868 Page Number : 5 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard					
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz				
Number of Channels	79				
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78				
	Bluetooth BR(1Mbps) : 3.99 dBm (0.0025 W)				
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 5.80 dBm (0.0038 W)				
	Bluetooth EDR (3Mbps) : 6.26 dBm (0.0042 W)				
	Bluetooth BR(1Mbps) : 0.891 MHz				
99% Occupied Bandwidth	Bluetooth EDR (2Mbps) : 1.190 MHz				
	Bluetooth EDR (3Mbps) : 1.172 MHz				
Antenna Type / Gain	IFA Antenna type with gain 1.20 dBi				
	Bluetooth BR (1Mbps) : GFSK				
Type of Modulation	Bluetooth EDR (2Mbps) :π/4-DQPSK				
	Bluetooth EDR (3Mbps) : 8-DPSK				

Report No.: FR1N2539A

Remark: The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH13-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

TEL: 886-3-327-0868 Page Number : 6 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR1N2539A

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-0868 Page Number : 7 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-0868 FAX: 886-3-327-0855

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : 8 of 55 Issue Date : Aug. 16, 2022

Report No.: FR1N2539A

Report Version : 02

2.2 Test Mode

		Blue	tooth Average Output Po	ower
Channel	el Frequency		GFSK / 1Mbps	
		DH1	DH3	DH5
Ch00	2402MHz	3.14 dBm	3.01 dBm	2.99 dBm
Ch39	2441MHz	<mark>3.43</mark> dBm	3.35 dBm	3.31 dBm
Ch78	2480MHz	3.22 dBm	3.13 dBm	2.97 dBm

Report No. : FR1N2539A

		Blue	etooth Average Output Po	ower
Channel	Frequency		π/4-DQPSK / 2Mbps	
		2DH1	2DH3	2DH5
Ch00	2402MHz	2.58 dBm	2.53 dBm	2.50 dBm
Ch39	2441MHz	<mark>3.13</mark> dBm	3.07 dBm	3.04 dBm
Ch78	2480MHz	2.71 dBm	2.70 dBm	2.63 dBm

		Blue	tooth Average Output Po	ower
Channel	Frequency		8-DPSK / 3Mbps	
		3DH1	3DH3	3DH5
Ch00	2402MHz	2.59 dBm	2.55 dBm	2.52 dBm
Ch39	2441MHz	<mark>3.15</mark> dBm	3.07 dBm	3.06 dBm
Ch78	2480MHz	2.73 dBm	2.72 dBm	2.64 dBm

TEL: 886-3-327-0868 Page Number : 9 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

		Bluetooth Peak Output Power					
Channel	Frequency	uency GFSK / 1Mbps					
		DH1	DH3	DH5			
Ch00	2402MHz	3.70 dBm	3.67 dBm	3.65 dBm			
Ch39	2441MHz	<mark>3.99</mark> dBm	3.95 dBm	3.93 dBm			
Ch78	2480MHz	3.80 dBm	3.71 dBm	3.64 dBm			

Report No.: FR1N2539A

		Bluetooth Peak Output Power					
Channel Frequency π/4-DQPSK / 2Mbps							
		2DH1	2DH3	2DH5			
Ch00	2402MHz	5.22 dBm	5.19 dBm	5.17 dBm			
Ch39	2441MHz	5.80 dBm	5.75 dBm	5.73 dBm			
Ch78	2480MHz	5.38 dBm	5.36 dBm	5.31 dBm			

		Blu	Bluetooth Peak Output Power				
Channel	Frequency						
		3DH1	3DH3	3DH5			
Ch00	2402MHz	5.69 dBm	5.64 dBm	5.57 dBm			
Ch39	2441MHz	<mark>6.26</mark> dBm	6.22 dBm	6.18 dBm			
Ch78	2480MHz	5.80 dBm	5.78 dBm	5.73 dBm			

Remark: The data rate was set in 3Mbps for all the test items due to the highest RF output power.

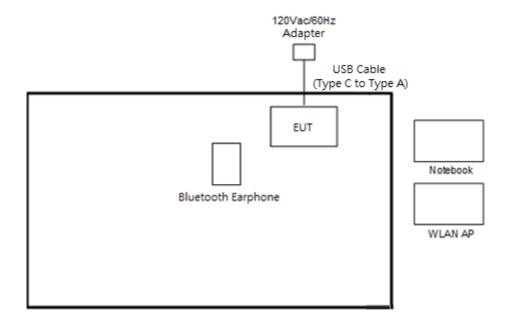
TEL: 886-3-327-0868 Page Number : 10 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X plane as worst plane, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

Report No.: FR1N2539A

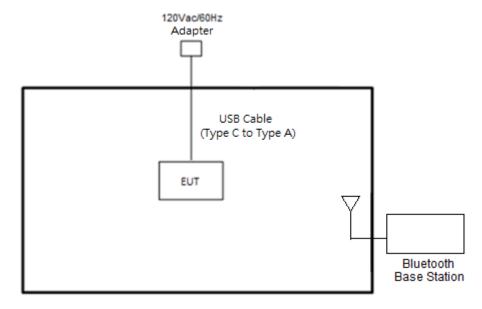
b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	ВІ	Bluetooth EDR 3Mbps 8-DPSK				
Radiated	Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz					
AC Conducted	Mode 1 :WLAN (2.4GHz)	Link + Bluetooth Link + USE	3 Cable (Charging from AC			
Emission Adapter)						
highest	Radiated Test Cases, the worst mode data rate 3Mbps was reported only since the est RF output power in the preliminary tests. The conducted spurious emissions and lucted band edge measurement for other data rates were not worse than 3Mbps, and					

TEL: 886-3-327-0868 Page Number : 11 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

no other significantly frequencies found in conducted spurious emission.


2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

Report No.: FR1N2539A

<Bluetooth Tx Mode>

TEL: 886-3-327-0868 Page Number : 12 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Kinyo	BTE-3622	N/A	N/A	N/A
2.	WLAN AP	ASUS	RT-AC58	N/A	N/A	Unshielded,1.8m
3.	Notebook	Dell	P79G	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

Report No.: FR1N2539A

2.5 EUT Operation Test Setup

The RF test items, utility "cmd.exe (10.0.17763.1577)" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-0868 Page Number : 13 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

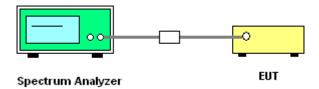
3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Report No.: FR1N2539A

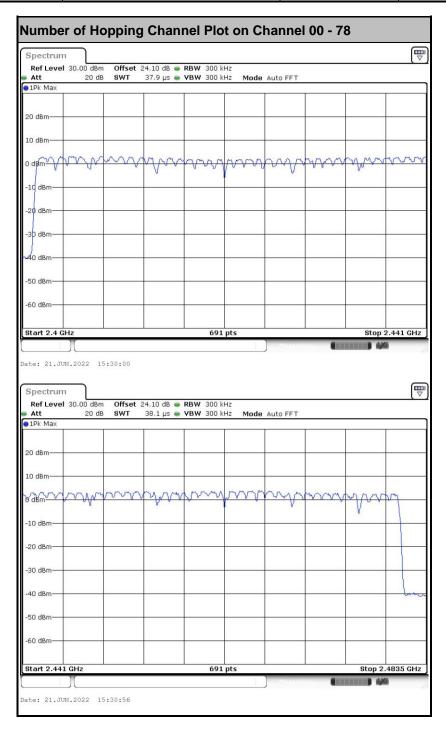

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


TEL: 886-3-327-0868 Page Number : 14 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.1.5 Test Result of Number of Hopping Frequency

Test Engineer :	Eason Huang	Temperature : 21~25°C	21~25 ℃
rest Engineer.	Eason Huang	Relative Humidity :	51~54%

Report No.: FR1N2539A

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

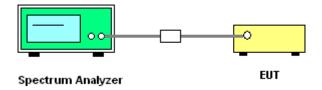
TEL: 886-3-327-0868 Page Number : 15 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR1N2539A


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

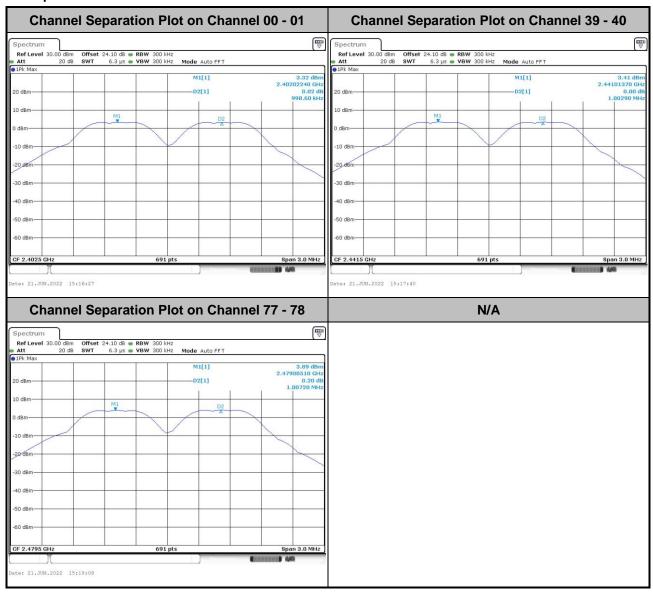
3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

TEL: 886-3-327-0868 Page Number : 16 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

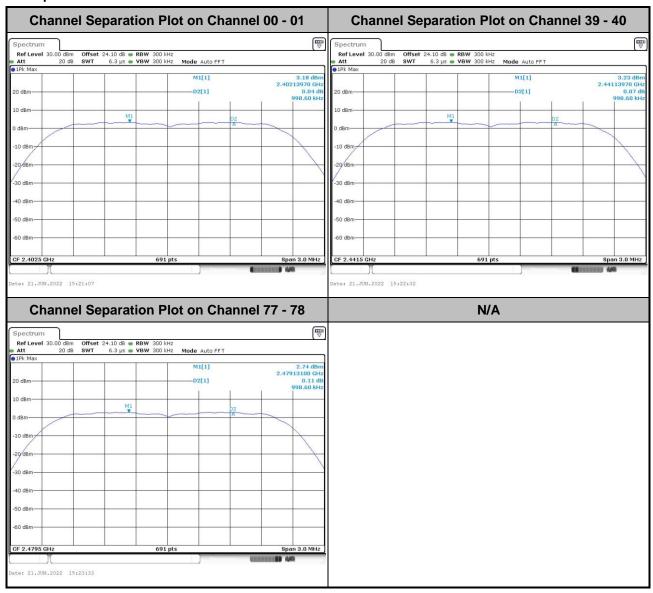
3.2.5 Test Result of Hopping Channel Separation


Test Engineer :	Eason Huang	Temperature :	21~25 ℃
rest Engineer.		Relative Humidity:	51~54%

Report No. : FR1N2539A

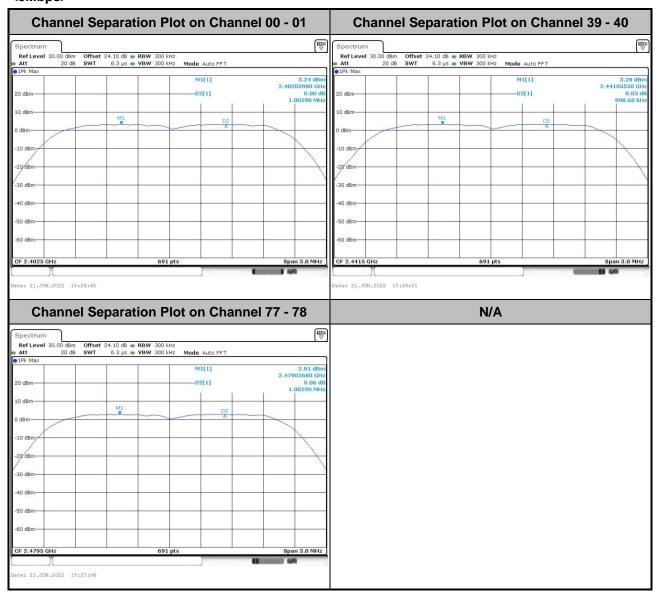
Mod.	Data Rate	NTX	СН.	Freq. (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.999	0.6734	Pass
DH	1Mbps	1	39	2441	1.003	0.6695	Pass
DH	1Mbps	1	78	2480	1.007	0.6734	Pass
2DH	2Mbps	1	0	2402	0.999	0.8654	Pass
2DH	2Mbps	1	39	2441	0.999	0.8886	Pass
2DH	2Mbps	1	78	2480	0.999	0.8943	Pass
3DH	3Mbps	1	0	2402	1.003	0.8654	Pass
3DH	3Mbps	1	39	2441	0.999	0.8654	Pass
3DH	3Mbps	1	78	2480	1.003	0.8539	Pass

TEL: 886-3-327-0868 Page Number : 17 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022


<1Mbps>

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : 18 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022


<2Mbps>

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : 19 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

<3Mbps>

Report No.: FR1N2539A

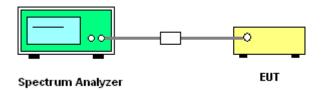
TEL: 886-3-327-0868 Page Number : 20 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: FR1N2539A

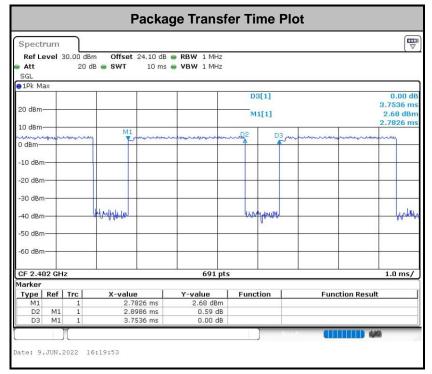

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup


TEL: 886-3-327-0868 Page Number : 21 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.3.5 Test Result of Dwell Time

Test Engineer :	Eason Huang	Temperature : 21~25°C	21~25℃
rest Engineer .	Eason Huang	Relative Humidity :	51~54%

Report No.: FR1N2539A

Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

Remark:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-0868 Page Number : 22 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

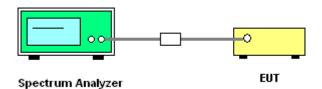
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.

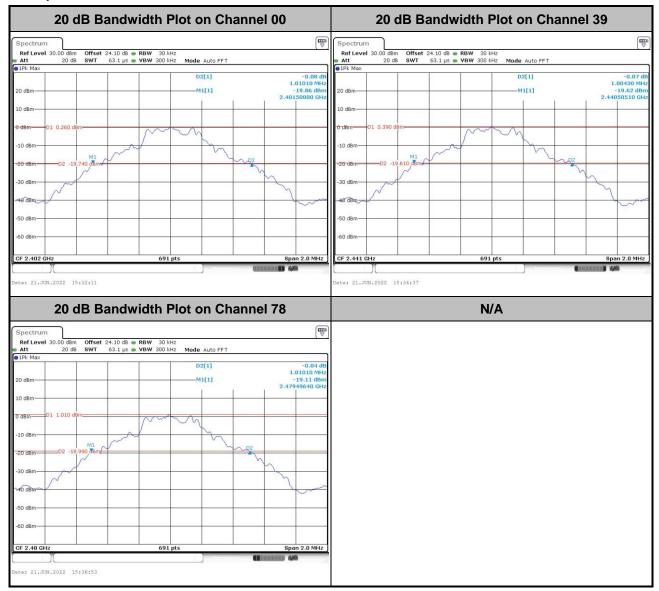
Report No.: FR1N2539A

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 - Trace = \max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 - Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

TEL: 886-3-327-0868 Page Number : 23 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

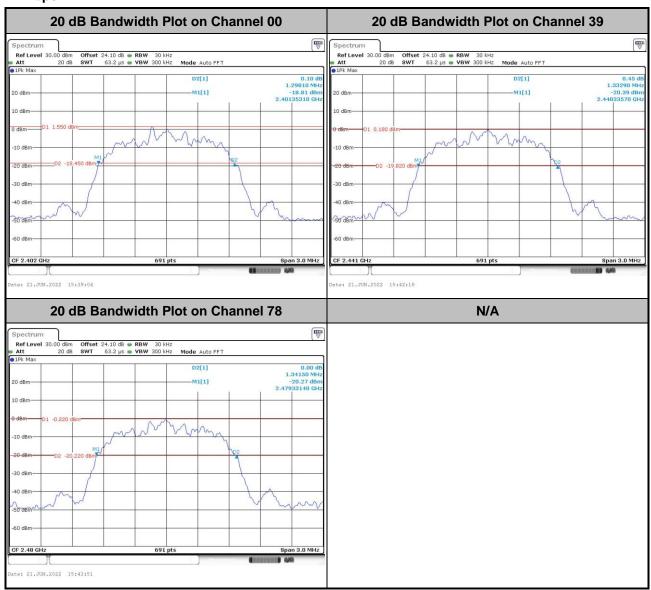
3.4.5 Test Result of 20dB Bandwidth


Test Engineer :	Eason Huang	Temperature : 21~25°C	21~25℃
rest Engineer .	Eason Huang	Relative Humidity :	51~54%

Report No. : FR1N2539A

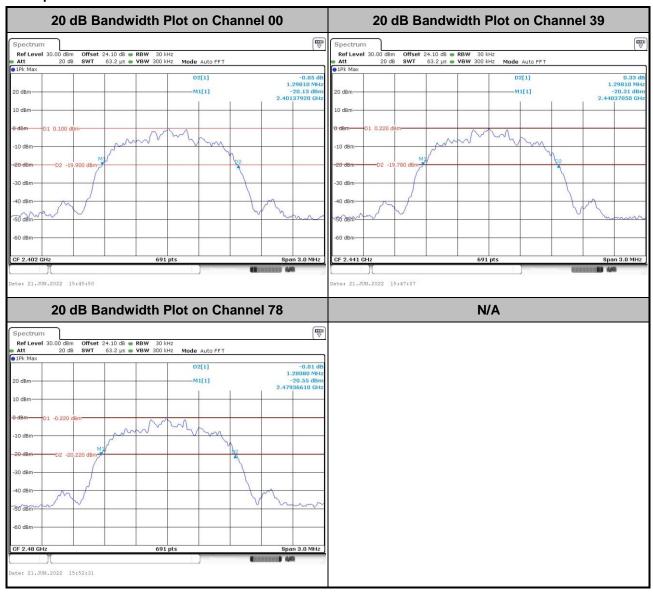
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	1.010	Pass
DH	1Mbps	1	39	2441	1.004	Pass
DH	1Mbps	1	78	2480	1.010	Pass
2DH	2Mbps	1	0	2402	1.298	Pass
2DH	2Mbps	1	39	2441	1.333	Pass
2DH	2Mbps	1	78	2480	1.342	Pass
3DH	3Mbps	1	0	2402	1.298	Pass
3DH	3Mbps	1	39	2441	1.298	Pass
3DH	3Mbps	1	78	2480	1.281	Pass

TEL: 886-3-327-0868 Page Number : 24 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022


<1Mbps>

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : 25 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022


<2Mbps>

Report No.: FR1N2539A

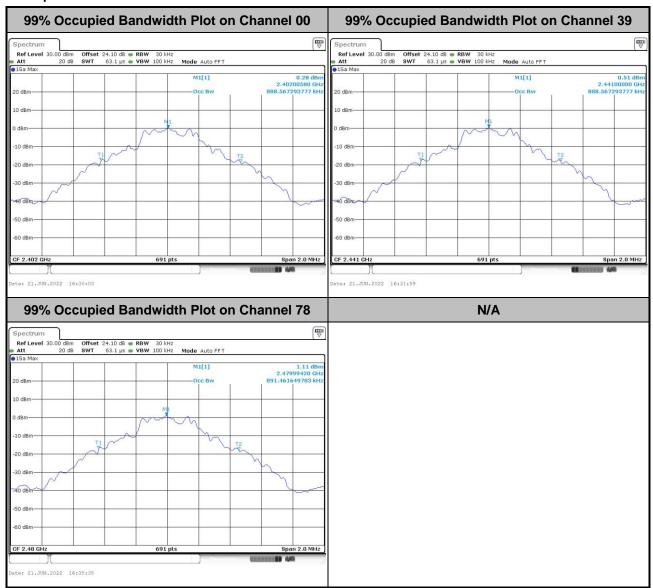
TEL: 886-3-327-0868 Page Number : 26 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

<3Mbps>

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : 27 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.4.6 Test Result of 99% Occupied Bandwidth

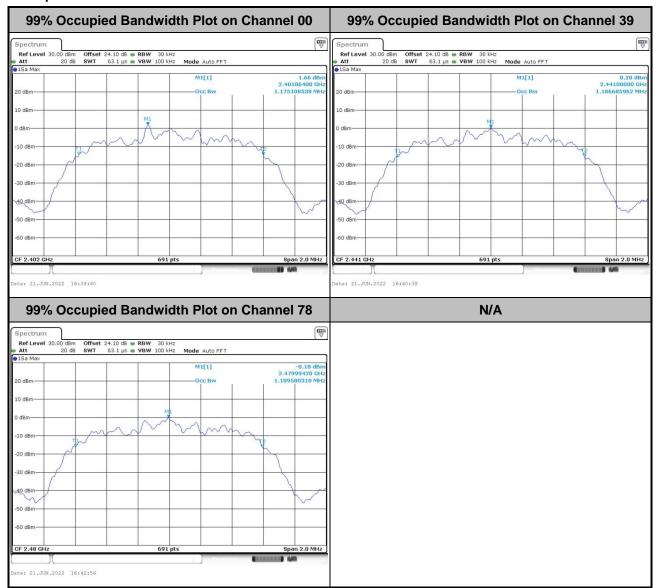

Test Engineer :	Eason Huang	Temperature :	21~25 ℃
	Eason Huang	Relative Humidity :	51~54%

Report No. : FR1N2539A

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.889	Pass
DH	1Mbps	1	39	2441	0.889	Pass
DH	1Mbps	1	78	2480	0.891	Pass
2DH	2Mbps	1	0	2402	1.175	Pass
2DH	2Mbps	1	39	2441	1.187	Pass
2DH	2Mbps	1	78	2480	1.190	Pass
3DH	3Mbps	1	0	2402	1.169	Pass
3DH	3Mbps	1	39	2441	1.172	Pass
3DH	3Mbps	1	78	2480	1.172	Pass

TEL: 886-3-327-0868 Page Number : 28 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

<1Mbps>

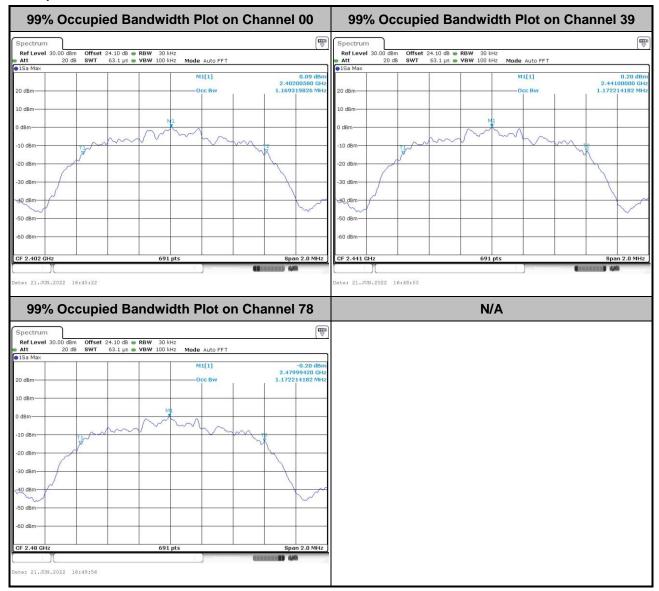


Report No.: FR1N2539A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 29 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

<2Mbps>



Report No.: FR1N2539A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 30 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

<3Mbps>

Report No.: FR1N2539A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

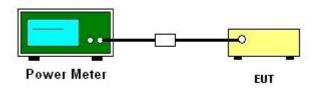
TEL: 886-3-327-0868 Page Number : 31 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR1N2539A


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

TEL: 886-3-327-0868 Page Number : 32 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.5.5 Test Result of Peak Output Power

Test Engineer :	Eason Huang	Temperature :	21~25 ℃
	Lason ridarig	Relative Humidity: 51~54%	51~54%

Report No.: FR1N2539A

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	3.70	20.97	Pass
DH1	39	1	3.99	20.97	Pass
	78	1	3.80	20.97	Pass
	0	1	5.22	20.97	Pass
2DH1	39	1	5.80	20.97	Pass
	78	1	5.38	20.97	Pass
	0	1	5.69	20.97	Pass
3DH1	39	1	6.26	20.97	Pass
	78	1	5.80	20.97	Pass

3.5.6 Test Result of Average Output Power (Reporting Only)

Test Engineer :	Eason Huang	Temperature :	21~25 ℃
		Relative Humidity :	51~54%

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	3.14	5.20
DH1	39	1	3.43	5.20
	78	1	3.22	5.20
	0	1	2.58	5.03
2DH1	39	1	3.13	5.03
	78	1	2.71	5.03
3DH1	0	1	2.59	5.03
	39	1	3.15	5.03
	78	1	2.73	5.03

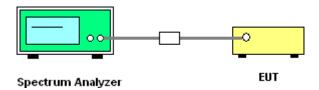
TEL: 886-3-327-0868 Page Number : 33 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

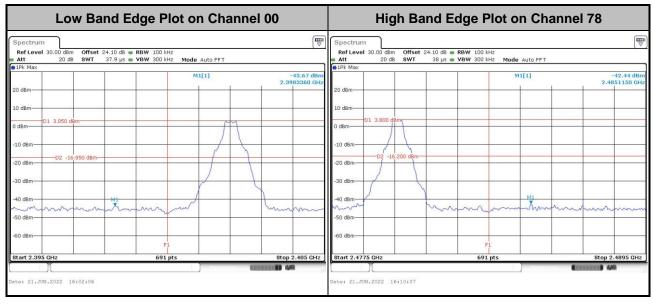
Report No.: FR1N2539A


3.6.2 Measuring Instruments

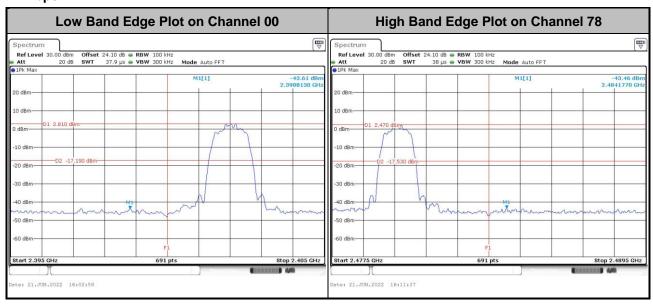
Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

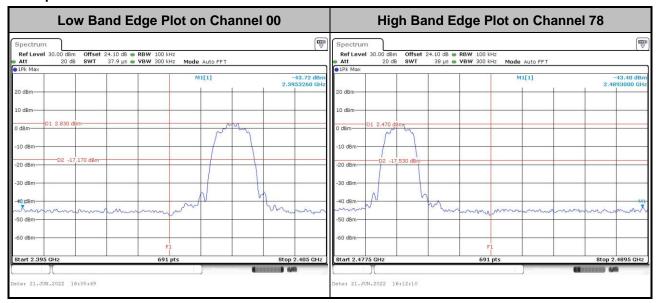
- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.


3.6.4 Test Setup

TEL: 886-3-327-0868 Page Number : 34 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022


3.6.5 Test Result of Conducted Band Edges

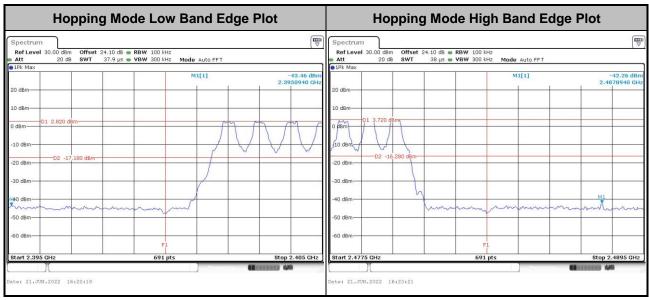
<1Mbps>


Report No.: FR1N2539A

<2Mbps>

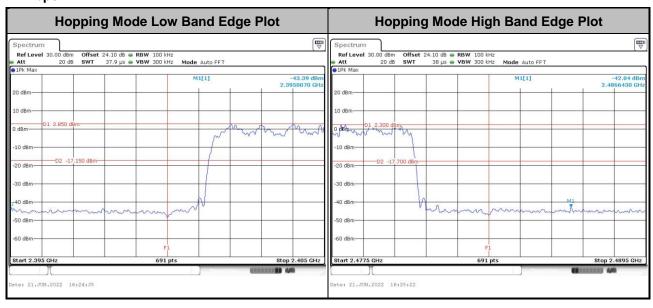
TEL: 886-3-327-0868 Page Number : 35 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

<3Mbps>

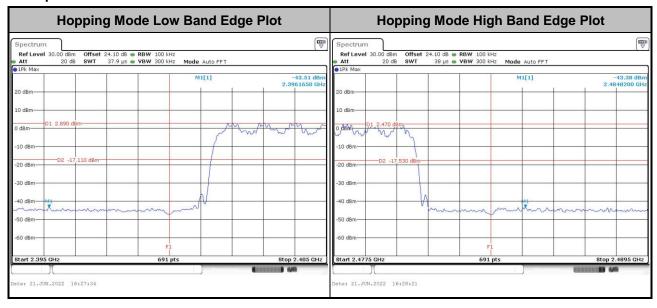


Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : 36 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022


3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>


Report No.: FR1N2539A

<2Mbps>

TEL: 886-3-327-0868 Page Number : 37 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

<3Mbps>

Report No.: FR1N2539A

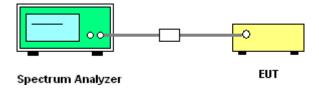
TEL: 886-3-327-0868 Page Number : 38 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

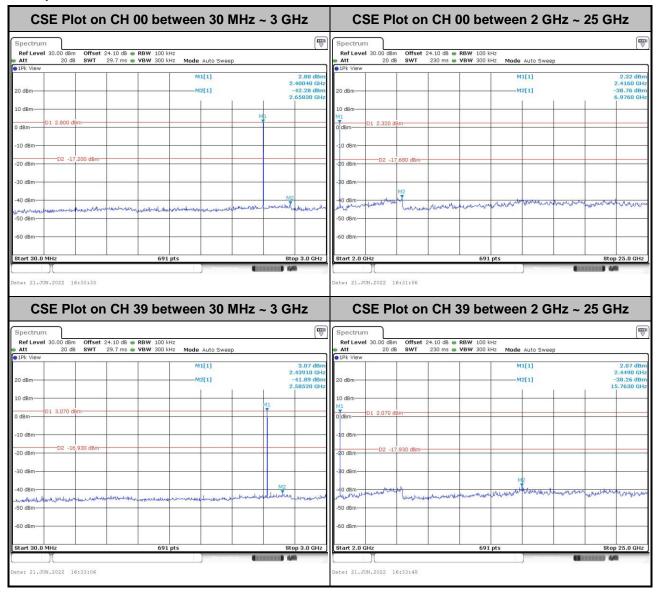
Report No.: FR1N2539A


3.7.2 Measuring Instruments

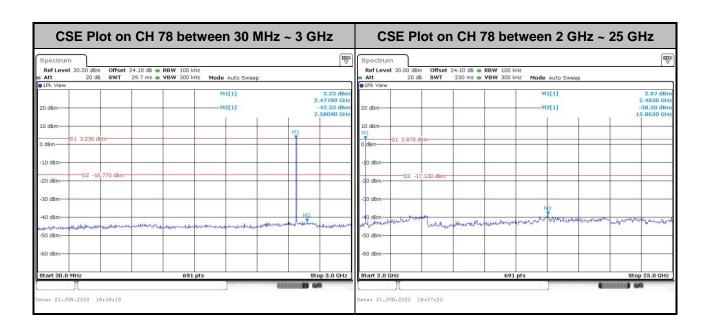
Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

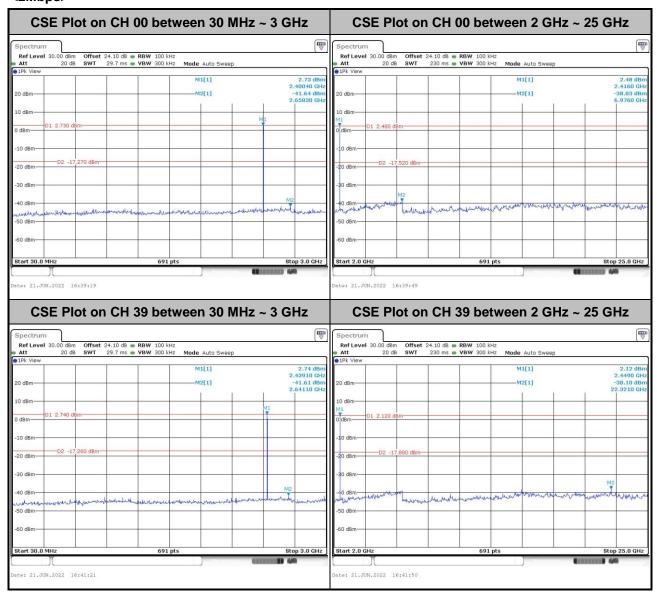

3.7.4 Test Setup

TEL: 886-3-327-0868 Page Number : 39 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

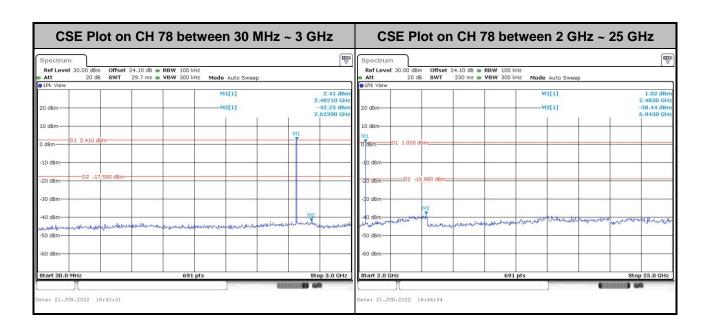

3.7.5 Test Result of Conducted Spurious Emission

<1Mbps>

Report No.: FR1N2539A

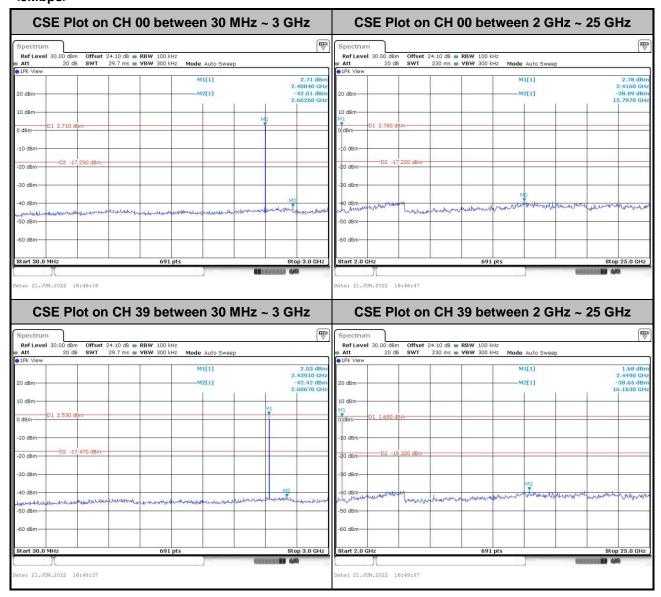

TEL: 886-3-327-0868 Page Number : 40 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

Report No.: FR1N2539A

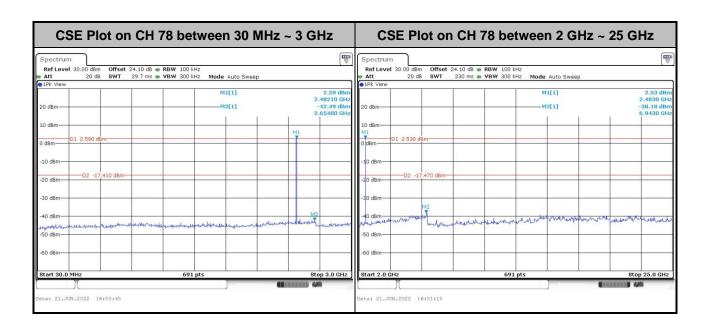

TEL: 886-3-327-0868 Page Number : 41 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

<2Mbps>

Report No.: FR1N2539A


TEL: 886-3-327-0868 Page Number : 42 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

Report No.: FR1N2539A


TEL: 886-3-327-0868 Page Number : 43 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

<3Mbps>

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : 44 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : 45 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR1N2539A

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

TEL: 886-3-327-0868 Page Number : 46 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.8.3 Test Procedures

1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.

Report No.: FR1N2539A

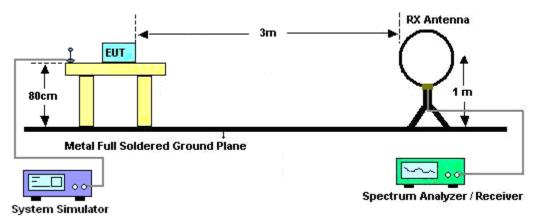
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

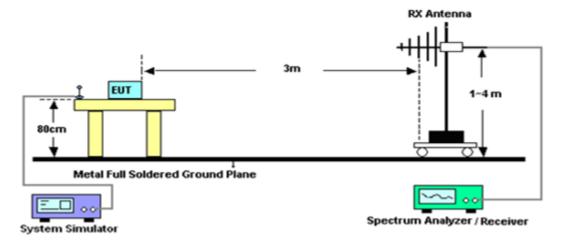
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log (Duty cycle)

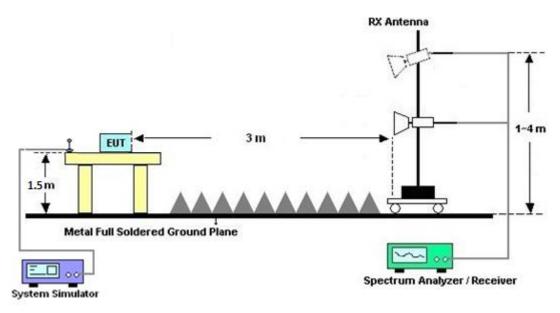

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-0868 Page Number : 47 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

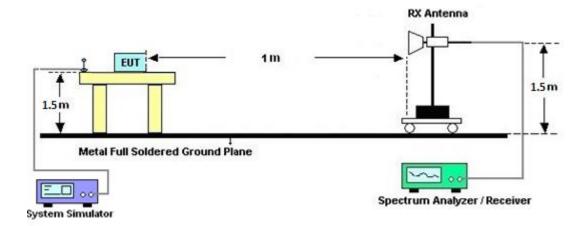

3.8.4 Test Setup

For radiated test below 30MHz



Report No.: FR1N2539A

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-0868 Page Number : 48 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

For radiated test above 18GHz

Report No.: FR1N2539A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

TEL: 886-3-327-0868 Page Number : 49 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

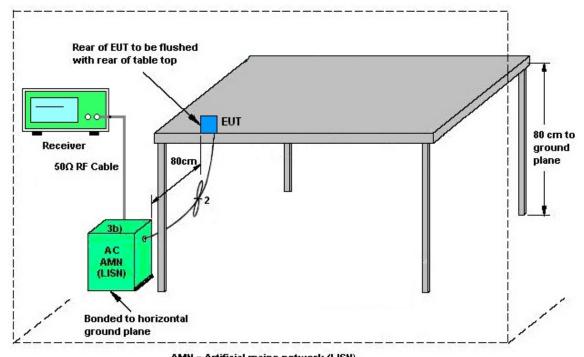
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR1N2539A

Eraguanay of amission (MHz)	Conducted limit (dBμV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-0868 Page Number : 50 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.9.4 Test Setup

Report No.: FR1N2539A

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 51 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR1N2539A

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-0868 Page Number : 52 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9kHz~30MHz	Sep. 07, 2021	Jun. 17, 2022~ Jun. 30, 2022	Sep. 06, 2022	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	40103 & 07	30MHz~1GHz	Apr. 24, 2022	Jun. 17, 2022~ Jun. 30, 2022	Apr. 23, 2023	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1241	1GHz~18GHz	Jul. 13, 2021	Jun. 17, 2022~ Jun. 30, 2022	Jul. 12, 2022	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00994	18GHz~40GHz	Nov. 04, 2021	Jun. 17, 2022~ Jun. 30, 2022	Nov. 03, 2022	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9kHz~1GHz	Dec. 15, 2021	Jun. 17, 2022~ Jun. 30, 2022	Dec. 14, 2022	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 17, 2022	Jun. 17, 2022~ Jun. 30, 2022	May 16, 2023	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Oct. 26, 2021	Jun. 17, 2022~ Jun. 30, 2022	Oct. 25, 2022	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 24, 2021	Jun. 17, 2022~ Jun. 30, 2022	Dec. 23, 2022	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Mar. 18, 2022	Jun. 17, 2022~ Jun. 30, 2022	Mar. 17, 2023	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303B	TP200889	N/A	Sep. 30, 2021	Jun. 17, 2022~ Jun. 30, 2022	Sep. 29, 2022	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Jun. 17, 2022~ Jun. 30, 2022	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jun. 17, 2022~ Jun. 30, 2022	N/A	Radiation (03CH13-HY)
Software	Audix	E3 6.2009-8-24	RK-000992	N/A	N/A	Jun. 17, 2022~ Jun. 30, 2022	N/A	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30MHz~18GHz	Feb. 09, 2022	Jun. 17, 2022~ Jun. 30, 2022	Feb. 08, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30MHz~18GHz	Feb. 09, 2022	Jun. 17, 2022~ Jun. 30, 2022	Feb. 08, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30MHz~18GHz	Feb. 09, 2022	Jun. 17, 2022~ Jun. 30, 2022	Feb. 08, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804011/2, 804012/2	18GHz~40GHz	Jan. 04, 2022	Jun. 17, 2022~ Jun. 30, 2022	Jan. 03, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 10, 2022	Jun. 17, 2022~ Jun. 30, 2022	Mar. 09, 2023	Radiation (03CH13-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN12	1.53GHz Low Pass Filter	Sep. 14, 2021	Jun. 17, 2022~ Jun. 30, 2022	Sep. 13, 2022	Radiation (03CH13-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40ST	SN5	6.75GHz High Pass Filter	Mar. 10, 2022	Jun. 17, 2022~ Jun. 30, 2022	Mar. 09, 2023	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN2	3GHz High Pass Filter	Jul. 12, 2021	Jun. 17, 2022~ Jun. 30, 2022	Jul. 11, 2022	Radiation (03CH13-HY)

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : 53 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	Date N/A	Jul. 05, 2022	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Jul. 05, 2022	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 29, 2021	Jul. 05, 2022	Oct. 28, 2022	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 16, 2022	Jul. 05, 2022	Mar. 15, 2023	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Feb. 16, 2022	Jul. 05, 2022	Feb. 15, 2023	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI7	100724	9kHz~7GHz	Feb. 24, 2022	Jul. 05, 2022	Feb. 23, 2023	Conduction (CO07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16, 2021	Jun. 09, 2022~ Jun. 21, 2022	Nov. 15, 2022	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Aug. 01, 2021	Jun. 09, 2022~ Jun. 21, 2022	Jul. 31, 2022	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GH z	Aug. 01, 2021	Jun. 09, 2022~ Jun. 21, 2022	Jul. 31, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	Jun. 09, 2022~ Jun. 21, 2022	Aug. 29, 2022	Conducted (TH05-HY)
BT Base Station (Measure)	Rohde & Schwarz	CBT	101136	BT 3.0	Oct. 17, 2021	Jun. 09, 2022~ Jun. 21, 2022	Oct. 16, 2022	Conducted (TH05-HY)
Switch Control Mainframe	E-IUSTRUME NT	ETF-1405-0	EC1900067 (BOX7)	N/A	Aug. 12, 2021	Jun. 09, 2022~ Jun. 21, 2022	Aug. 11, 2022	Conducted (TH05-HY)

Report No. : FR1N2539A

TEL: 886-3-327-0868 Page Number : 54 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	22.40
of 95% (U = 2Uc(y))	2.3 dB

Report No.: FR1N2539A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.0 dB
of 95% (U = 2Uc(y))	0.0 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2 dB
of 95% (U = 2Uc(y))	5.2 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

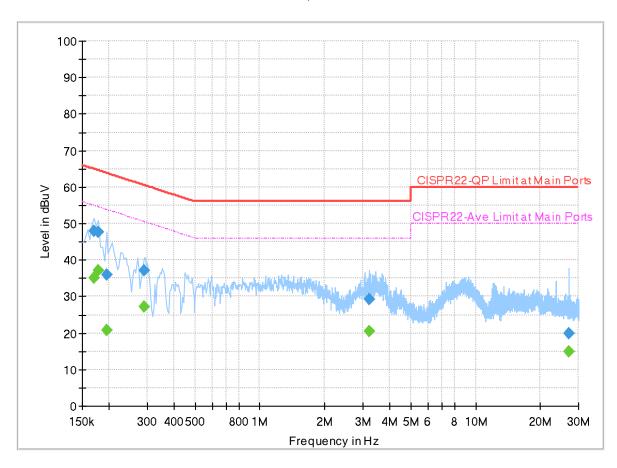
Measuring Uncertainty for a Level of Confidence	5.9 dB
of 95% (U = 2Uc(y))	5.9 db

TEL: 886-3-327-0868 Page Number : 55 of 55
FAX: 886-3-327-0855 Issue Date : Aug. 16, 2022

Appendix A. AC Conducted Emission Test Results

Tool Engineer	Lauia Chung	Temperature :	23.7~26.1℃
Test Engineer : L	Louis Chung	Relative Humidity :	50.2~55.6%

Report No.: FR1N2539A

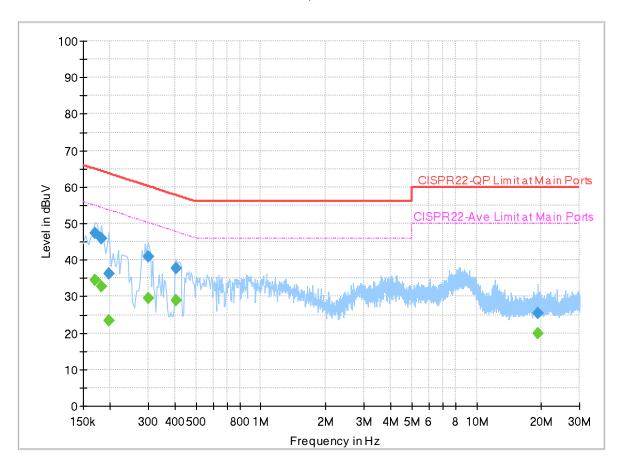

TEL: 886-3-327-0868 Page Number : A1 of A1

EUT Information

Report NO: 1N2539
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz

Phase: Line

Full Spectrum


Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.170000	· ,	34.99	54.96	19.97	L1	OFF	20.0
0.170000	47.86		64.96	17.10	L1	OFF	20.0
0.178000		37.07	54.58	17.51	L1	OFF	20.0
0.178000	47.73		64.58	16.85	L1	OFF	20.0
0.194000		20.69	53.86	33.17	L1	OFF	20.0
0.194000	35.94		63.86	27.92	L1	OFF	20.0
0.290000		27.15	50.52	23.37	L1	OFF	20.0
0.290000	37.14		60.52	23.38	L1	OFF	20.0
3.222000		20.51	46.00	25.49	L1	OFF	20.0
3.222000	29.22	-	56.00	26.78	L1	OFF	20.0
27.066000		14.78	50.00	35.22	L1	OFF	20.3
27.066000	19.83		60.00	40.17	L1	OFF	20.3

EUT Information

Report NO: 1N2539
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.170000		34.53	54.96	20.43	N	OFF	20.0
0.170000	47.38	-	64.96	17.58	N	OFF	20.0
0.182000		32.61	54.39	21.78	N	OFF	20.0
0.182000	45.95		64.39	18.44	N	OFF	20.0
0.198000		23.26	53.69	30.43	N	OFF	20.0
0.198000	36.29		63.69	27.40	N	OFF	20.0
0.302000		29.44	50.19	20.75	N	OFF	20.0
0.302000	40.82	-	60.19	19.37	N	OFF	20.0
0.406000		28.82	47.73	18.91	N	OFF	20.0
0.406000	37.71	-	57.73	20.02	N	OFF	20.0
19.330000		19.87	50.00	30.13	N	OFF	20.3
19.330000	25.50		60.00	34.50	N	OFF	20.3

Appendix B. Radiated Spurious Emission

Tost Engineer :	Test Engineer: Mancy Chou, Jacky Hong and Rain Lee	Temperature :	20~25°C
rest Engineer:		Relative Humidity :	50~60%

Report No.: FR1N2539A

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2331.525	46.18	-27.82	74	41.23	27.95	4.08	27.08	110	140	Р	Н
		2331.525	21.42	-32.58	54	-	-	-	-	-	-	Α	Н
	*	2402	98.78	-	-	94	27.7	4.14	27.06	110	140	Р	Н
	*	2402	74.02	-	-	-	-	-	-	-	-	Α	Н
ВТ													Н
CH00													Н
2402MHz		2322.39	45.74	-28.26	74	40.74	28.02	4.07	27.09	359	211	Р	V
2402WI12		2322.39	20.98	-33.02	54	-	-	-	-	-	-	Α	٧
	*	2402	98.59	-	-	93.81	27.7	4.14	27.06	359	211	Р	٧
	*	2402	73.83	-	-	-	-	-	-	-	-	Α	V
													٧
													V
		2359	45.51	-28.49	74	40.71	27.78	4.1	27.08	120	149	Р	Н
		2359	20.75	-33.25	54	-	-	-	-	-	-	Α	Н
	*	2441	98.84	-	-	94.09	27.62	4.18	27.05	120	149	Р	Н
	*	2441	74.08	-	-	-	-	-	-	-	-	Α	Н
DT		2487.75	45.13	-28.87	74	40.26	27.68	4.22	27.03	120	149	Р	Н
BT		2487.75	20.37	-33.63	54	-	-	-	-	-	-	Α	Н
CH 39 2441MHz		2375.24	45.4	-28.6	74	40.6	27.75	4.12	27.07	383	182	Р	V
244 HVH12		2375.24	20.64	-33.36	54	-	-	-	-	-	-	Α	٧
	*	2441	97.54	-	-	92.79	27.62	4.18	27.05	383	182	Р	٧
	*	2441	72.78	-	-	-	-	-	-	-	-	Α	V
		2494.96	45.72	-28.28	74	40.83	27.69	4.23	27.03	383	182	Р	V
		2494.96	20.96	-33.04	54	-	-	-	-	-	-	Α	٧

TEL: 886-3-327-0868 Page Number: B1 of B8

	*	2480	100.92	-	-	96.09	27.66	4.21	27.04	100	151	Р	Н
	*	2480	76.16	-	-	-	-	-	-	-	-	Α	Н
		2483.68	48.57	-25.43	74	43.72	27.67	4.22	27.04	100	151	Р	Н
		2483.68	23.81	-30.19	54	-	-	-	-	-	-	Α	Н
ВТ													Н
В1 CH 78													Н
2480MHz	*	2480	100.44	-	-	95.61	27.66	4.21	27.04	373	182	Р	V
240011112	*	2480	75.68	-	-	-	-	-	-	-	-	Α	V
		2483.8	46.67	-27.33	74	41.82	27.67	4.22	27.04	373	182	Р	V
		2483.8	21.91	-32.09	54	-	-	-	-	-	-	Α	V
													V
													V
	1. N	o other spuriou	s found.										
Remark	2. Al	I results are PA	SS against I	Peak and	Average lir	nit line.							

Report No. : FR1N2539A

TEL: 886-3-327-0868 Page Number : B2 of B8

2.4GHz 2400~2483.5MHz

Report No. : FR1N2539A

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		4804	38.32	-35.68	74	57.46	31.41	6.79	57.34	-	-	Р	Н
		4804	13.56	-40.44	54	-	-	1	-	-	-	Α	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
DT													Н
BT CH 00													Н
2402MHz		4804	38.27	-35.73	74	57.41	31.41	6.79	57.34	-	-	Р	V
2-102111112		4804	13.51	-40.49	54	-	-	-	-	-	-	Α	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

TEL: 886-3-327-0868 Page Number : B3 of B8

Table BT Antenna Peak Pol. Note **Frequency** Level Margin Limit Read Path Preamp Ant Line Level Factor Loss Factor Pos Pos Avg. (dB_µV) (dB) (MHz) (dBµV/m) (dB) (dBµV/m) (dB/m) (dB) (deg) (P/A) (H/V) (cm) 4882 38.76 -35.24 57.71 31.44 6.83 57.22 Н 74 4882 14 -40 54 Α Н -Ρ 7323 43.6 -30.4 74 55.43 37.05 8.46 57.34 Н 7323 18.84 -35.16 54 Α Η Н Н Н Н Н Н Н вт Н **CH 39** 4882 38.96 -35.04 74 57.91 31.44 6.83 57.22 Ρ V 2441MHz 4882 14.2 ٧ -39.8 54 Α Ρ ٧ 7323 43.96 -30.04 74 55.79 37.05 8.46 57.34 7323 19.2 -34.8 ٧ 54 Α ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : B4 of B8

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	38.77	-35.23	74	57.29	31.72	6.86	57.1	-	-	Р	Н
		4960	14.01	-39.99	54	-	-	-	-	-	-	Α	Н
		7440	43.76	-30.24	74	55.73	37.02	8.53	57.52	-	-	Р	Н
		7440	19	-35	54	-	-	-	-	-	-	Α	Н
													Н
													Н
													Н
													Н
													Н
													Н
ВТ													Н
CH 78													Н
2480MHz		4960	38.84	-35.16	74	57.36	31.72	6.86	57.1	-	-	Р	V
		4960	14.08	-39.92	54	-	-	-	-	-	-	Α	V
		7440	43.35	-30.65	74	55.32	37.02	8.53	57.52	-	-	Р	V
		7440	18.59	-35.41	54	-	-	-	-	-	-	Α	V
													V
													V
													V
													V
													V
													V
	1 No	o other spurious	s found										V
		results are PA		Peak and	l Average lim	it line							
Remark		e emission pos					ssion found	d with suf	ficient mar	gin agai	nst limit	line or	noise
		or only.	o.			- 30.00 0/11	- 5.5 10 4110			J 4941			
		J. J											

Report No. : FR1N2539A

TEL: 886-3-327-0868 Page Number : B5 of B8

Emission below 1GHz

Report No.: FR1N2539A

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	22.24	-17.76	40	29.33	24.53	0.72	32.34	-	-	Р	Н
		65.89	18.14	-21.86	40	37.47	12.07	0.9	32.3	-	-	Р	Н
		133.79	18.72	-24.78	43.5	32.41	17.44	1.16	32.29	-	-	Р	Н
		260.86	19.52	-26.48	46	30.19	20.05	1.5	32.22	-	-	Р	Н
		718.7	30.94	-15.06	46	33.85	26.93	2.33	32.17	-	-	Р	Н
		765.26	32.39	-13.61	46	34.08	28.07	2.35	32.11	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BT LF		30.97	21.94	-18.06	40	29.33	24.24	0.72	32.35	-	-	Р	V
LF		113.42	22.16	-21.34	43.5	36.26	17.1	1.11	32.31	-	-	Р	V
		260.86	18.7	-27.3	46	29.37	20.05	1.5	32.22	-	-	Р	V
		432.55	23.38	-22.62	46	30.6	23.04	1.92	32.18	-	-	Р	V
		568.35	26.9	-19.1	46	30.99	26.03	2.13	32.25	-	-	Р	V
		860.32	31.56	-14.44	46	31.51	29.19	2.59	31.73	-	-	Р	V
													V
													V
													V
													V
													V
													V

1. No other spurious found.

Remark

2. All results are PASS against limit line.

3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-0868 Page Number : B6 of B8

Note symbol

Report No. : FR1N2539A

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-0868 Page Number : B7 of B8

A calculation example for radiated spurious emission is shown as below:

Report No.: FR1N2539A

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

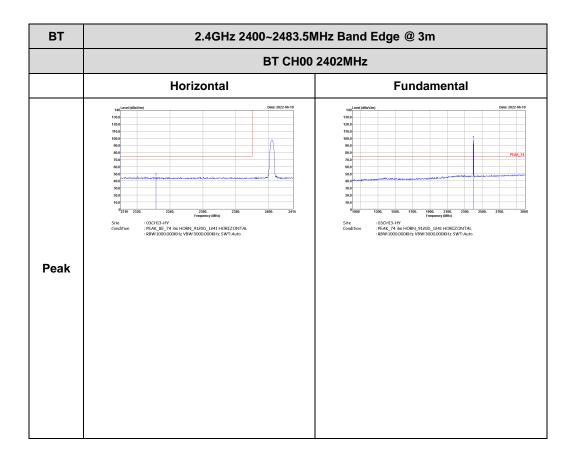
Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

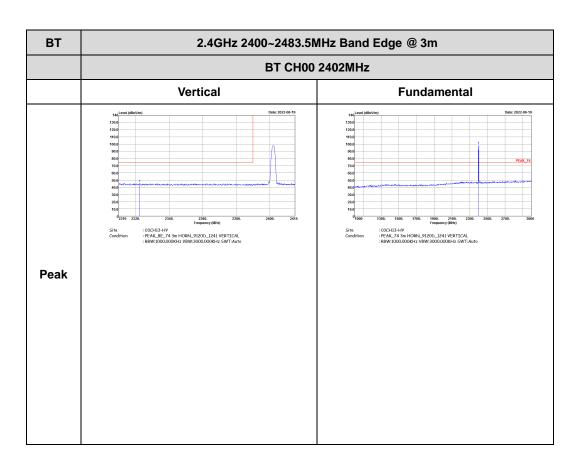
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".


TEL: 886-3-327-0868 Page Number : B8 of B8

Appendix C. Radiated Spurious Emission Plots

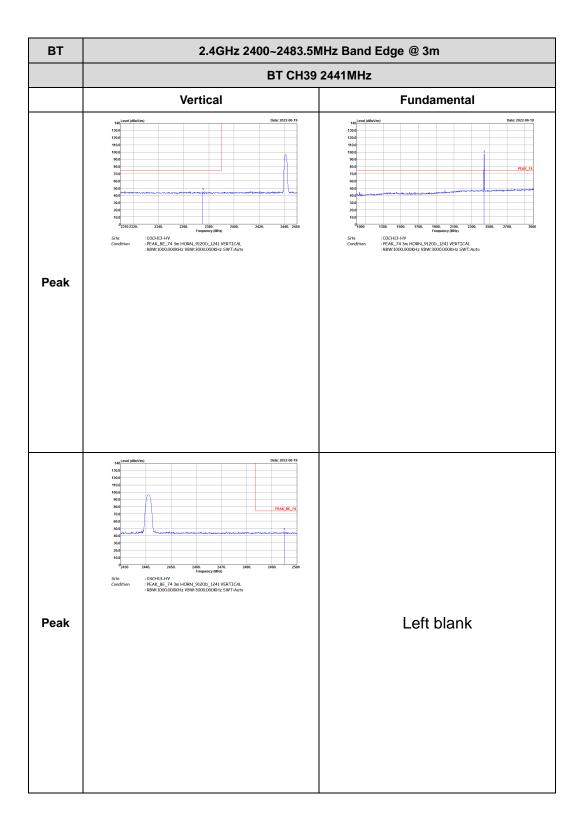

Tost Engineer :		Temperature :	20~25°C
Test Engineer :	Mancy Chou, Jacky Hong and Rain Lee	Relative Humidity :	50~60%

Report No.: FR1N2539A

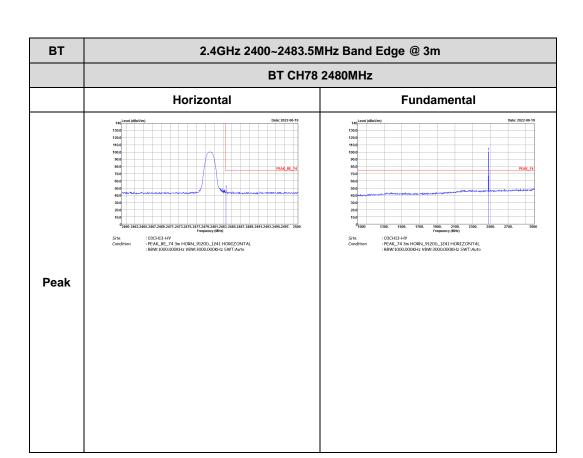
2.4GHz 2400~2483.5MHz BT (Band Edge @ 3m)

TEL: 886-3-327-0868 Page Number : C1 of C10

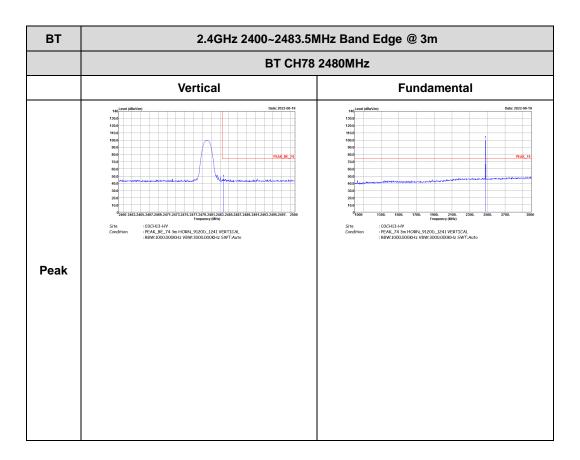
Report No.: FR1N2539A


TEL: 886-3-327-0868 Page Number : C2 of C10

вт 2.4GHz 2400~2483.5MHz Band Edge @ 3m BT CH39 2441MHz Horizontal **Fundamental** : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CH13-HY : PEAK_74 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak Left blank


Report No.: FR1N2539A

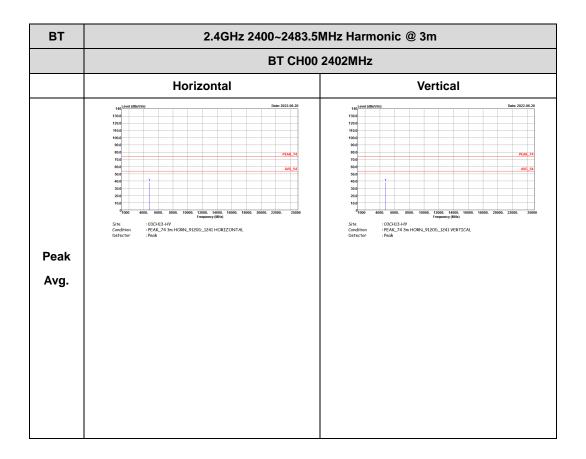
TEL: 886-3-327-0868 Page Number : C3 of C10



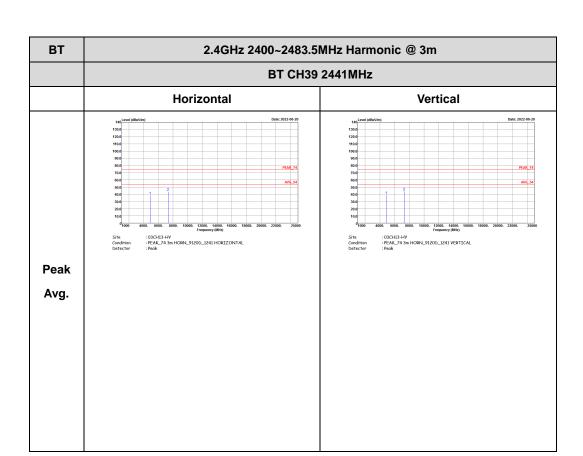
TEL: 886-3-327-0868 Page Number : C4 of C10

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : C5 of C10

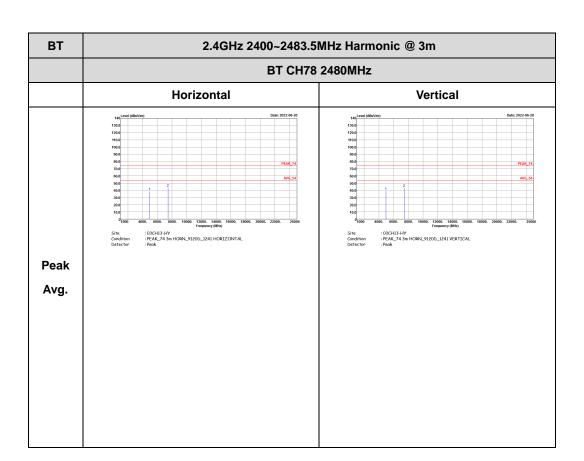

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : C6 of C10


2.4GHz 2400~2483.5MHz

Report No.: FR1N2539A

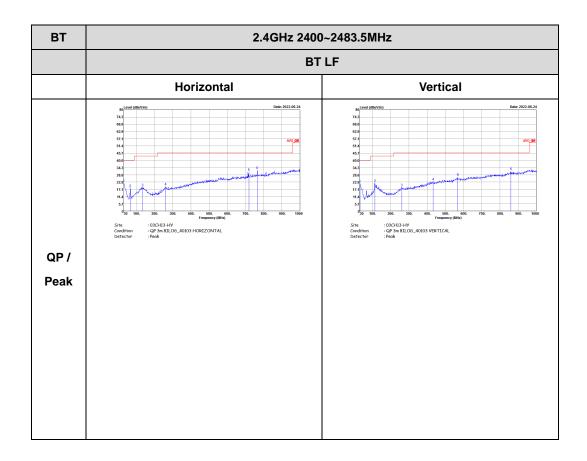
BT (Harmonic @ 3m)



TEL: 886-3-327-0868 Page Number : C7 of C10

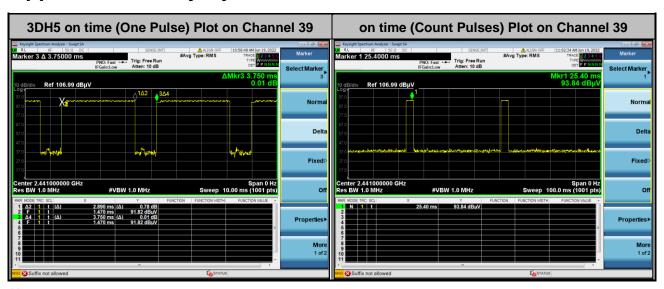
Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : C8 of C10



Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : C9 of C10


Emission below 1GHz 2.4GHz BT (LF)

Report No.: FR1N2539A

TEL: 886-3-327-0868 Page Number : C10 of C10

Appendix D. Duty Cycle Plots

Report No.: FR1N2539A

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.89 / 100 = 5.78 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

$$2.89 \text{ ms x } 20 \text{ channels} = 57.8 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.8 ms] = 2 hops Thus, the maximum possible ON time:

$$2.89 \text{ ms } x 2 = 5.78 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times log(5.78 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$$

TEL: 886-3-327-0868 Page Number : D1 of D1