

FCC RADIO TEST REPORT

FCC ID	: UZ7ET45CA
Equipment	: Tablet
Brand Name	: Zebra
Model Name	: ET45CA
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Jun. 10, 2022 and testing was performed from Jun. 14, 2022 to Jul. 04, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	v of Test Result	4
1	Gene	ral Description	
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	12
	2.4	Support Unit used in test configuration and system	13
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	13
3	Test	Result	14
	3.1	Number of Channel Measurement	14
	3.2	Hopping Channel Separation Measurement	16
	3.3	Dwell Time Measurement	20
	3.4	20dB and 99% Bandwidth Measurement	22
	3.5	Output Power Measurement	31
	3.6	Conducted Band Edges Measurement	33
	3.7	Conducted Spurious Emission Measurement	38
	3.8	Radiated Band Edges and Spurious Emission Measurement	42
	3.9	AC Conducted Emission Measurement	46
	3.10	Antenna Requirements	48
4		of Measuring Equipment	
5	Unce	rtainty of Evaluation	50
Арр	pendix	A. AC Conducted Emission Test Result	
Арр	pendix	B. Radiated Spurious Emission	
Арр	pendix	C. Radiated Spurious Emission Plots	
Арр	oendix	D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR1N2541A	01	Initial issue of report	Aug. 16, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	6.01 dB under the limit at 51.340 MHz
3.9	15.207	AC Conducted Emission	Pass	19.95 dB under the limit at 0.186 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.

2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation". **Comments and Explanations:**

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng Report Producer: Ming Chen

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature					
Equipment	Tablet					
Brand Name	Zebra					
Model Name	ET45CA					
FCC ID	UZ7ET45CA					
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA/LTE/5G NR/NFC/GNSS WLAN 11b/g/n HT20 WLAN 11a/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 WLAN 11ax HE20/HE40/HE80 Bluetooth BR/EDR/LE Note: 2.4G doesn't support BW 40/80.					
HW Version	EV2-2					
SW Version	ET45-userdebug 11 11-10-12.00-RG-U00-PRD-GSE MXJ release-keys					
MFD	10MAY22					
EUT Stage	Identical Prototype					

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories				
Battery	Brand Name	Zebra	Model Name	BT-000455

Supported Unit Used in Test Configuration and System					
AC Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US	
Earphone 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01	
Earphone 2	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01	
USB Cable (Type C to Type A)	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01	
Type C-Audio Cable (Type C to 3.5mm)	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01	

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
	Bluetooth BR (1Mbps): 3.65 dBm / 0.0023 W			
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps): 4.85 dBm / 0.0031 W			
	Bluetooth EDR (3Mbps): 5.30 dBm / 0.0034 W			
	Bluetooth BR (1Mbps): 0.894 MHz			
99% Occupied Bandwidth	Bluetooth EDR (2Mbps): 1.186 MHz			
	Bluetooth EDR (3Mbps): 1.175 MHz			
Antenna Type / Gain	IFA Antenna type with gain 1.39 dBi			
	Bluetooth BR (1Mbps) : GFSK			
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK			
	Bluetooth EDR (3Mbps) : 8-DPSK			

Remark:

- 1. For other wireless features of this EUT, test report will be issued separately.
- 2. The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH16-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

Test Configuration of Equipment Under Test 2

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

		Blue	tooth Average Output Po	ower
Channel	nannel Frequency GFSK / 1Mbps			
		DH1	DH5	
Ch00	2402MHz	1.66 dBm	1.47 dBm	1.45 dBm
Ch39	2441MHz	2.11 dBm	1.96 dBm	1.93 dBm
Ch78	2480MHz	3.04 dBm	2.87 dBm	2.86 dBm

		Blue	tooth Average Output Po	ower		
Channel Frequency π/4-DQPSK / 2Mbps						
		2DH1 2DH3 2D				
Ch00	2402MHz	1.17 dBm	1.12 dBm	1.08 dBm		
Ch39	2441MHz	2.12 dBm	2.09 dBm	2.08 dBm		
Ch78	2480MHz	1.11 dBm	1.09 dBm	1.05 dBm		

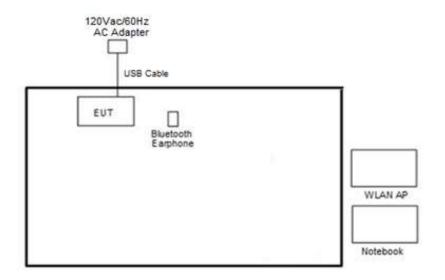
		Blue	ower				
Channel	Frequency	8-DPSK / 3Mbps					
		3DH1	3DH3	3DH5			
Ch00	2402MHz	1.18 dBm	1.14 dBm	1.12 dBm			
Ch39	2441MHz	2.13 dBm	2.12 dBm	2.11 dBm			
Ch78	2480MHz	1.13 dBm	1.11 dBm	1.09 dBm			

Bluetooth Peak Output Power									
Channel	Frequency	GFSK / 1Mbps							
		DH1	DH3	DH5					
Ch00	2402MHz	2.35 dBm	2.27 dBm	2.23 dBm					
Ch39	2441MHz	2.81 dBm	2.78 dBm	2.75 dBm					
Ch78	2480MHz	3.65 dBm	3.54 dBm	3.53 dBm					
		Bluetooth Peak Output Power							

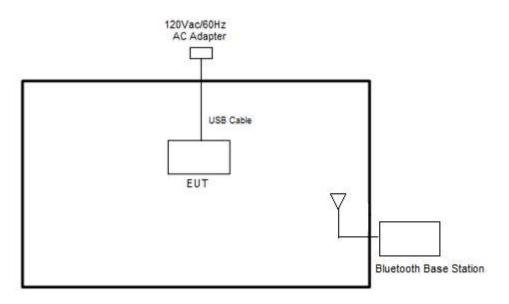
		Bluetooth Peak Output Power						
Channel	Frequency	ncy π/4-DQPSK / 2Mbps						
		2DH1	2DH3	2DH5				
Ch00	2402MHz	3.86 dBm	3.84 dBm	3.80 dBm				
Ch39	2441MHz	4.85 dBm	4.83 dBm	4.81 dBm				
Ch78	2480MHz	3.82 dBm	3.80 dBm	3.76 dBm				

		Blu	uetooth Peak Output Pov	ver					
Channel	Frequency	8-DPSK / 3Mbps							
		3DH1	3DH3	3DH5					
Ch00	2402MHz	4.23 dBm	4.20 dBm	4.17 dBm					
Ch39	2441MHz	5.30 dBm	5.27 dBm	5.26 dBm					
Ch78	2480MHz	4.20 dBm	4.18 dBm	4.15 dBm					

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X plane as worst plane, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


	Summary table of Test Cases								
Test Item	Data Rate / Modulation								
	Bluetooth BR 1MbpsBluetooth EDR 2MbpsBluetooth EDR 3MbpsGFSKπ /4-DQPSK8-DPSK								
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz						
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz						
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz						
	Bluetooth EDR 3Mbps 8-DPSK								
Radiated		Mode 1: CH00_2402 MHz							
Test Cases		Mode 2: CH39_2441 MHz							
		Mode 3: CH78_2480 MHz							
AC Conducted	Mode 1 :WLAN (2.4GHz)	Link + Bluetooth Link + USE	3 Cable (Charging from AC						
Emission	Adapter)								
	iated Test Cases, the worst	•	, ,						
-	highest RF output power in the preliminary tests. The conducted spurious emissions and								
	ted band edge measuremer r significantly frequencies fo		-						
	r eignineanay nequencies re								

The following summary table is showing all test modes to demonstrate in compliance with the standard.



2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth Tx Mode>

2.4	Support	Unit เ	ised in	test	configuration	and system	
-----	---------	--------	---------	------	---------------	------------	--

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Kinyo	BTE-3622	N/A	N/A	N/A
2.	WLAN AP	ASUS	RT-AC58	N/A	N/A	Unshielded, 1.8 m
3.	Notebook	Dell	P79G	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "cmd.exe (10.0.17763.1577)" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

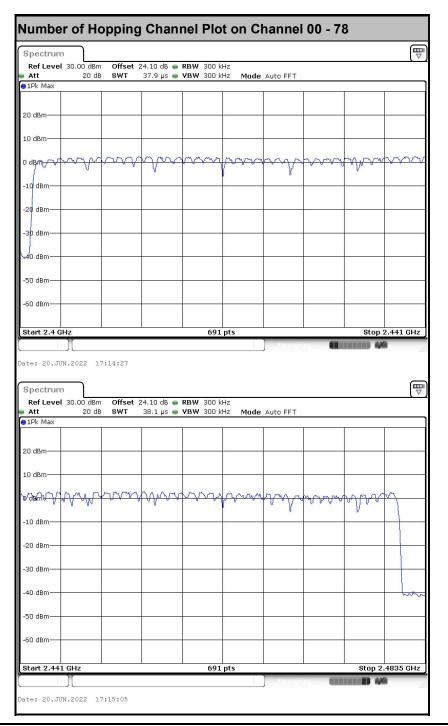
3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


EUT

Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

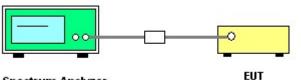
Test Engineer :	Eason Hua	ina 🗕	•	21~25℃ 51~54%
Number of Hopping (Channel)		Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79		20	> 15	Pass

: 15 of 50 Page Number Issue Date Report Version : 01

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

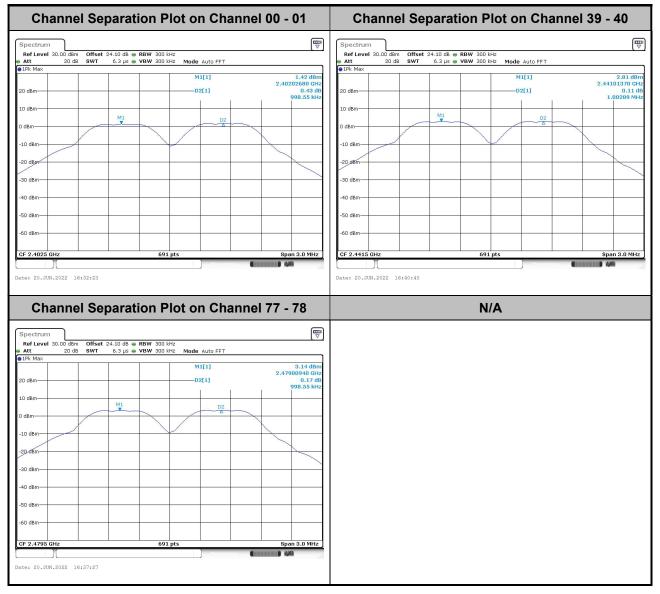
Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

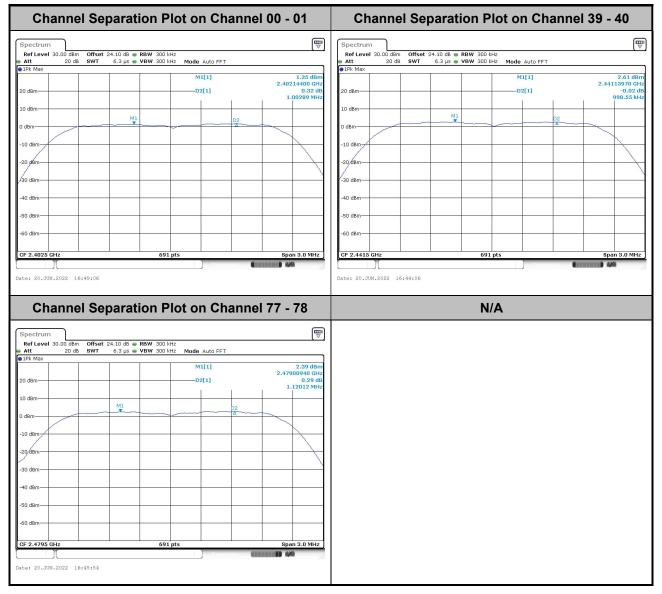
Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

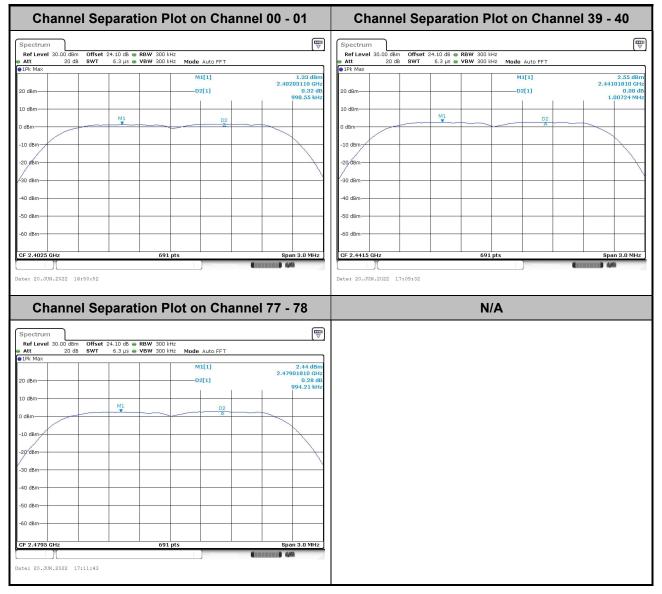
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.2.4 Test Setup

Spectrum Analyzer



<1Mbps>



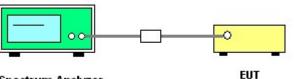
<2Mbps>

<3Mbps>

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

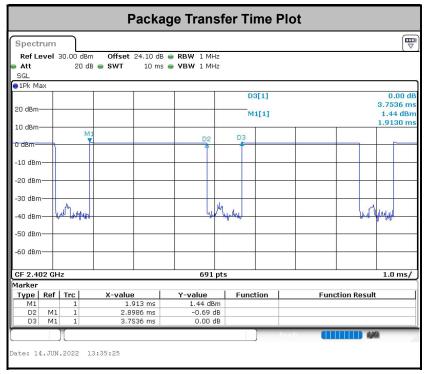

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Test En	gineer : Eason	Huang	Temperature: Relative Humidi		21~25° 51~54%	-	
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)		nits ec)	Pass/Fail
Normal	79	106.670	2.89	0.31	0	.4	Pass
AFH	20	53.330	2.89	0.15	0	.4	Pass

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

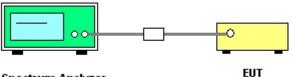
2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

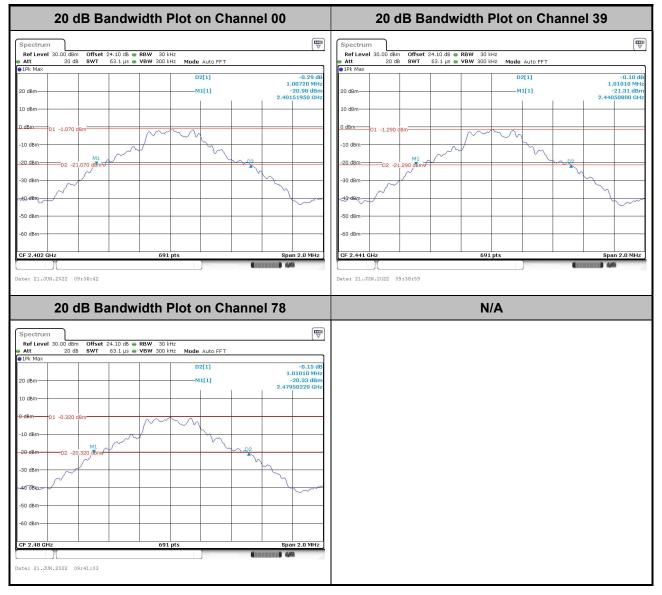
Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

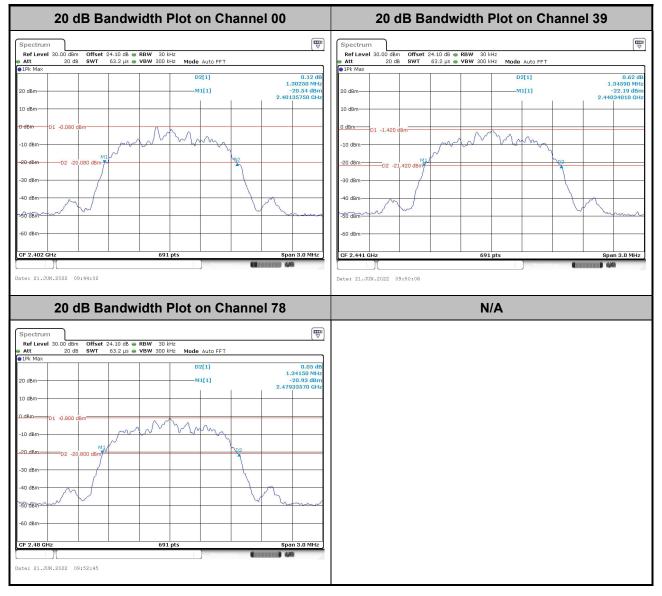
3.4.4 Test Setup

Spectrum Analyzer

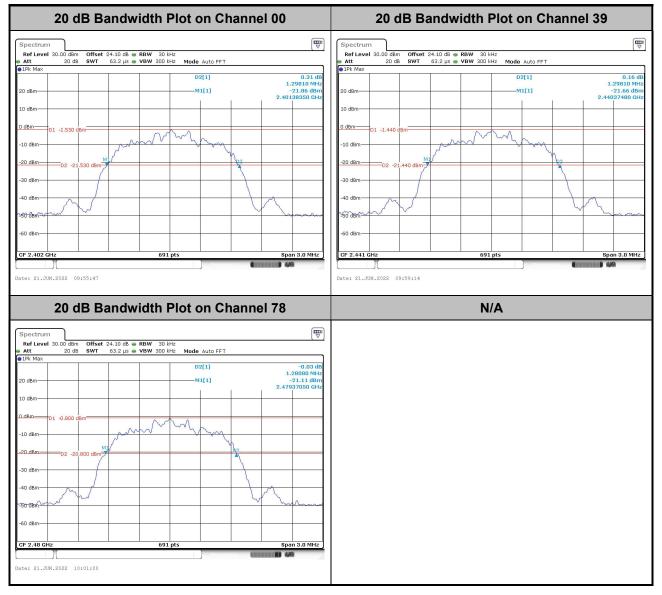


3.4.5 Test Result of 20dB Bandwidth

Test Engineer : Eason Huang				Temperature : Relative Humidity :	21~25℃ 51~54%	
Mod.	Data Rate	NTX	СН.	Freq. (MHz)	20db BW (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	1.007	Pass
DH	1Mbps	1	39	2441	1.010	Pass
DH	1Mbps	1	78	2480	1.010	Pass
2DH	2Mbps	1	0	2402	1.302	Pass
2DH	2Mbps	1	39	2441	1.345	Pass
2DH	2Mbps	1	78	2480	1.341	Pass
3DH	3Mbps	1	0	2402	1.298	Pass
3DH	3Mbps	1	39	2441	1.298	Pass
3DH	3Mbps	1	78	2480	1.280	Pass

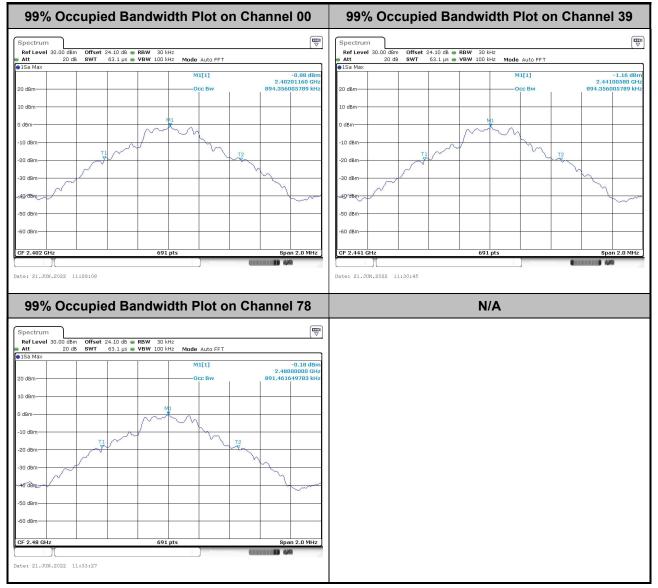


<1Mbps>



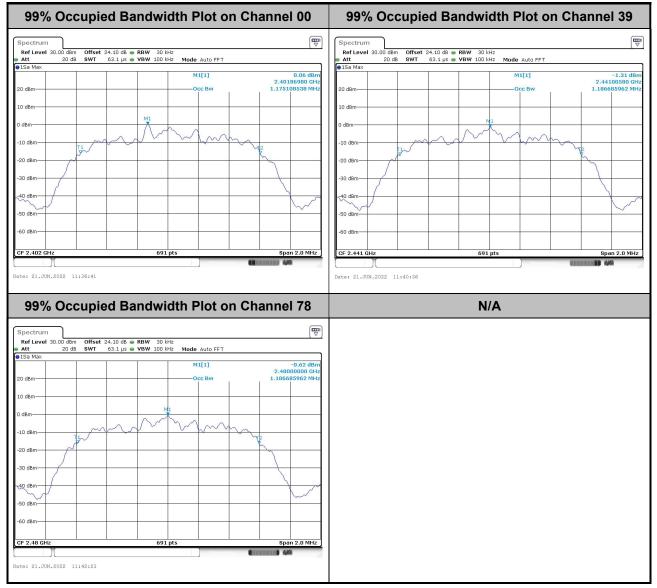
<2Mbps>

<3Mbps>

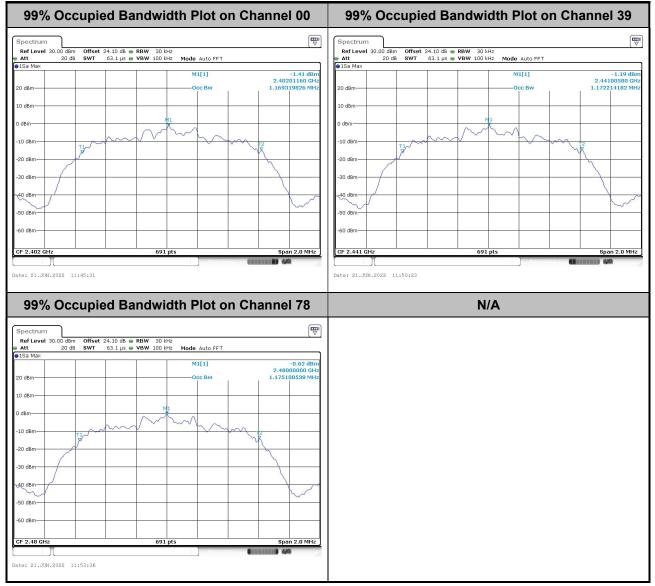


3.4.6 Test Result of 99% Occupied Bandwidth

Toot Engine			Temperature :	21~25 ℃		
Test Engine	er: Easo	n Huang			Relative Humidity :	51~54%
Mod.	Data Rate	NTX	СН.	Freq. (MHz)	99% Bandwidth (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.894	Pass
DH	1Mbps	1	39	2441	0.894	Pass
DH	1Mbps	1	78	2480	0.891	Pass
2DH	2Mbps	1	0	2402	1.175	Pass
2DH	2Mbps	1	39	2441	1.186	Pass
2DH	2Mbps	1	78	2480	1.186	Pass
3DH	3Mbps	1	0	2402	1.169	Pass
3DH	3Mbps	1	39	2441	1.172	Pass
3DH	3Mbps	1	78	2480	1.175	Pass


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

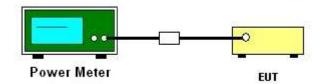
<3Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Test Engine	er: Eas	son Huar	าต	•	21~25℃
				Relative Humidity :	51~54%
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	2.35	20.97	Pass
DH5	39	1	2.81	20.97	Pass
	78	1	3.65	20.97	Pass
	0	1	3.86	20.97	Pass
2DH5	39	1	4.85	20.97	Pass
	78	1	3.82	20.97	Pass
	0	1	4.23	20.97	Pass
3DH5	39	1	5.30	20.97	Pass
	78	1	4.20	20.97	Pass

3.5.6 Test Result of Average Output Power (Reporting Only)

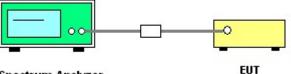
Test Engineer :	Eason Huang	Temperature :	21~25 ℃
		Relative Humidity :	51~54%

DH	СН.	NTX	Average Power	Duty Factor
			(dBm)	(dB)
DH5	0	1	1.66	5.20
	39	1	2.11	5.20
	78	1	3.04	5.20
2DH5	0	1	1.17	5.08
	39	1	2.12	5.08
	78	1	1.11	5.08
3DH3	0	1	1.18	5.08
	39	1	2.13	5.08
	78	1	1.13	5.08

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

Spectrum Analyzer