

FCC RF Test Report

FCC ID	: UZ7ET45CA
EQUIPMENT	: Tablet
BRAND NAME	: Zebra
Model Name	: ET45CA
APPLICANT	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
MANUFACTURER	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
STANDARD	:47 CFR Part 2, Part 27 Subpart Q
CLASSIFICATION	: PCS Licensed Transmitter (PCB)
TEST DATE(S)	: Jun. 18, 2022 ~ Jun. 28, 2022

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.26-2015 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	5
	1.4	Maximum EIRP Power and Emission Designator	6
	1.5	Testing Site	6
	1.6	Test Software	6
	1.7	Applied Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Test Mode	8
	2.2	Connection Diagram of Test System	9
	2.3	Support Unit used in test configuration and system	10
	2.4	Measurement Results Explanation Example	10
	2.5	Frequency List of Low/Middle/High Channels	10
3	CON	DUCTED TEST ITEMS	12
	3.1	Measuring Instruments	12
	3.2	Test Setup	12
	3.3	Test Result of Conducted Test	12
	3.4	Conducted Output Power Measurement	13
	3.5	Peak-to-Average Ratio	14
	3.6	EIRP	15
	3.7	Occupied Bandwidth	16
	3.8	Conducted Band Edge Measurement	17
	3.9	Conducted Spurious Emission Measurement	18
	3.10	Frequency Stability Measurement	19
4	RADI	ATED TEST ITEMS	20
	4.1	Measuring Instruments	20
	4.2	Test Setup	20
	4.3	Test Result of Radiated Test	21
	4.4	Radiated Spurious Emission Measurement	22
5	LIST	OF MEASURING EQUIPMENT	23
6	UNCE	RTAINTY OF EVALUATION	24
AP	PENDI	X A. TEST RESULTS OF CONDUCTED TEST	
AP	PENDI	X B. TEST RESULTS OF RADIATED TEST	
AP	PENDI	X C. TEST SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FG230412D	Rev. 01	Initial issue of report	Aug. 16, 2022

Report Section	FCC Rule	Description	Limit	Result	Remark
3.4	§2.1046	Conducted Output Power	_	Report Only	-
3.5	§27.50 (k)(4)	Peak-to-Average Ratio	<13dB	PASS	-
3.6	§27.50 (k)(3)	EIRP	EIRP < 1W (30dBm)	PASS	-
3.7	§2.1049	Occupied Bandwidth	_	Report Only	-
3.8	§2.1051 §27.53 (n)(2)	Conducted Band Edge Measurement	-13dBm/MHz	PASS	-
3.9	3.9 §2.1051 §27.53 (n)(2) Conducted Spurious Emission		-13dBm/MHz	PASS	-
3.10	§2.1055 §27.54	Frequency Stability Temperature & Voltage	Within the band	PASS	-
4.4 §27.53 (n)(2) Radiated Spurious Emission		-13dBm/MHz	PASS	Under limit 35.89 dB at 6984.000 MHz	

SUMMARY OF TEST RESULT

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Tablet			
Brand Name	Zebra			
Model Name ET45CA				
FCC ID	UZ7ET45CA			
HW Version EV2-2				
SW Version	ET45-userdebug 11 11-10-12.00-RG-U00-PRD-GSE MXJ release-keys			
MFD	10MAY22			
EUT Stage	Identical Prototype			

Specification of Accessory					
Battery	Brand Name	Zebra	Model Number	BT-000455	

Supported Unit Used in Test Configuration and System					
AC Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US	
Earphone 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01	
Earphone 2	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01	
USB Cable	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01	
(Type C to Type A)				CBL-1C5A-05BCZA-01	
Type C-Audio Cable (Type C to 3.5mm)	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01	

1.2 Product Specification of Equipment Under Test

	Product Feature				
Tx/Rx Frequency	LTE Band 42: 3450 MHz ~ 3550 MHz				
Bandwidth	5MHz / 10MHz / 15MHz / 20MHz				
Maximum Quitnut Douron to Antonno	LTE Band 42 : 23.21 dBm				
Maximum Output Power to Antenna	LTE Band 42 CA : 23.18 dBm				
Antenna Gain	LTE Band 42 : 0.3 dBi				
Type of Modulation	QPSK / 16QAM / 64QAM				

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Maximum EIRP Power and Emission Designator

LTE Band 42		QP	SK	16QAM/64QAM	
BW (MHz)	Frequency Range (MHz)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)
20	3460 ~ 3540	0.2244	17M9G7D	0.1750	17M9W7D

LTE Band 42 CA	QPSK		16QAM/64QAM	
BW (MHz)	Maximum EIRP(W) EIRP(W) EIRP(W) EIRP(W)		Maximum EIRP(W)	Emission Designator (99%OBW)
20MHz+20MHz	0.2228	37M6G7D	0.2193	37M4W7D

Note:

- 1. All modulations have been tested, only the worst test results of PSK & QAM are shown in the report.
- 2. Based on engineering evaluation, only the maximum bandwidth and the worst modulation test results are shown in the report.

1.5 Testing Site

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)				
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158 FAX : +86-512-57900958				
Tool Sile No	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
Test Site No.	03CH04-KS TH01-KS	CN1257	314309		

1.6 Test Software

lte	em	Site	Manufacture	Name	Version
	1.	03CH04-KS	AUDIX	E3	6.2009-8-24a

1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 2, Part 27 Subpart Q
- ANSI C63.26-2015
- FCC KDB 971168 Power Meas License Digital Systems D01 v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- ٠

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

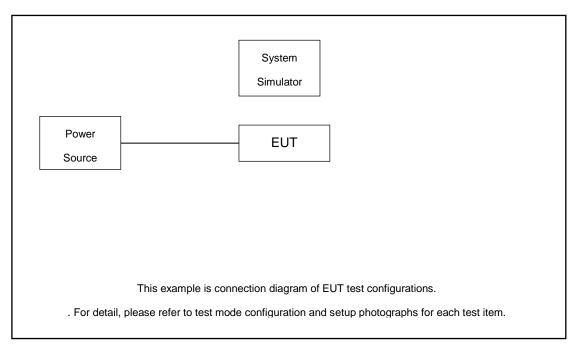
2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes to find the maximum emission.

-		Bandwidth (MHz)	Modulation	RB #	Test Channel	
Test Cases	Band	eg. 5M, 10M, 15M, 20M	eg. QPSK, 16QAM, 64QAM	1RB, Partial RB, Full RB	L/M/H	
Max. Output Power	LTE Band 42	5M, 10M, 15M, 20M	QPSK, 16QAM, 64QAM	1RB, Partial RB, Full RB	L, M, H	
Peak-to-Average Ratio	LTE Band 42	20M	QPSK, 16QAM, 64QAM	Full RB	М	
E.I.R.P	LTE Band 42	5M, 10M, 15M, 20M	QPSK, 16QAM, 64QAM	1RB, Partial RB, Full RB	L, M, H	
26dB and 99% Bandwidth	LTE Band 42	20M	QPSK, 16QAM	Full RB	М	
Conducted Band Edge	LTE Band 42	5M, 10M, 15M, 20M	QPSK, 16QAM, 64QAM	1RB, Full RB	L, H	
Conducted Spurious Emission	LTE Band 42	5M, 10M, 15M, 20M	QPSK	1RB	L, M, H	
Frequency Stability	LTE Band 42	10M	QPSK	1RB	М	
Radiated Spurious Emission	LTE Band 42	Wa	Worst case from maximum power			
Note:						


Note:

The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported.

Test Items	Band	Bandwidth (MHz)						Mode	ulation		RB #		ŧ		Test ann						
		20+20	20+15	15+20	20+10	10+20	20+5	5+20	15+15	15+10	10+15	QPSK	16QAM	64QAM	256QAM	1	Half	Full	L	м	н
Max. Output Power	42C_CA	v	v	v	v	v	v	v	-	-	-	v	v	×	-	v	v	v	v	v	v
26dB and 99% Bandwidth	42C_CA	v							-	-	-	v	v		-			v		v	
Conducted Band Edge	42C_CA	v	v	v	v	v	v	v	-	-	-	v	v	>	-	v		v	v		v
Conducted Spurious Emission	42C_CA	v	v	v	v	v	v	v	-	-	-	v			-	v			v	>	v
E.I.R.P.	42C_CA	v	v	v	v	v	v	v	-	-	-	v	v	v	-	v			v	v	v
Radiated Spurious Emission	42C_CA						-	-	v	/orst (Case								v	v	v
Note	2. The 3. The	mark " device	-" mea is inv	" means that this configuration is chosen for testing " means that this bandwidth is not supported. is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different et and modulations in exploratory test. Subsequently, only the worst case emissions are reported.																	

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

lt	tem	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
	1.	Power Supply	GWINSTEK	PSS-2002	N/A	N/A	Unshielded, 1.8 m
	2.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 6.5 dB.

Example :

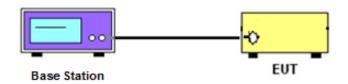
Offset(dB) = RF cable loss(dB).

= 6.5 (dB)

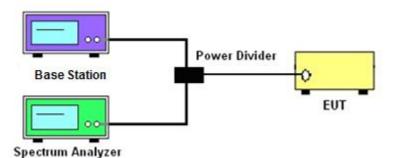
2.5 Frequency List of Low/Middle/High Channels

	LTE Band 42 Ch	annel and Frequen	cy List	
BW [MHz]	Channel/Frequency(MHz)	Channel/Frequency(MHz) Lowest		
20	Channel	42190	42590	42990
20	Frequency	3460	3500	3540
15	Channel	42165	42590	43015
15	Frequency	3457.5	3500	3542.5
10	Channel	42140	42590	43040
10	Frequency	3455	3500	3545
5	Channel	42115	42590	43065
5	Frequency	3452.5	3500	3547.5

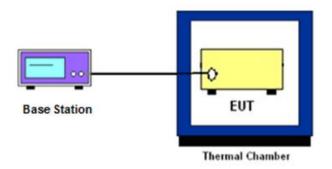
		LTE Band 42C_CA	Channel and Frequ	iency List	
BW [MHz]	Channel	/Frequency(MHz)	Lowest	Middle	Highest
	PCC	Channel	42190	42590	42792
20 + 20	FCC	Frequency	3460	3500	3520.2
20 + 20	SCC	Channel	42388	42788	42990
	300	Frequency	3479.8	3519.8	3540
	PCC	Channel	42190	42590	42844
20 + 15	PCC	Frequency	3460	3500	3525.4
20 + 15	SCC	Channel	42361	42761	43015
	300	Frequency	3477.1	3517.1	3542.5
	PCC	Channel	42165	42590	42819
15 + 20	PCC	Frequency	3457.5	3500	3522.9
15 + 20	SCC	Channel	42336	42761	42990
		Frequency	3474.6	3517.1	3540
	PCC	Channel	42190	42590	42896
20 + 10	PUU	Frequency	3460	3500	3530.6
20 + 10	SCC	Channel	42334	42734	43040
	300	Frequency	3474.4	3514.4	3545
	PCC	Channel	42140	42590	42846
10 . 20	PUU	Frequency	3455	3500	3525.6
10 + 20	SCC	Channel	42284	42734	42990
	SUC	Frequency	3469.4	3514.4	3540
	PCC	Channel	42190	42590	42948
20 . 5	PCC	Frequency	3460	3500	3535.8
20 + 5	800	Channel	42307	42707	43065
	SCC	Frequency	3471.7	3511.7	3547.5
	DCC	Channel	42115	42590	42873
5 . 00	PCC	Frequency	3452.5	3500	3528.3
5 + 20	800	Channel	42232	42707	42990
	SCC	Frequency	3464.2	3511.7	3540


3 Conducted Test Items

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.2 Test Setup


3.2.1 Conducted Output Power

3.2.2 Peak-to-Average Ratio, Occupied / 26dB Bandwidth, Band-Edge and Conducted Spurious Emission

3.2.3 Frequency Stability

3.3 Test Result of Conducted Test

Please refer to Appendix A.

3.4 Conducted Output Power Measurement

3.4.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.4.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.2
- 2. The transmitter output port was connected to the system simulator.
- 3. Set EUT at maximum power through the system simulator.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure and record the power level from the system simulator.

3.5 Peak-to-Average Ratio

3.5.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.5.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.2.3.4 (CCDF).
- 2. The EUT was connected to spectrum and system simulator via a power divider.
- 3. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 4. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 5. Record the deviation as Peak to Average Ratio.

3.6 EIRP

3.6.1 Description of EIRP Limit

§ 27.50 (k)(3)

Mobile devices are limited to 1Watt (30 dBm) EIRP. Mobile devices operating in these bands must employ a means for limiting power to the minimum necessary for successful communications

3.6.2 Test Procedures

- 1. According to KDB 412172 D01 Power Approach,
- 2. EIRP = P_T + G_T L_C , ERP = EIRP -2.15, where
 - P_T = transmitter output power in dBm
 - G_T = gain of the transmitting antenna in dBi
 - L_{C} = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.7 Occupied Bandwidth

3.7.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.7.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.4
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 4. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 5. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
- 7. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 8. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 9. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.8 Conducted Band Edge Measurement

3.8.1 Description of Conducted Band Edge Measurement

§ 27.53 (n)(2)

For mobile operations in the 3450-3550 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed -13 dBm/MHz.

Compliance with this paragraph is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed, but limited to a maximum of 200 kHz. In the bands between 1 and 5 MHz removed from the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be 500 kHz.

3.8.2 Test Procedures

- 1. The testing follows ANSI C63.26 section 5.7
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 3. The band edges of low and high channels for the highest RF powers were measured.
- 4. Set RBW ≥ 1% EBW but limited to a maximum of 200 kHz in the 1MHz band immediately outside and adjacent to the band edge.
- 5. Beyond the 1 MHz and 5 MHz removed from the band edge, set RBW \geq 500KHz.
- 6. Beyond the 5 MHz removed from the band edge, set RBW = 1MHz.
- 7. Set spectrum analyzer with RMS detector.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. Checked that all the results comply with the emission limit line.

3.9 Conducted Spurious Emission Measurement

3.9.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges shall not exceed -13 dBm/MHz.

It is measured by means of a calibrated spectrum analyzer and scanned from 9 kHz up to a frequency including its 10th harmonic.

3.9.2 Test Procedures

- 1. The testing follows ANSI C63.26 section 5.7
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. The middle channel for the highest RF power within the transmitting frequency was measured.
- 5. The conducted spurious emission for the whole frequency range was taken.
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 7. Set spectrum analyzer with RMS detector.
- 8. Taking the record of maximum spurious emission.
- 9. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 10. Checked that all the results comply with the emission limit line.

3.10 Frequency Stability Measurement

3.10.1 Description of Frequency Stability Measurement

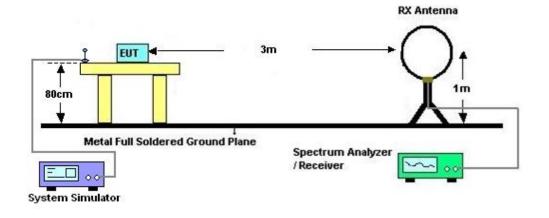
The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block.

3.10.2 Test Procedures for Temperature Variation

- 1. The testing follows ANSI C63.26 section 5.6.4
- 2. The EUT was set up in the thermal chamber and connected with the system simulator.
- 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 4. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.10.3 Test Procedures for Voltage Variation

- 1. The testing follows ANSI C63.26 section 5.6.5.
- 2. The EUT was placed in a temperature chamber at 20±5°C and connected with the system simulator.
- 3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value for other than hand carried battery equipment.
- 4. For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.
- 5. The variation in frequency was measured for the worst case.

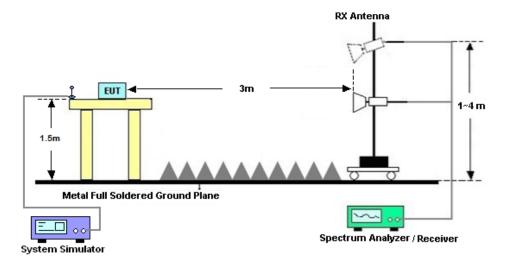

4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.2 Test Setup

4.2.1 For radiated test below 30MHz



4.2.2 For radiated test from 30MHz to 1GHz

4.2.3 For radiated test above 1GHz

4.3 Test Result of Radiated Test

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Please refer to Appendix B.

4.4 Radiated Spurious Emission Measurement

4.4.1 Description of Radiated Spurious Emission

The radiated spurious emission was measured by substitution method according to ANSI/TIA-603-E.

The power of any emission outside of the authorized operating frequency ranges shall not exceed -13 dBm/MHz.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.5
- 2. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 5. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- 6. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 7. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 8. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 9. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.

EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain ERP (dBm) = EIRP - 2.15

10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 14, 2021	Jun. 18, 2022~ Jun. 22, 2022	Oct. 13, 2022	Conducted (TH01-KS)
Power divider	STI	STI08-0055	-	0.5~40GHz	Aug. 26, 2021	Jun. 18, 2022~ Jun. 22, 2022	Aug. 25, 2022	Conducted (TH01-KS)
Temperature & humidity chamber	Hongzhan	LP-150U	H2014011440	-40~+150°C 20%~95%RH	Jul. 12, 2021	Jun. 18, 2022~ Jun. 22, 2022	Jul. 11, 2022	Conducted (TH01-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY57541079	10Hz-44G,MAX 30dB	Oct. 14, 2021	Jun. 28, 2022	Oct. 13, 2022	Radiation (03CH04-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 30, 2021	Jun. 28, 2022	Oct. 29, 2022	Radiation (03CH04-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	May 30, 2022	Jun. 28, 2022	May 29, 2023	Radiation (03CH04-KS)
Horn Antenna	Schwarzbeck	BBHA9120D	1284	1GHz~18GHz	Oct. 18, 2021	Jun. 28, 2022	Oct. 18, 2022	Radiation (03CH04-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2022	Jun. 28, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Jan. 05, 2022	Jun. 28, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
Amplifier	MITEQ	EM18G40G GA	060728	18~40GHz	Jan. 05, 2022	Jun. 28, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
high gain Amplifier	MITEQ	AMF-7D-00 101800-30-1 0P	2025788	1Ghz-18Ghz	Jul. 30, 2021	Jun. 28, 2022	Jul. 29, 2022	Radiation (03CH04-KS)
Amplifier	Keysight	83017A	MY57280106	500MHz~26.5GHz	Oct. 13, 2021	Jun. 28, 2022	Oct. 12, 2022	Radiation (03CH04-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Jun. 28, 2022	NCR	Radiation (03CH04-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jun. 28, 2022	NCR	Radiation (03CH04-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jun. 28, 2022	NCR	Radiation (03CH04-KS)

NCR: No Calibration Required

6 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.26-2015. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	.3dB
--	------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.8dB
--	-------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	2.8dB
Confidence of 95% (U = 2Uc(y))	2.608

----- THE END ------

Appendix A. Test Results of Conducted Test

Test Engineer :		Temperature :	22~23°C
	Lex Wu	Relative Humidity :	40~42%

Conducted Output Power(Average power) and EIRP

LTE Band 42:

				Power	Power	Power				
BW	Modulation	RB Size	RB	Low	Middle	High				
[MHz]	WOULIALION	KD SIZE	Offset	Ch. /	Ch. /	Ch. /		EIRP(W)		
				Freq.	Freq.	Freq.				
	Chan	nel		42190	42590	42990				
	Frequency	y (MHz)		3460	3500	3540	L	М	Н	
20	QPSK	1	0	23.11	23.21	23.16	0.2193	0.2244	0.2218	
20	QPSK	1	99	22.95	23.09	22.96	0.2113	0.2183	0.2118	
20	QPSK	100	0	22.16	22.22	22.06	0.1762	0.1786	0.1722	
20	16QAM	1	0	22.06	22.13	21.96	0.1722	0.1750	0.1683	
20	64QAM	1	0	20.94	21.10	20.96	0.1330	0.1380	0.1337	
	Chan	nel		42165	42590	43015		EIRP(W)		
	Frequency	y (MHz)		3457.5	3500	3542.5	L	М	Н	
15	QPSK	1	0	22.94	23.18	23.12	0.2109	0.2228	0.2198	
15	16QAM	1	0	21.80	22.09	22.06	0.1622	0.1734	0.1722	
	Chan	nel		42140	42590	43040		EIRP(W)		
	Frequency	y (MHz)		3455	3500	3545	L	М	Н	
10	QPSK	1	0	22.99	23.15	23.14	0.2133	0.2213	0.2208	
10	16QAM	1	0	21.90	22.02	21.85	0.1660	0.1706	0.1641	
Channel				42115	42590	43065		EIRP(W)		
	Frequency	y (MHz)		3452.5	3500	3547.5	L	М	Н	
5	QPSK	1	0	23.03	23.08	23.04	0.2153	0.2178	0.2158	
5	16QAM	1	0	21.93	22.08	21.82	0.1671	0.1730	0.1629	

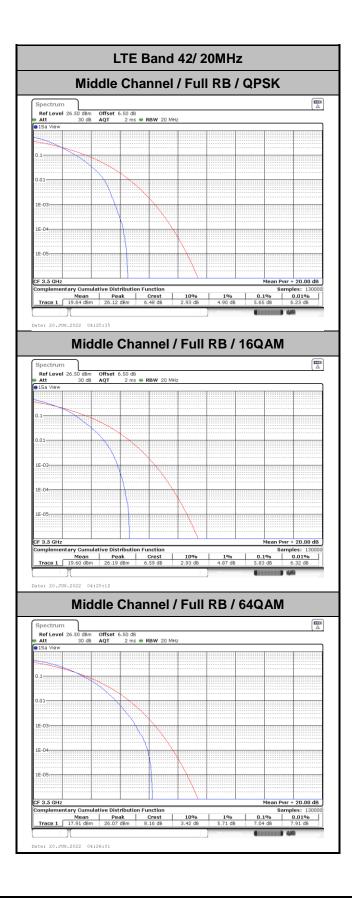
LTE Band 42 CA:

		Combina	tion 20MHz+2	0MHz (100RE	8+100RB)					
Observat		P	CC	S	CC	Measured				
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)			
L	QPSK	1	Max	1	0	22.96	0.2118			
М	QPSK	1	Max	1	0	23.18	0.2228			
Н	QPSK	1	Max	1	0	23.10	0.2188			
L	16QAM	1	Max	1	0	22.84	0.2061			
М	16QAM	1	Max	1	0	23.11	0.2193			
н	16QAM	1	Max	1	0	23.05	0.2163			
L	64QAM	1	Max	1	0	22.62	0.1959			
М	64QAM	1	Max	1	0	22.85	0.2065			
Н	64QAM	1	Max	1	0	22.74	0.2014			
Combination 20MHz+15MHz (100RB+75RB)										
Observat	Maskilation	P	CC	S	CC	Measured				
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)			
М	QPSK	1	Max	1	0	23.13	0.2203			
М	16QAM	1	Max	1	0	23.08	0.2178			
		Combina	ation 15MHz+2	20MHz (100R	B+75RB)					
Observat	Maskilation	P	CC	S	CC	Measured	EIRP(W)			
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power				
М	QPSK	1	Max	1	0	23.10	0.2188			
М	16QAM	1	Max	1	0	23.04	0.2158			
		Combina	ation 20MHz+*	10MHz (100R	B+50RB)					
Channel		P	CC	S	CC	Measured				
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)			
М	QPSK	1	Max	1	0	23.09	0.2183			
М	16QAM	1	Max	1	0	23.02	0.2148			
		Combina	ation 10MHz+2	20MHz (50RB	+100RB)					
Channel	Modulation	P	CC	S	CC	Measured				
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)			
М	QPSK	1	Max	1	0	23.12	0.2198			
М	16QAM	1	Max	1	0	23.07	0.2173			
		Combin	ation 20MHz+	5MHz (100RE	8+25RB)					
Channel	Modulation	P	CC	S	CC	Measured	EIRP(W)			

Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958 Page Number : A2 of A55

Report No. : FG230412D

		RB Size	RB offset	RB Size	RB offset			
М	QPSK	1	Max	1	0	23.09	0.2183	
М	16QAM	1	Max	1	0	23.03	0.2153	
Combination 5MHz+20MHz (25RB+100RB)								
Channel	Channel Modulation PCC		CC	SCC		Measured		
Channel	Wouldtion	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)	
М	QPSK	1	Max	1	0	23.05	0.2163	
М	16QAM	1	Max	1	0	23.00	0.2138	



LTE Band 42

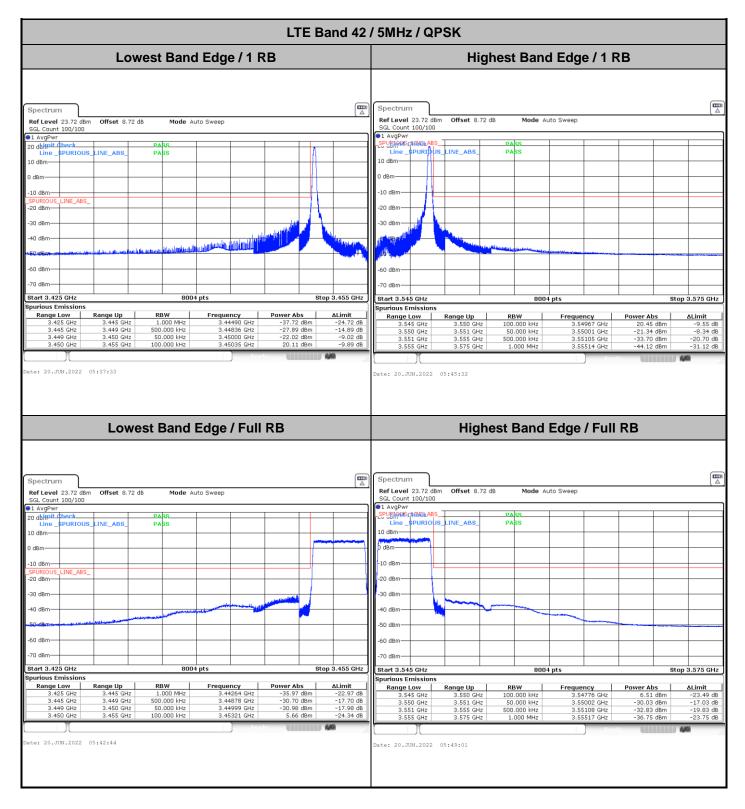
Peak-to-Average Ratio

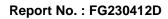
Mode	ព			
Mod.	QPSK	16QAM	64QAM	Limit: 13dB
RB Size	Full RB	Full RB	Full RB	Result
Middle CH	5.65	5.83	7.04	PASS

26dB Bandwidth

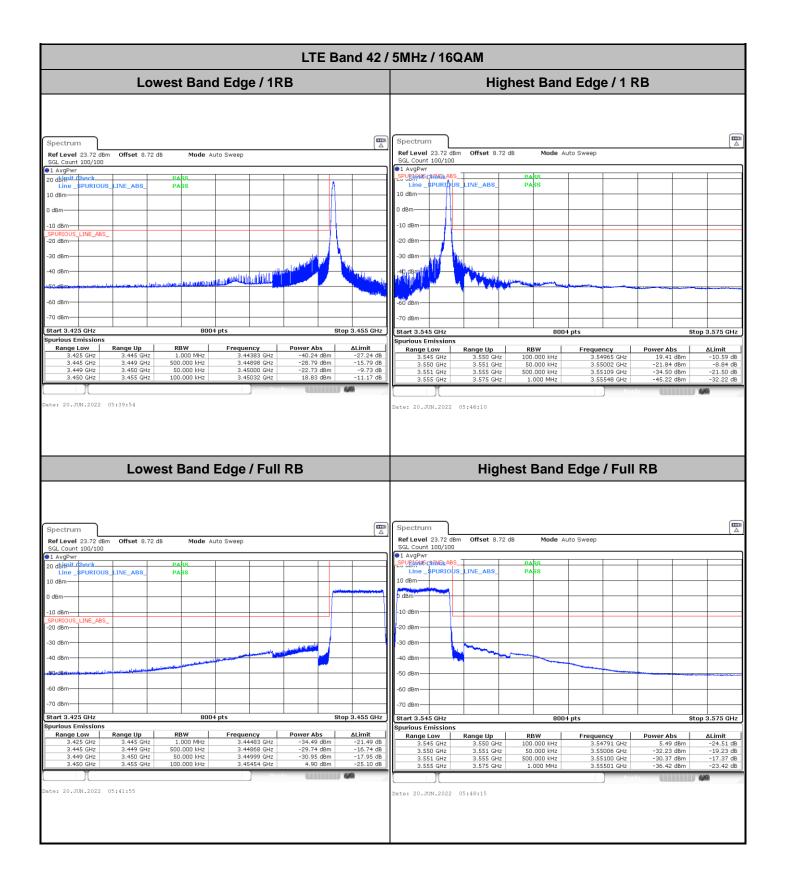
Mode	LTE Band 42 : 26dB BW(MHz)				
BW	20MHz				
Mod.	QPSK	16QAM			
Middle CH	18.86	18.78			

Μ	iddle Ch	annel /	20MHz	/ QPSK	N	liddle Cha	annel / 2	20MHz /	16QAM	
Spectrum Ref Level 26.50 dB Att 30 SGL Count 100/100	m Offset 6.50 dB ∈ B SWT 18.9 µs ∈		Mode Auto FFT		Spectrum Ref Level 26.50 Att 3 SGL Count 100/10 PIPk Max	0 dB SWT 18.9 µs (Mode Auto FFT		E
20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm			MI[1] Mda BBM Q factor Q factor	13.10 dbm 3.4990010 dtz 20.00 db 18.801000000 Mtz 1855	20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm			MI[1] MI odf Q factor Q factor	3.50	13.10 dBr 141360 GH 26.00 d 00000 MH 186.
CF 3.5 GHz		1001 pt	s	Span 40.0 MHz	CF 3.5 GHz		1001 pt	s	Span	40.0 MHz
Marker Type Ref Trc M1 1 T1 1 T2 1	X-value 3.498801 GHz 3.490689 GHz 3.50955 GHz	Y-value 13.10 dBm -10.58 dBm -12.89 dBm	Function ndB down ndB Q factor	Function Result 18.861 MHz 26.00 dB 185.5	Marker Type Ref Trc M1 1 T1 1 T2 1	3.504436 GHz 3.490529 GHz	Y-value 13.18 dBm -12.47 dBm -11.57 dBm	Function ndB down ndB Q factor	Function Result 1	8.781 MHz 26.00 dB 186.6

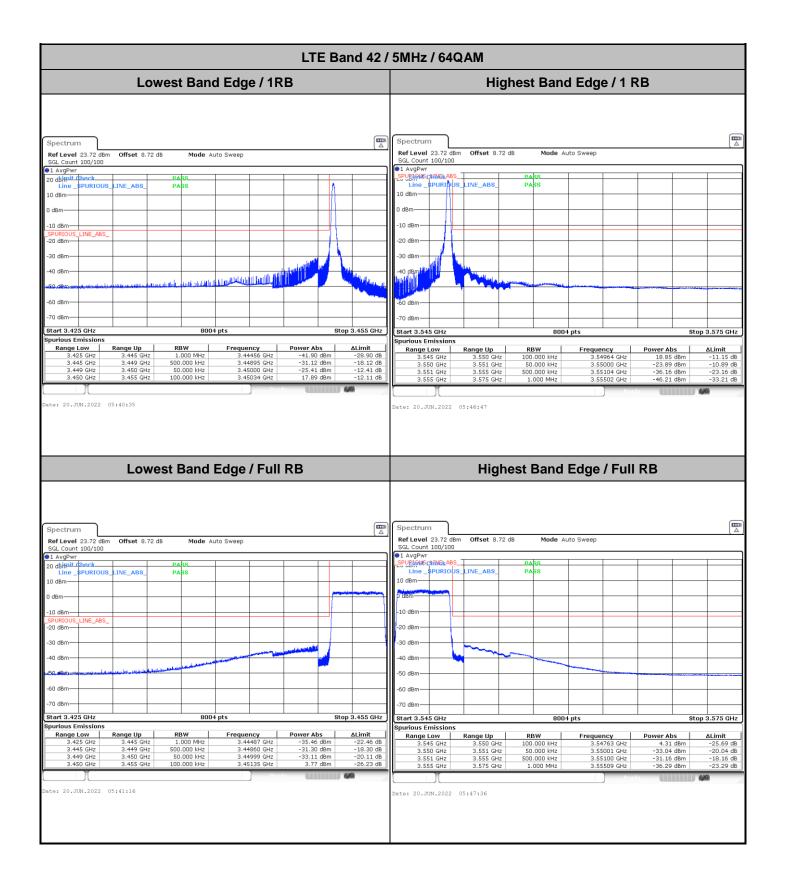

Occupied Bandwidth

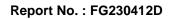

Mode	LTE Band 42 : 99%OBW(MHz)				
BW	20MHz				
Mod.	QPSK	16QAM			
Middle CH	17.94	17.86			

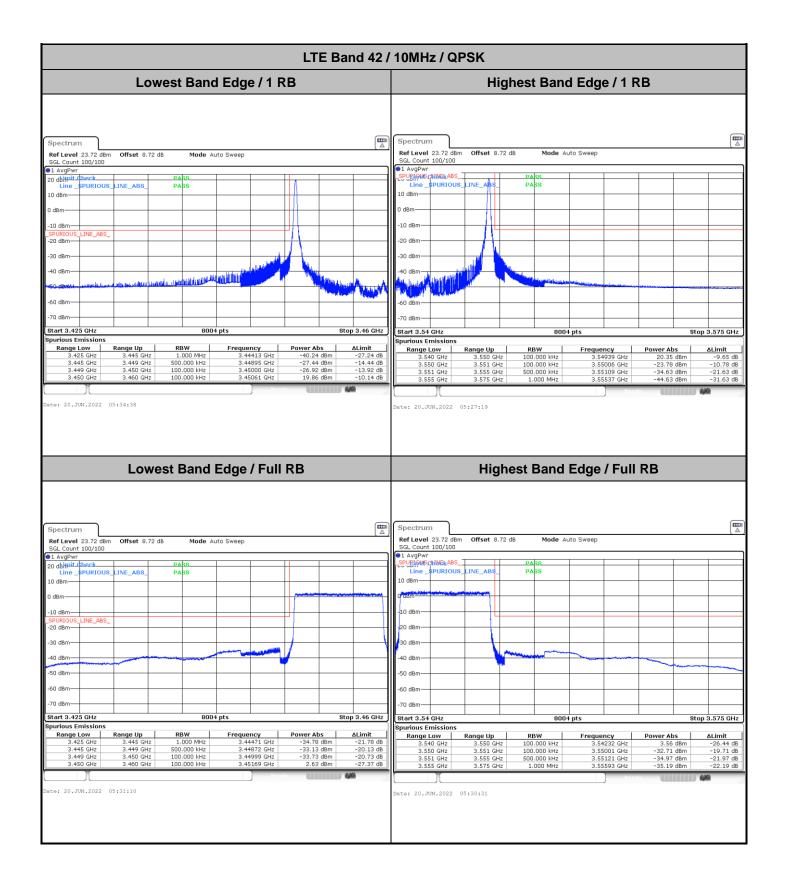
Middle Channel / 20MHz / QPSK	Middle Channel / 20MHz / 16QAM
ectrum 🖾	Spectrum
ef Level 26.50 dBm Offset 6.50 dB RBW 300 kHz	Ref Level 26.50 dBm Offset 6.50 dB RBW 300 kHz
t 30 dB SWT 18.9 μs 🖶 VBW 1 MHz Mode Auto FFT	■ Att 30 dB SWT 18.9 µs ■ VBW 1 MHz Mode Auto FFT
_ Count 100/100	_SGL Count 100/100
k Max	IPk Max
IBmM1[1] 13.31 dBm3.4956440 GHz	20 dBm M1[1] 11.88 3.4961240
M1 0.1900110 0112	20 dbm 3.4961240 M1 Occ Bw 17.862137862
IBm T1 17.942057942 MHz	10 dBm
	A Contraction of the second
3m	0 dBm
dBm-	-10 dBm
dBm	-20 dBm
dBm	-30 dBm
Manna	-su dem
dBm ^{-V}	-40 dBm
	-50 dBm
dBm-	-50 dBm
dBm	-60 dBm
dBm	-70 dBm
3.5 GHz 1001 pts Span 40.0 MHz	CF 3.5 GHz 1001 pts Span 40.0 M
ker	Marker
pe Ref Trc X-value Y-value Function Function Result	Type Ref Trc X-value Y-value Function Function Result
M1 1 3.495644 GH2 13.31 dBm	M1 1 3.496124 GHz 11.88 dBm
T1 1 3.491049 GHz 8.97 dBm Occ Bw 17.942057942 MHz T2 1 3.508991 GHz 8.04 dBm	T1 1 3.491049 GHz 6.31 dBm Occ Bw 17.862137862 M T2 1 3.5089111 GHz 6.62 dBm 6.62 dBm

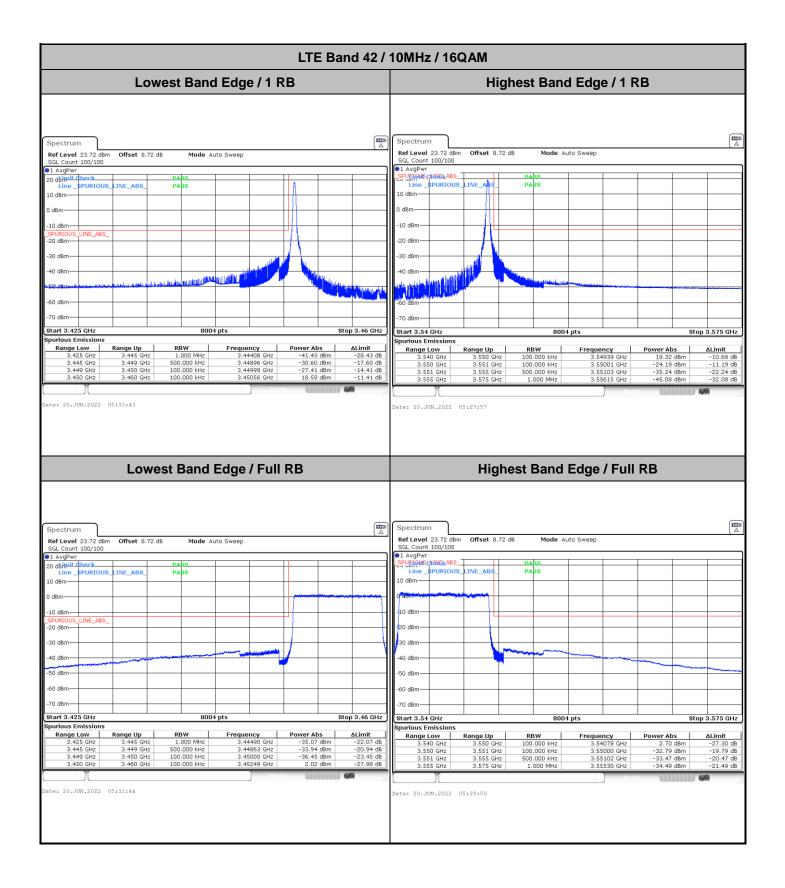


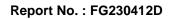
Conducted Band Edge

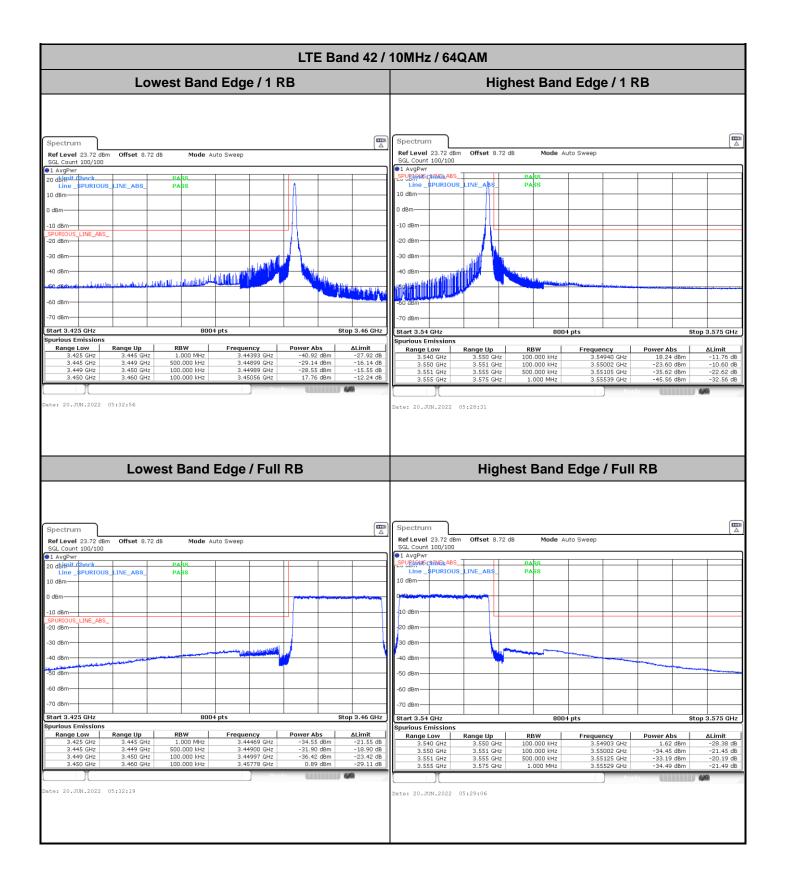


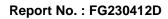


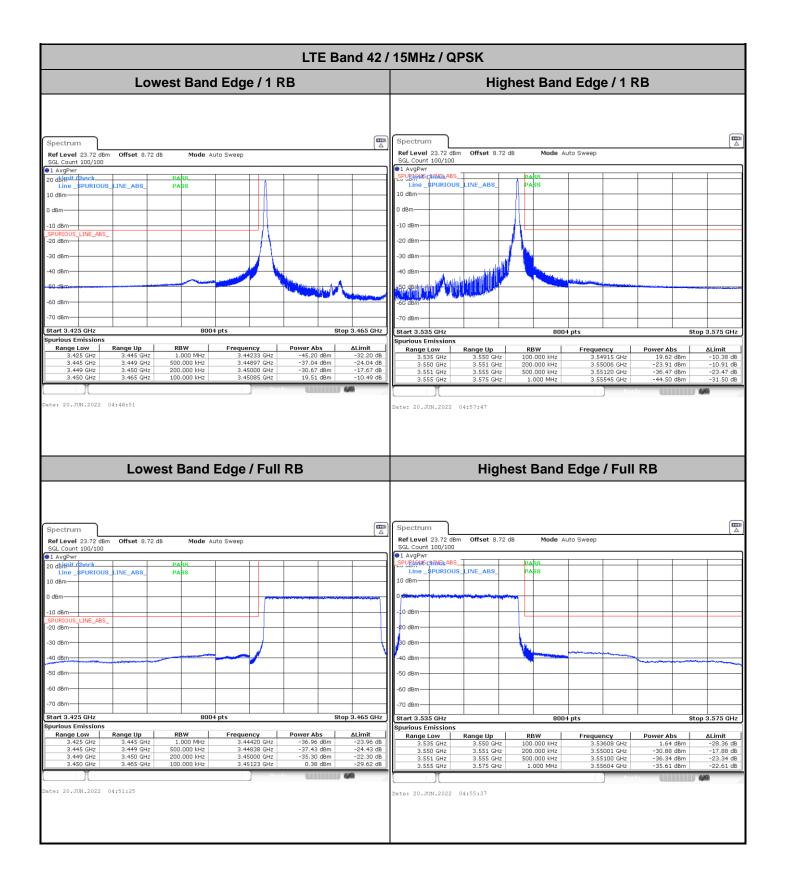


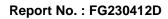


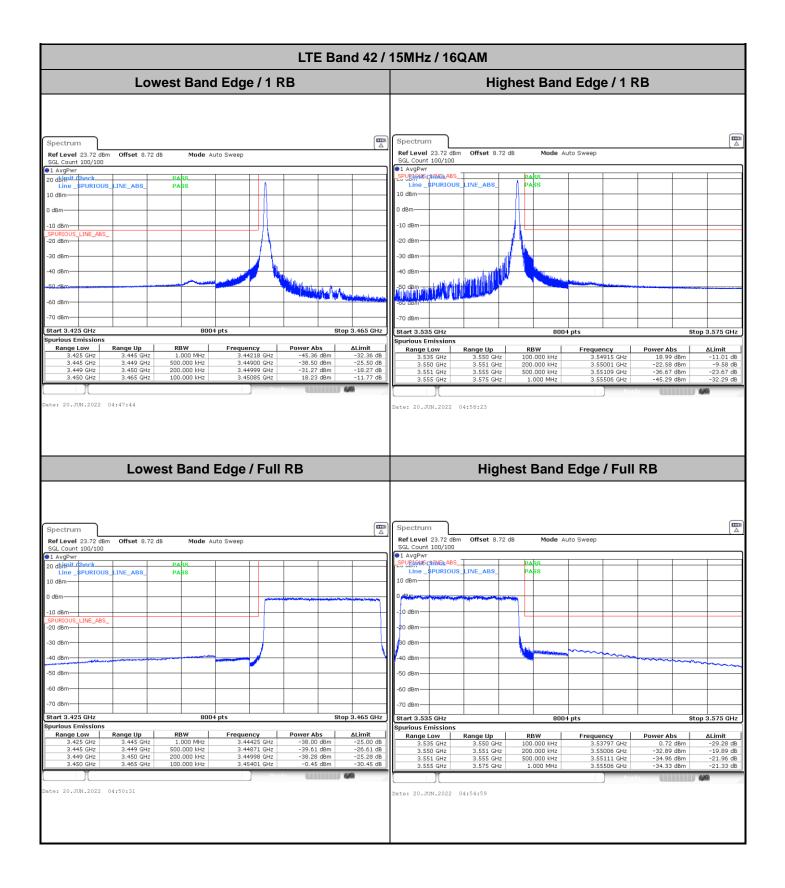


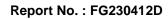


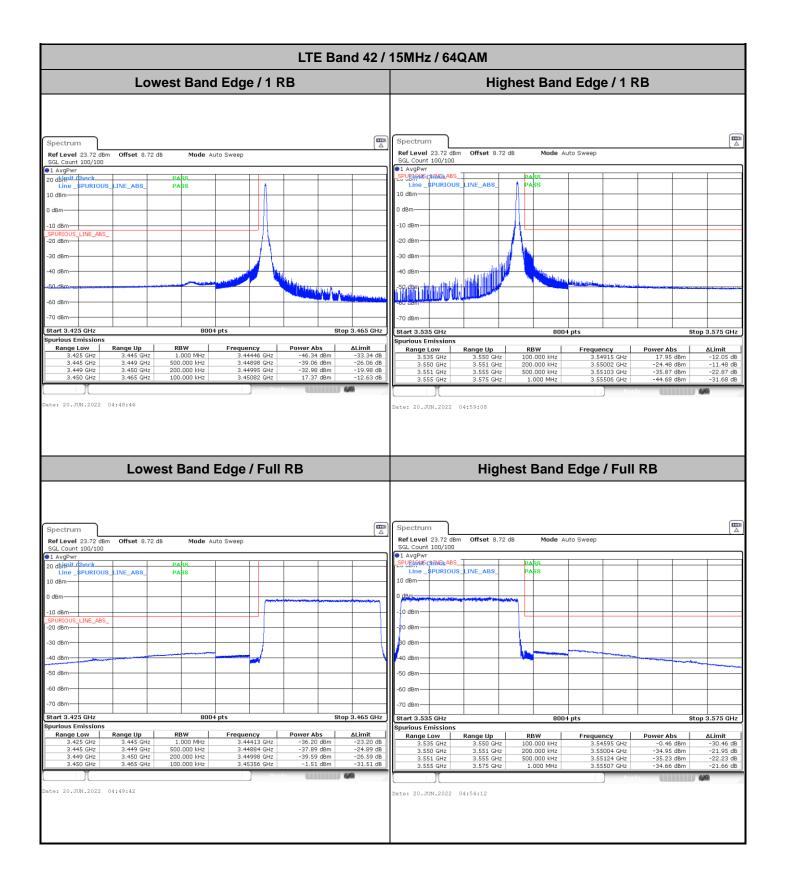


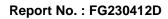


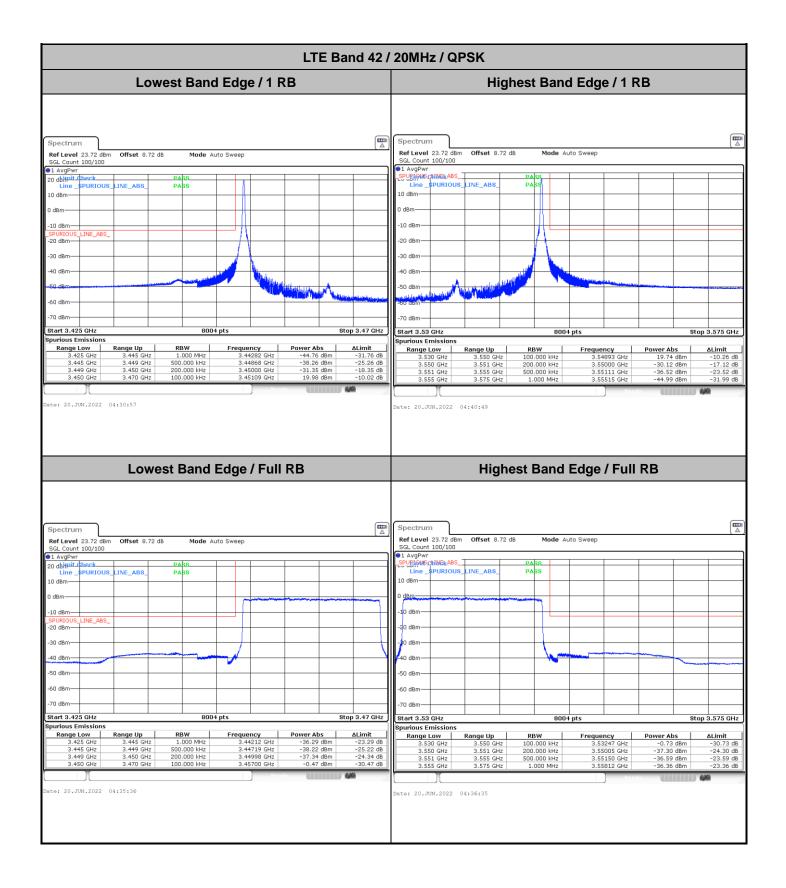


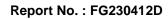


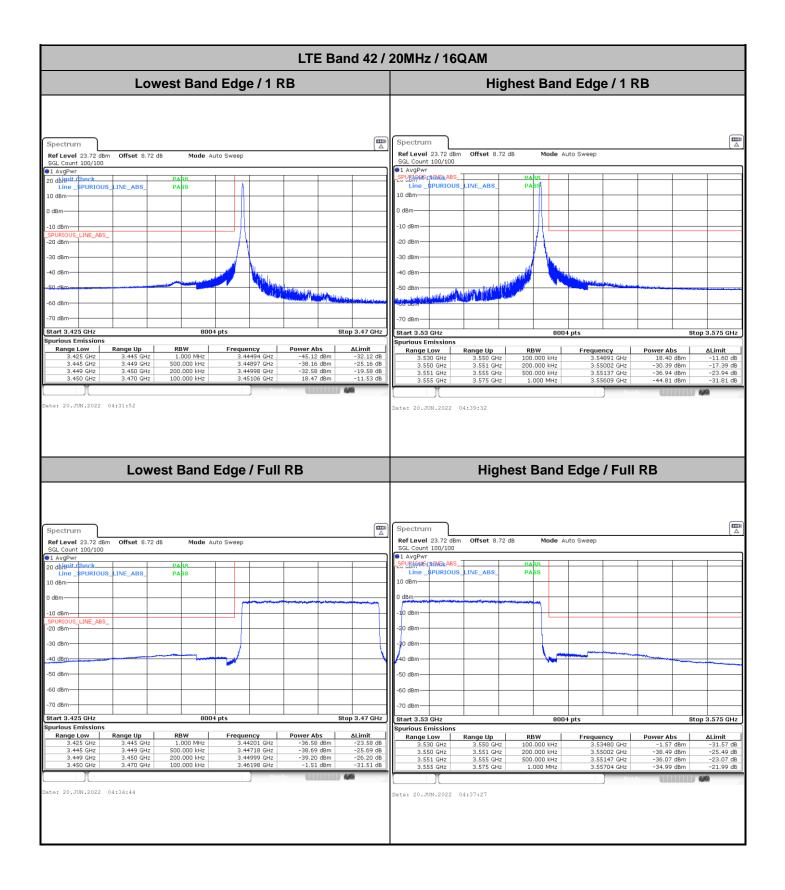


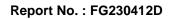


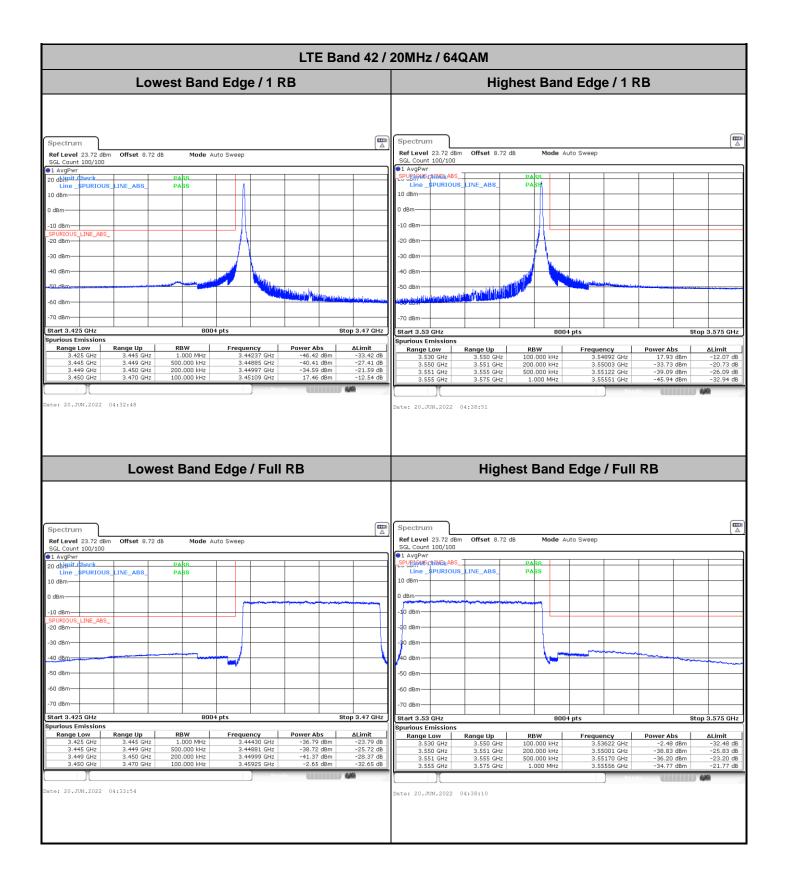


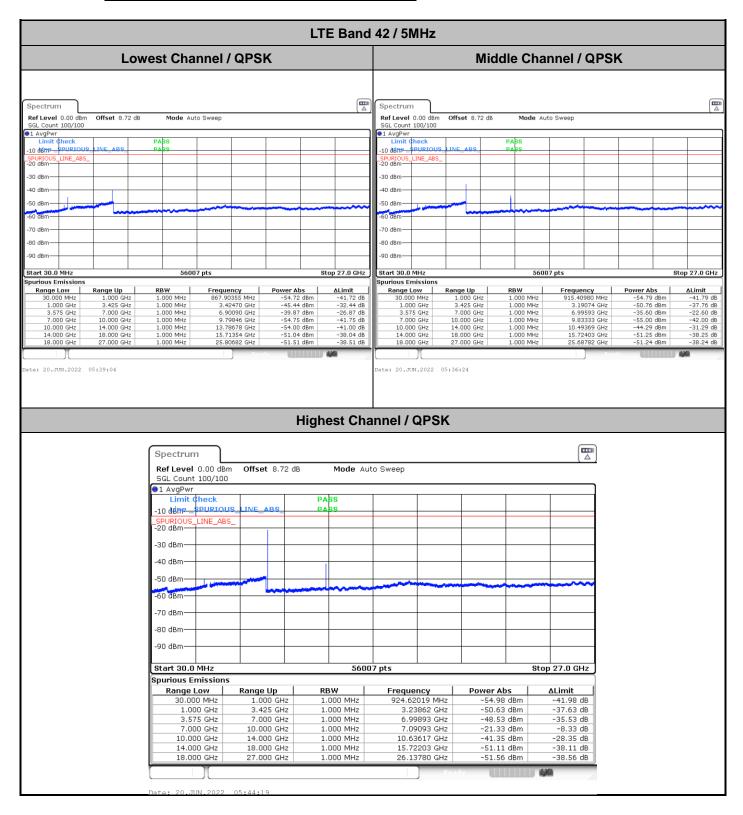


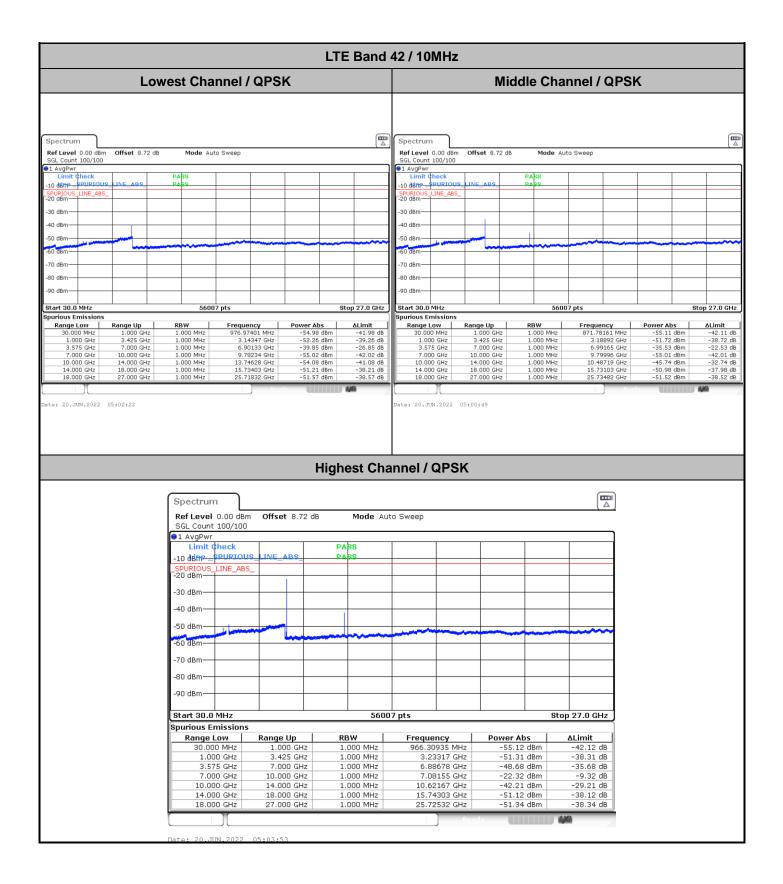


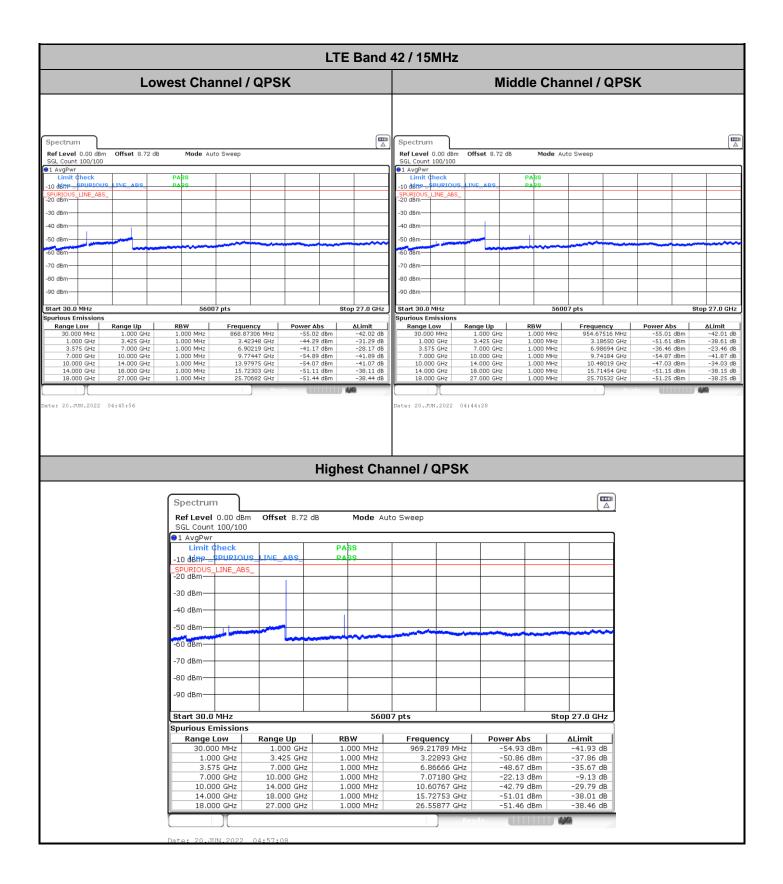


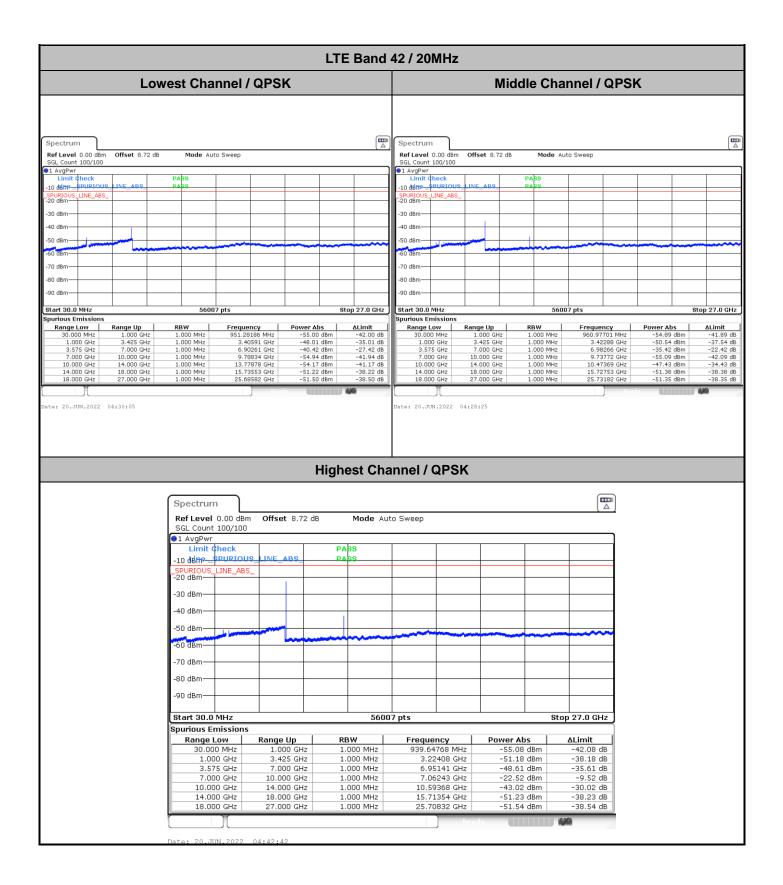








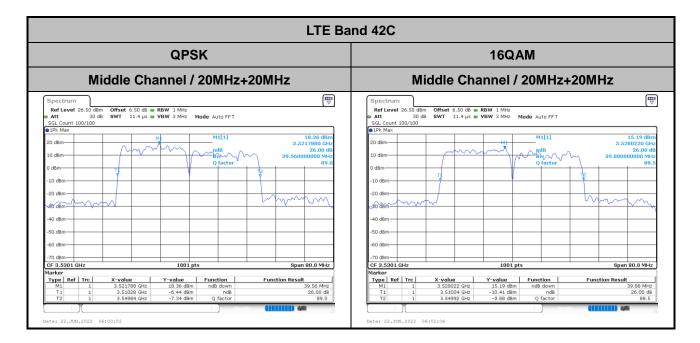

Conducted Spurious Emission



Frequency Stability

Test Conditions		LTE Band 42 (QPSK) / Middle Channel	
Temperature (°C)	Voltage (Volt)	BW 10MHz	Note 2.
		Deviation (ppm)	Result
50	Normal Voltage	0.0011	
40	Normal Voltage	0.0024	
30	Normal Voltage	0.0019	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0025	
0	Normal Voltage	0.0018	
-10	Normal Voltage	0.0009	PASS
-20	Normal Voltage	0.0014	
-30	Normal Voltage	0.0016	
20	Maximum Voltage	0.0009	
20	Normal Voltage	0.0007	
20	Battery End Point	0.0015	

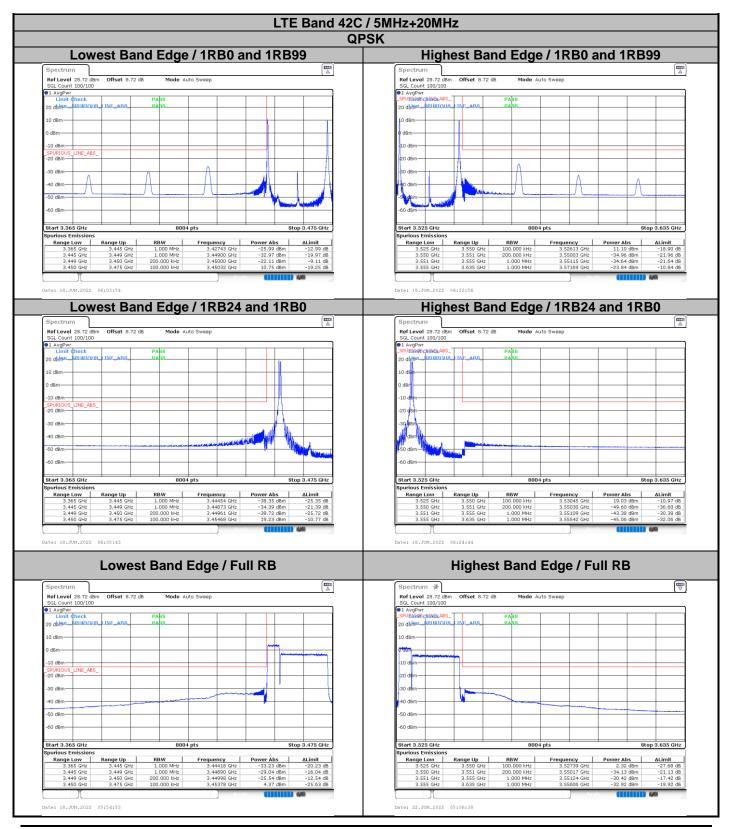
Note:


- 1. Normal Voltage =3.87 V. ; Battery End Point (BEP) =3.55V. ; Maximum Voltage =4.45 V.
- 2. Note: The frequency fundamental emissions stay within the authorized frequency block.

LTE Band 42C

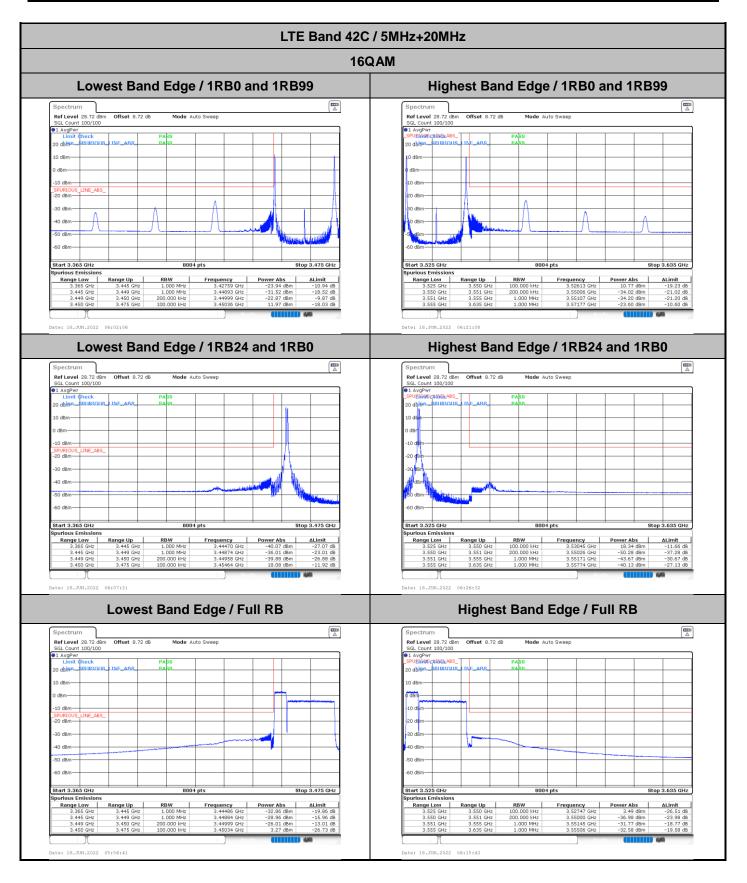
26dB Bandwidth

Mode	LTE Band 42C : 26dB BW(MHz)		
Mod.	QPSK 16QAM		
BW	20MHz+20MHz	20MHz+20MHz	
Middle CH	39.56	39.88	


Occupied Bandwidth

Mode	LTE Band 42C : 99%OBW(MHz)		
Mod.	QPSK	16QAM	
BW	20MHz+20MHz	20MHz+20MHz	
Middle CH	37.56	37.40	

LTE Band 42C						
QPSK	16QAM Middle Channel / 20MHz+20MHz					
Middle Channel / 20MHz+20MHz						
Spectrum Imp Ref Level 26.50 dBm Offset 6.50 dB 8BW 1 MHz eAtt 30 dB SWT 11.4 µS VBW 3 MHz Mode Auto FFT SSL Count 100/100 BPK Max DEPK DEPK DEPK DEPK	Spectrum m Refuevel 26.50 dBm Offset 0.50 dB = RBW 1 MH: • At 30 dB = SWT 11.4 µs = VBW 3 MH: SGL Count 100/100 SWT 11.4 µs = VBW 3 MH:					
Mill Milli 1,2,4,40m 20 dBm 1,2,4,40m 3,5,109,110 GHz 10 dBm 0,5,109,110 GHz 97,562437562 MHz 0 dBm 1,2,4,40m 1,2,4,40m -0 dBm -0,0 GBm -0,0 GBm -10 dBm -0,0 GBm -0,0 GBm	Bit Milli 1.5.90 dBm 20 dBm 1.5.90 dBm 10 dBm 0.5293460 00 H 0 dBm 0.5293460 00 H 0 dBm 0.500 dBm -10 dBm 0.500 dBm -00 dBm 0.500 dBm					
-70 d8m. CF 3.5301 GH2 CF 3.5301 GH2 Type Ref Trc X-value Y-value Function Function Result	.70 dBm Span 80.0 MHz GF 3.5301 GHz 1001 pts Span 80.0 MHz Marker Type Ref Trc X-value Y-value Function Function Result					
Mil 1 3.518911 GHz 17.34 dBm T1 1 3.51290 GHz 10.83 dBm Occ Bw 37.562437562 MHz T2 1 3.5488013 GHz 9.56 dBm Occ Bw 37.562437562 MHz T2 1 3.5488013 GHz 9.56 dBm Occ Bw 37.562437562 MHz T2 1 3.5488013 GHz 9.56 dBm Occ Bw 37.562437562 MHz T2 1 3.5488013 GHz 9.56 dBm Occ Bw 37.562437562 MHz	MI 1 3.52346 GHz 15.90 dBm T1 1 3.5109901 GHz 9.61 dBm Occ Bw 37.402597403 MHz T2 1 3.5494017 GHz 6.54 dBm Occ Bw 37.402597403 MHz Date: 22.0381/2022 06101:31 000000000000000000000000000000000000					



Conducted Band Edge

Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958 Page Number : A27 of A55

