

FCC RF Test Report

FCC ID	: UZ7ET45BB
Equipment	: Tablet
Brand Name	: Zebra
Model Name	: ET45BB
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
STANDARD	: 47 CFR Part 2, 27(M)
CLASSIFICATION	: PCS Licensed Transmitter (PCB)
TEST DATE(S)	: Sep 28, 2022 ~ Oct. 10, 2022

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.26-2015 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	.3
SU	MMAR	Y OF TEST RESULT	.4
1	GENE	RAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Maximum EIRP Power and Emission Designator Testing Location Test Software Applicable Standards	5 6 6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1 2.2 2.3 2.4 2.5	Test Mode Connection Diagram of Test System Support Unit used in test configuration and system Measurement Results Explanation Example Frequency List of Low/Middle/High Channels	9 9 9
3	CON	DUCTED TEST ITEMS	11
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Measuring Instruments Test Setup Test Result of Conducted Test Conducted Output Power and EIRP Peak-to-Average Ratio Occupied Bandwidth Conducted Band Edge Conducted Spurious Emission Frequency Stability	11 12 13 14 15 16
4	RADI	ATED TEST ITEMS	
	4.1 4.2 4.3 4.4	Measuring Instruments Test Setup Test Result of Radiated Test Radiated Spurious Emission	18 19 20
5		OF MEASURING EQUIPMENT	
6	UNCE	RTAINTY OF EVALUATION	22
AP	PEND	X A. TEST RESULTS OF CONDUCTED TEST	

APPENDIX B. TEST RESULTS OF RADIATED TEST

APPENDIX C. TEST SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FG230405-06	Rev. 01	Initial issue of report	Oct. 19, 2022

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
	§2.1046	Conducted Output Power	-	Report Only	-
3.4	§27.50(h)(2)	Equivalent Isotropic Radiated Power	EIRP < 2Watt		-
3.5	N/A	Peak-to-Average Ratio	<13 dB	PASS	-
3.6	§2.1049	Occupied Bandwidth	-	Report Only	-
3.7	§27.53(m)(4)	Conducted Band Edge Measurement	§27.53(m)(4)	PASS	-
3.8	§2.1051 §27.53(m)(4)	Conducted Spurious Emission	< 55+10log ₁₀ (P[Watts])	PASS	-
3.9	§2.1055 §27.54	Frequency Stability Temperature & Voltage	Within Authorized Band	PASS	-
4.4	§2.1053 §27.53(m)(4)	Radiated Spurious Emission	< 55+10log ₁₀ (P[Watts])	PASS	Under limit 25.00 dB at 7728.000 MHz

Note:

This is a variant report for ET45BB. Add LTE B38C by software. Based on the similarity between current and

previous project, only the LTE B38C for full test, the other test cases refer to original test report (Sporton Report Number FG230405).

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment	Tablet		
Brand Name	Zebra		
Model Name	ET45BB		
FCC ID	UZ7ET45BB		
HW Version	DV		
SW Version	ET45-userdebug 11 11-13-14.00-RG-U00-STD-GSE-04 57 release-keys		
MFD	15JUL22		
EUT Stage	Identical Prototype		

Specification of Accessory				
Battery	Brand Name	Zebra	Model Number	BT-000456

Supported Unit used in test configuration and system				
AC Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US
Earphone 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01
Earphone 2	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01
USB Cable (Type C to Type A)	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01
Type C-Audio Cable (Type C to 3.5mm)	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx Frequency LTE Band 38C : 2570 MHz ~ 2620 MHz				
Rx Frequency	LTE Band 38C : 2570 MHz ~ 2620 MHz			
Bandwidth LTE Band 38C : 20MHz + 20MHz / 15MHz + 15MHz				
Maximum Output Power to Antenna	LTE Band 38C : 23.24 dBm			
Antenna Gain	LTE Band 38C : 1.10 dBi			
Type of Modulation	QPSK / 16QAM / 64QAM			

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Maximum EIRP Power and Emission Designator

LTE Band 38 CA	QPSK		16QAM/64QAM	
BW (MHz)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)
15MHz+15MHz	0.2704	28M7G7D	0.2056	28M7W7D
20MHz+20MHz	0.2716	38M0G7D	0.2089	37M9W7D

1.5 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)				
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
	Jiangsu Province 2153	00 People's Republic of Cl	nina		
	TEL : +86-512-57900158				
	FAX : +86-512-57900958				
	Sporton Sito No	FCC Designation No.	FCC Test Firm		
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.		
	03CH04-KS TH01-KS	CN1257	314309		

1.6 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH04-KS	AUDIX	E3	6.2009-8-24al

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

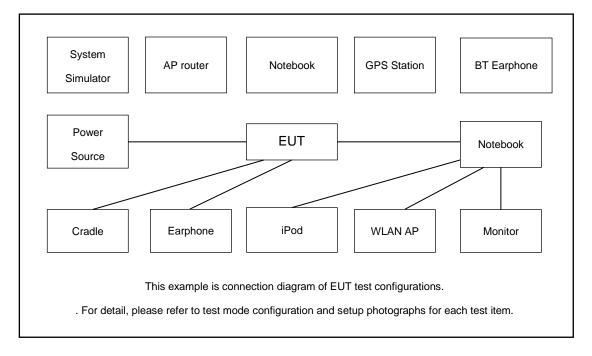
- 47 CFR Part 2, 27(M)
- ANSI C63.26-2015
- FCC KDB 971168 D01 Power Meas License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- **2.** This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode


Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas License Digital Systems v03r01 with maximum output power.

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes to	
find the maximum emission.	

Test Items	Band	Bandwidth (MHz)							м	Modulation		RB #		1		Test ann				
		20+20	20+15	15+20	20+10	10+20	20+5	5+20	15+15	15+10	10+15	QPSK	16QAM	64QAM	1	Half	Full	L	м	н
Max. Output Power	38C_CA	v	-	-	-	-	-	-	v	-	-	v	v	v	v			v	v	v
26dB and 99% Bandwidth	38C_CA	v	-	-	-	-	-	-	v	-	-	v	v				v		v	
Conducted Band Edge	38C_CA	v	-	-	-	-	-	-	v	-	-	v	v	v	v		v	v		v
Conducted Spurious Emission	38C_CA	v	-	-	-	-	-	-	v	-	-	v			v			v	v	v
E.I.R.P.	38C_CA	v	-	-	-	-	-	-	v	-	-	v	v	v	v			v	v	v
Radiated Spurious Emission	38C_CA		Worst Case							v	v	v								
Note	2. The 3. The diffe	The mark "v " means that this configuration is chosen for testing The mark "-" means that this bandwidth is not supported. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported.																		

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

lt	em	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1	1.	Power Supply	GWINSTEK	PSS-2002	N/A	N/A	Unshielded, 1.8 m
2	2.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 6.2 dB.

Example :

Offset(dB) = RF cable loss(dB).

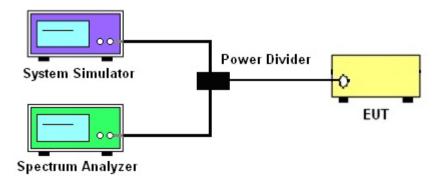
= 6.2 (dB)

2.5 Frequency List of Low/Middle/High Channels

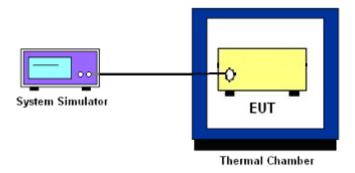
		LTE Band 38C_CA	Channel and Frequ	ency List	
BW [MHz]	Channel	/Frequency(MHz)	Lowest	Middle	Highest
	PCC	Channel	37850	37901	37952
20 1 20	FCC	Frequency	2580.0	2585.1	2590.2
20 + 20	SCC	Channel	38048	38099	38150
		Frequency	2599.8	2604.9	2610.0
	PCC	Channel	37825	37925	38025
15, 15	PCC	Frequency	2577.5	2587.5	2597.5
15+ 15	800	Channel	37975	38075	38175
	SCC	Frequency	2592.5	2602.5	2612.5

3 Conducted Test Items

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.2 Test Setup


3.2.1 Conducted Output Power

3.2.2 Peak-to-Average Ratio, Occupied Bandwidth ,Conducted Band-Edge and Conducted Spurious Emission

3.2.3 Frequency Stability

3.3 Test Result of Conducted Test

Please refer to Appendix A.

3.4 Conducted Output Power and EIRP

3.4.1 Description of the Conducted Output Power Measurement and EIRP Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The EIRP of mobile transmitters must not exceed 2 Watts for LTE and Band 38C.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

 L_{C} = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.4.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.2
- 2. The transmitter output port was connected to the system simulator.
- 3. Set EUT at maximum power through the system simulator.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure and record the power level from the system simulator.

3.5 Peak-to-Average Ratio

3.5.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.5.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.2.3.4 (CCDF).
- 2. The EUT was connected to spectrum and system simulator via a power divider.
- 3. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 4. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 5. Record the deviation as Peak to Average Ratio.

3.6 Occupied Bandwidth

3.6.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.6.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.4
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 4. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 5. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
- 7. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 8. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 9. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.7 Conducted Band Edge

3.7.1 Description of Conducted Band Edge Measurement

27.53(m)(4)

For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

3.7.2 Test Procedures

- 1. The testing follows ANSI C63.26 section 5.7
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 3. The band edges of low and high channels for the highest RF powers were measured.
- 4. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 5. Beyond the 1 MHz band from the band edge, RBW=1MHz was used.
- 6. Set spectrum analyzer with RMS detector.
- 7. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 8. Checked that all the results comply with the emission limit line.
 - Example:
 - The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)
 - = P(W)- [43 + 10log(P)] (dB)

 $= [30 + 10\log(P)] (dBm) - [43 + 10\log(P)] (dB) = -13dBm.$

- 9. For LTE Band 38 the other 40 dB, and 55 dB have additionally applied same calculation above.
- 10. When using the integration method, the starting frequency of the integration shall be centered at one-half of the RBW away from the band edge.

3.8 Conducted Spurious Emission

3.8.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 55 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.8.2 Test Procedures

- 1. The testing follows ANSI C63.26 section 5.7
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. The middle channel for the highest RF power within the transmitting frequency was measured.
- 5. The conducted spurious emission for the whole frequency range was taken.
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 7. Set spectrum analyzer with RMS detector.
- 8. Taking the record of maximum spurious emission.
- 9. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 10. For Band 38

The limit line is derived from 55 + 10log(P)dB below the transmitter power P(Watts)

- = P(W)-[55+10log(P)] (dB)
- = [30+10log(P)] (dBm) [55+10log(P)] (dB)

= -25dBm.

3.9 Frequency Stability

3.9.1 Description of Frequency Stability Measurement

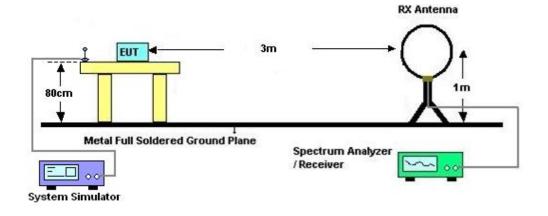
The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

3.9.2 Test Procedures for Temperature Variation

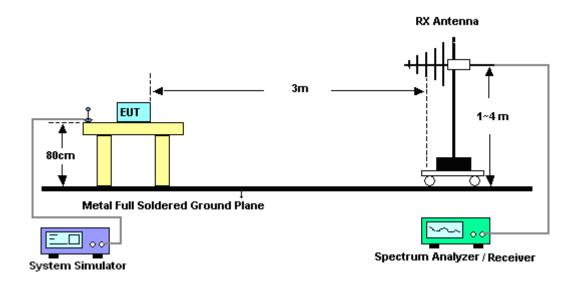
- 1. The testing follows ANSI C63.26 section 5.6.4
- 2. The EUT was set up in the thermal chamber and connected with the system simulator.
- 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 4. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.9.3 Test Procedures for Voltage Variation

- 1. The testing follows ANSI C63.26 section 5.6.5
- 2. The EUT was placed in a temperature chamber at 20±5°C and connected with the system simulator.
- 3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value for other than hand carried battery equipment.
- 4. For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.
- 5. The variation in frequency was measured for the worst case.

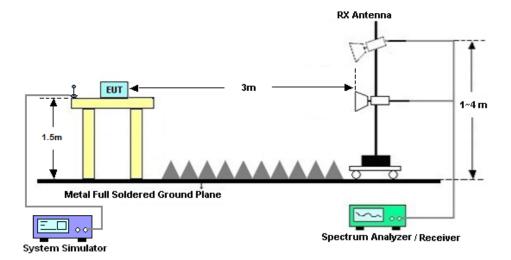

4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.2 Test Setup

4.2.1 For radiated test below 30MHz



4.2.2 For radiated test from 30MHz to 1GHz

4.2.3 For radiated test above 1GHz

4.3 Test Result of Radiated Test

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Please refer to Appendix B.

4.4 Radiated Spurious Emission

4.4.1 Description of Radiated Spurious Emission

For Band 38

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $55 + 10 \log (P) dB$.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.5
- 2. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 5. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- 6. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 7. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 8. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 9. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 10. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain
- 11. ERP (dBm) = EIRP 2.15
- 12. For Band 38: The limit line is derived from 55 + 10log(P)dB below the transmitter power P(Watts)

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 14, 2021	Sep. 28, 2022	Oct. 13, 2022	Conducted (TH01-KS)
Power divider	STI	STI08-0055	-	0.5~40GHz	Aug. 26, 2022	Sep. 28, 2022	Aug. 25, 2023	Conducted (TH01-KS)
Temperature &h umidity chamber	Hongzhan	LP-150U	H2014011440	-40~+150°C 20%~95%RH	Jul. 15, 2022	Sep. 28, 2022	Jul. 14, 2023	Conducted (TH01-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY57471079	10Hz-44G,MAX 30dB	Oct. 14, 2021	Oct. 10, 2022	Oct. 13, 2022	Radiation (03CH04-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 30, 2021	Oct. 10, 2022	Oct. 29, 2022	Radiation (03CH04-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	May 24, 2022	Oct. 10, 2022	May 23, 2023	Radiation (03CH04-KS)
Horn Antenna	Schwarzbeck	BBHA9120D	1284	1GHz~18GHz	Jan. 05, 2022	Oct. 10, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2022	Oct. 10, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Jan. 05, 2022	Oct. 10, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
Amplifier	MITEQ	EM18G40G GA	060728	18~40GHz	Jan. 05, 2022	Oct. 10, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
high gain Amplifier	EM	EM01G18G A	060839	1Ghz-18Ghz	Oct. 14, 2021	Oct. 10, 2022	Oct. 13, 2022	Radiation (03CH04-KS)
Amplifier	Keysight	83017A	MY57280106	500MHz~26.5GHz	Oct. 13, 2021	Oct. 10, 2022	Oct. 12, 2022	Radiation (03CH04-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Oct. 10, 2022	NCR	Radiation (03CH04-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Oct. 10, 2022	NCR	Radiation (03CH04-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Oct. 10, 2022	NCR	Radiation (03CH04-KS)

NCR: No Calibration Required

6 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.26-2015. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty						
Conducted Power	±0.56 dB						
Conducted Emissions	±0.92 dB						
Occupied Channel Bandwidth	±0.03 %						

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.3dB
Confidence of 95% (U = 2Uc(y))	3.30B

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

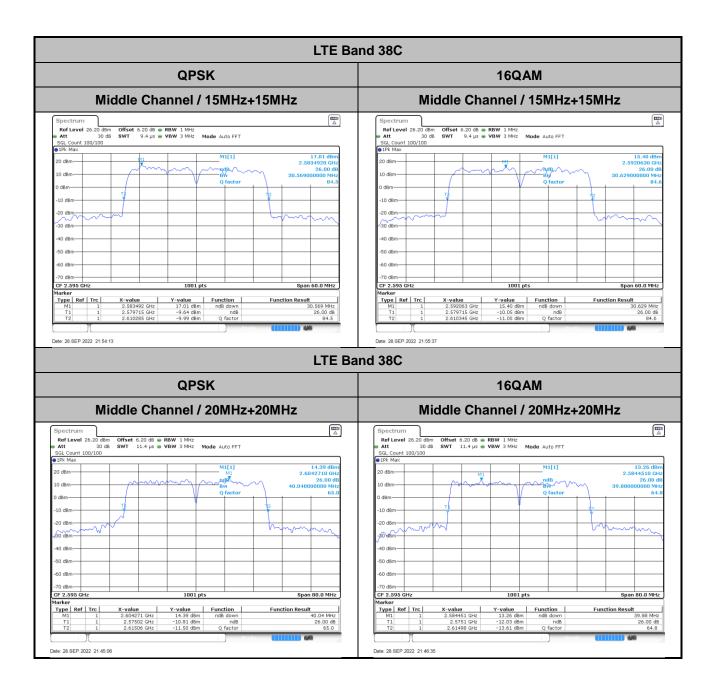
Confidence of 95% (U = 2Uc(y))	Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.8dB
--------------------------------	--	-------

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power) and EIRP

		Com	pination 20MHz+2	0MHz (100RB+10	00RB)		
Channel	Modulation	P	CC	S	CC	Measured	EIRP(W)
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	
L	QPSK	1	Max	1	0	23.12	0.2642
М	QPSK	1	Max	1	0	23.24	0.2716
н	QPSK	1	1 Max		0	23.11	0.2636
L	16QAM	1 Max		1	0	22.04	0.2061
М	16QAM	1 Max		1	0	22.10	0.2089
н	16QAM	1	1 Max		0	22.07	0.2075
L	64QAM	1	Max	1	0	19.67	0.1194
М	64QAM	1	Max	1	0	19.73	0.1211
н	64QAM	1	Max	1	0	19.70	0.1202
	·	Con	hbination 15MHz+	15MHz (75RB+7	5RB)		
Channel	Modulation	P	CC	S	CC	Measured	
Channel		RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)
М	QPSK	1	Max	1	0	23.22	0.2704
М	16QAM	1	Max	1	0	22.03	0.2056

Note: For intra band CA combination 15M+15M, only the worst power for PSK/QAM is shown in the report.

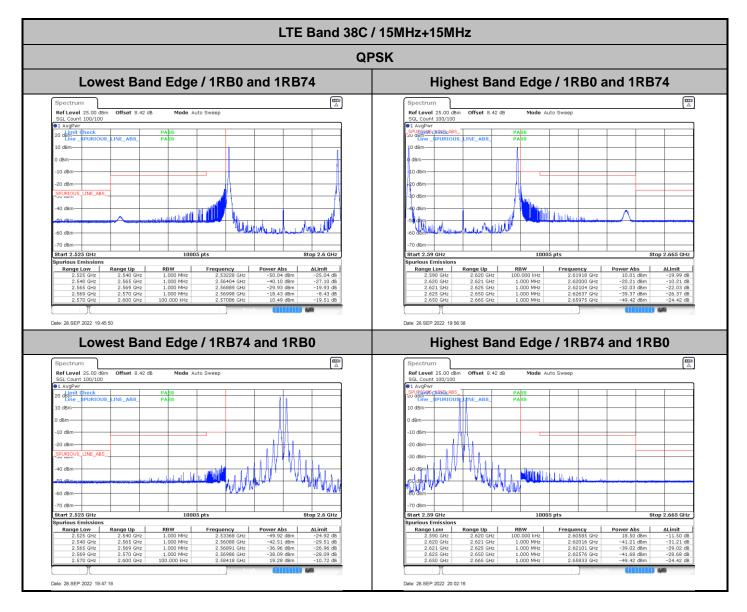


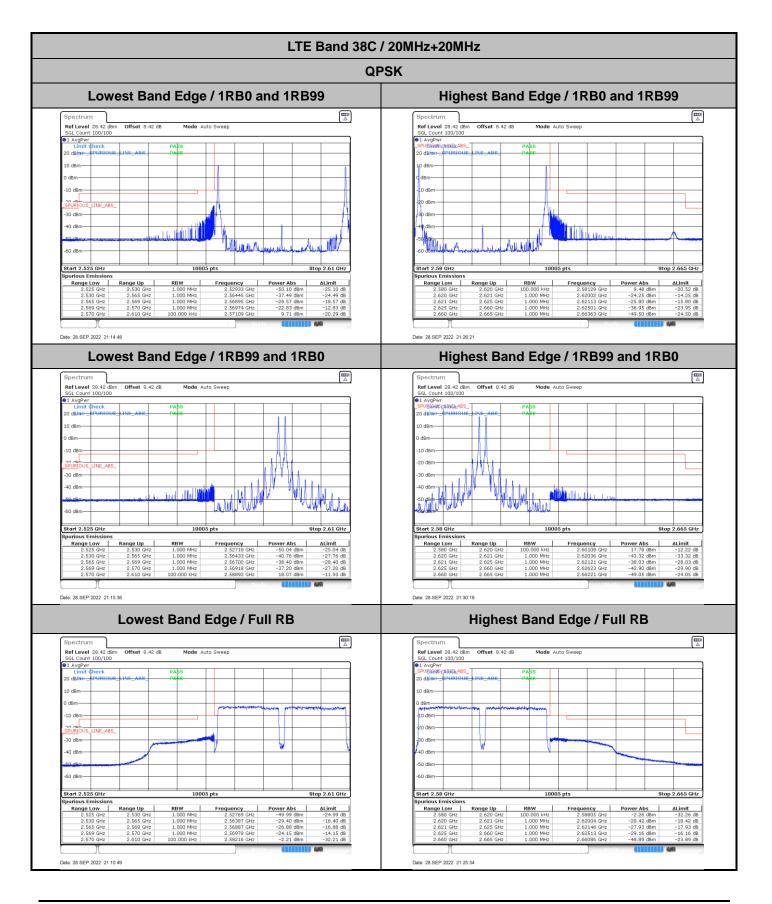
LTE Band 38C

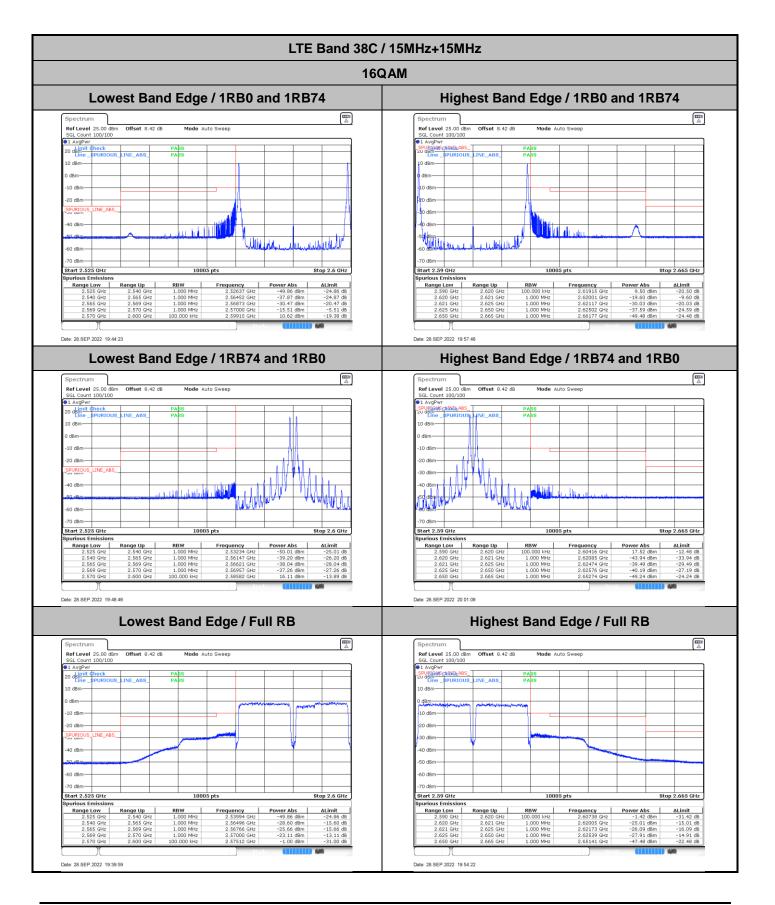
26dB Bandwidth

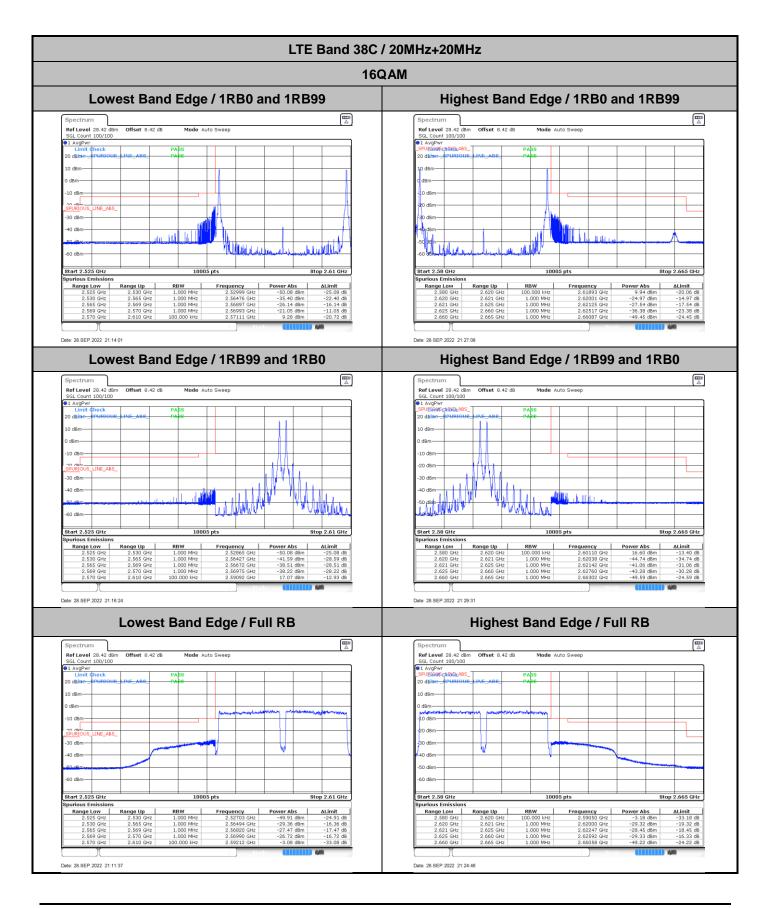
Mode	LTE Band 38C :	26dB BW(MHz)					
Mod.	QPSK	16QAM					
BW	15MHz+15MHz	15MHz+15MHz					
Middle CH	30.57	30.63					
Mode	LTE Band 38C : 26dB BW(MHz)						
Mod.	QPSK	16QAM					
BW	20MHz+20MHz	20MHz+20MHz					
Middle CH	40.04	39.88					

Occupied Bandwidth

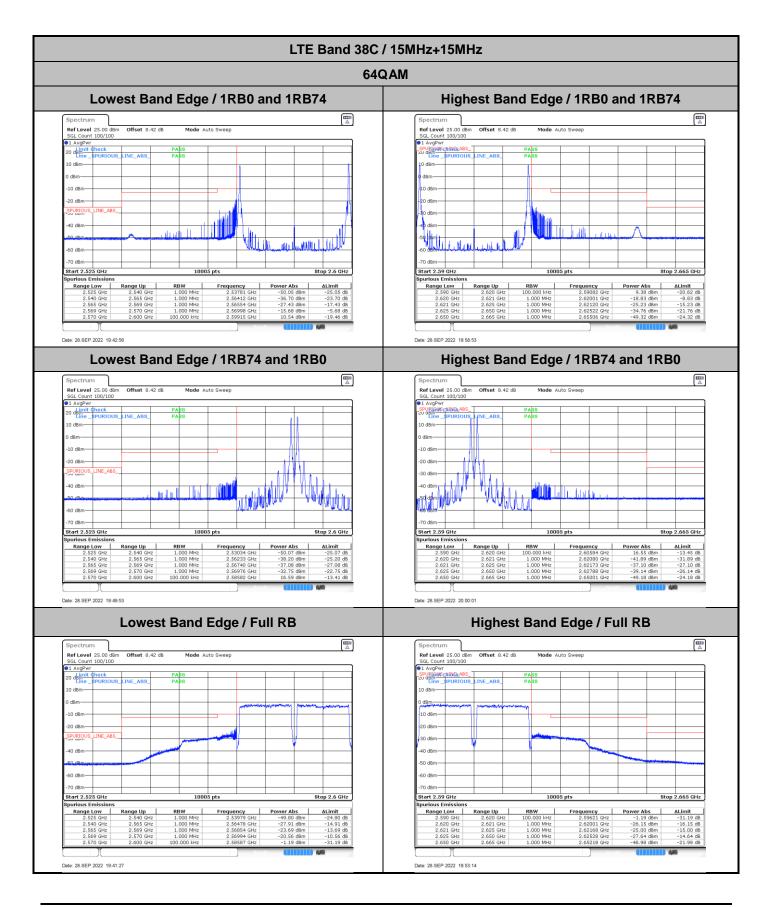

Mode	LTE Band 38C :	99%OBW(MHz)				
Mod.	QPSK	16QAM				
BW	15MHz+15MHz	15MHz+15MHz				
Middle CH	28.71	28.65				
Mode	LTE Band 38C :	99%OBW(MHz)				
Mod.	QPSK	16QAM				
BW	20MHz+20MHz	20MHz+20MHz				
Middle CH	37.96	37.88				

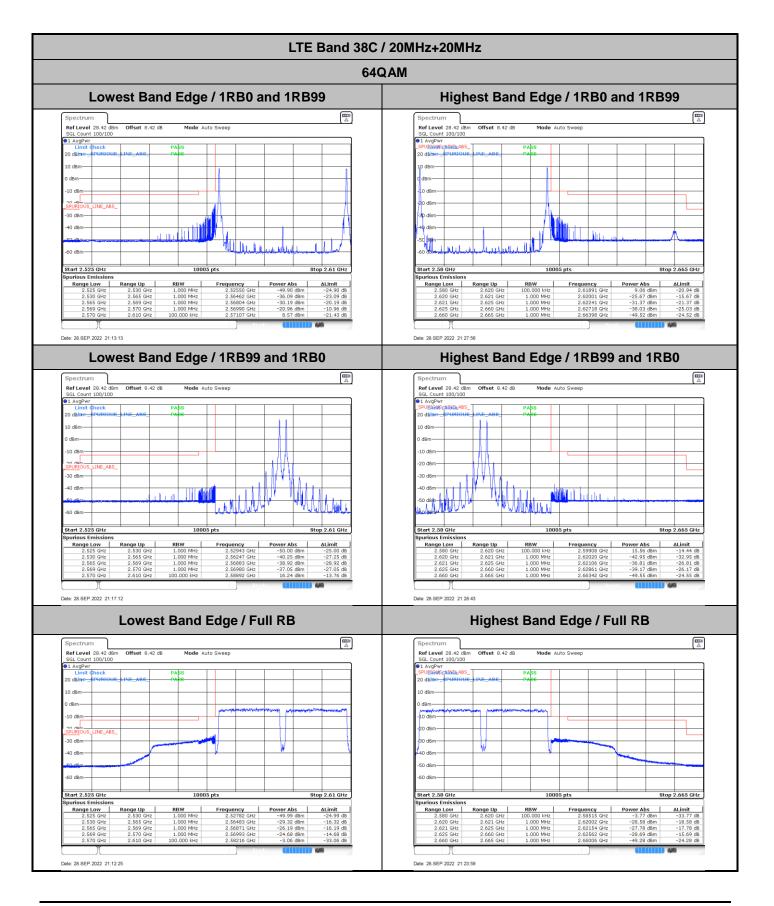

Conducted Band Edge

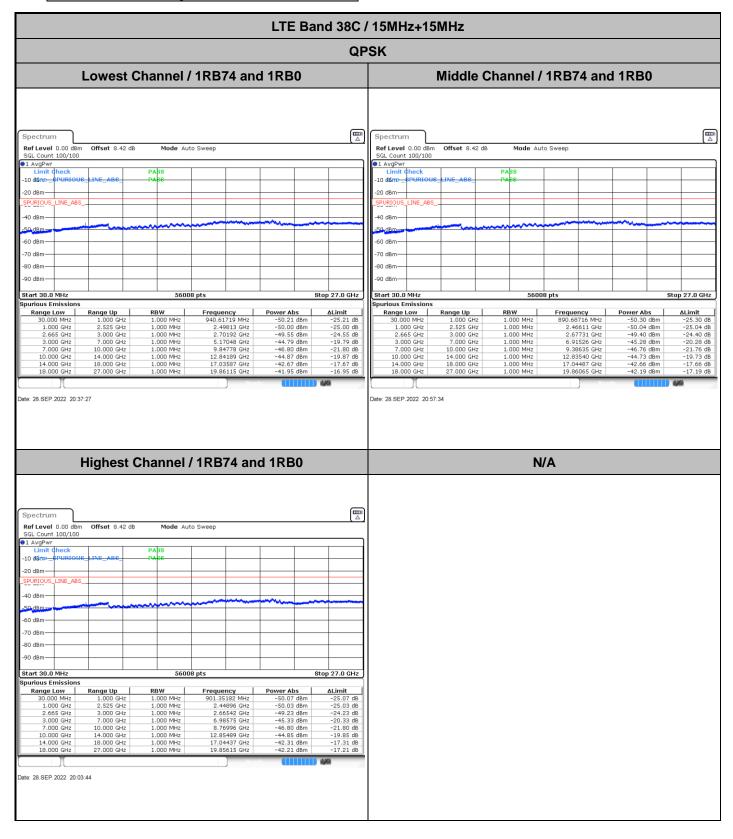

	Lowes	t Band	Edge / Fu	ull RB		Highest Band Edge / Full RB						
Spectrum 🐳						Spectrum						
Ref Level 25.00 d SGL Count 100/100		dB Mode A	uto Sweep			Ref Level 25.00 o SGL Count 100/10		dB Mode A	uto Sweep			
1 AvgPwr						1 AvgPwr						
20 dBm		PASS				_SPURIONS CHINELAN		PASS				
Line _SPURIO	JS_LINE_ABS_	PASS				Line _SPURIO	US_LINE_ABS_	PASS				
10 dBm						10 dBm						
1												
0 dBm			والمعطية العينيني	Admental Anna	Name and and a state of the state	9.d8m	story perhanamphasis	-		+ +		
10 10 -			l lí			+10 dBm	11 . 1.					
-10 dBm						10 dBm						
-20 dBm						-20 dBm						
						20 dbm	11					
_SPURIOUS_LINE_AB	S			- W-		30 dBm			STREET, STREET		_	
				1 Y		1	¥	1				
-40 dBm		No. of Concession, Name				-40 dBm			and the second second	No.		
50 dBm										Statistical and a statistical state		
-51.0800						-50 dBm						
-60 dBm						-60 dBm						
-00 dbiii						-00 dBill						
-70 dBm						-70 dBm						
Start 2.525 GHz		1000	5 pts		Stop 2.6 GHz	Start 2.59 GHz		1000	05 pts		top 2.665 GHz	
Spurious Emission		1000	a pro		stup 2.6 GHz		_	1000	la pre	9	top 2.003 GH2	
Range Low	s Range Up	RBW	Frequency	Power Abs	ALimit	Spurious Emission Range Low	s Range Up	RBW	Frequency	Power Abs	ALimit	
2.525 GHz	2.540 GHz	1.000 MHz	2.53667 GHz	-49.91 dBm	-24.91 dB	2,590 GHz	2.620 GHz	100.000 kHz	2.60701 GHz	-0.55 dBm	-30.55 dB	
2.540 GHz	2.565 GHz	1.000 MHz	2.56484 GHz	-28.59 dBm	-15.59 dB	2.620 GHz	2.621 GHz	1.000 MHz	2.62004 GHz	-23.92 dBm	-13.92 dB	
2.565 GHz	2.569 GHz	1.000 MHz	2.56785 GHz	-26.13 dBm	-16.13 dB	2.621 GHz	2.625 GHz	1.000 MHz	2.62179 GHz	-25.04 dBm	-15.04 dB	
2.569 GHz	2.570 GHz	1.000 MHz	2.57000 GHz	-22.06 dBm	-12.06 dB	2.625 GHz	2.650 GHz	1.000 MHz	2.62599 GHz	-27.78 dBm	-14.78 dB	
2.570 GHz	2.600 GHz	100.000 kHz	2.57843 GHz	-0.30 dBm	-30.30 dB	2.650 GHz	2.665 GHz	1.000 MHz	2.65129 GHz	-46.50 dBm	-21.50 dB	
T T					10.000	The second se					10.000	



Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958







Conducted Spurious Emission

				LTE Ba	nd 38C	/ 20MH	z+20N	IHz				
					QF	SK						
L	owest C	hannel /	1RB99 and	d 1RB0			M	liddle C	hannel /	1RB99 and	d 1RB0	
Spectrum Ref Level 0.00 dBm SGL Count 100/100 Langt dheck -10 dBm -00 dBm -20 dBm	Offset 8.42 dB	Mode Auto	Sweep		Etop 27.0 GHz Stop 27.0 GHz -29.78 dB -29.29 dB -29	Spectrum Ref Level SGL Count SGL Count SGL Count Immt dl -10 dBm -20 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm -90 dBm Start 30.0 N Spurious Err Range L 30.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 dBm (100/100	Dffset 8.42 dB	Mode Aut PABS PA	o Sweep		E E E E E E E
Spectrum Ref Level 0.00 dBm SGL Count 100/100 I AvgPwr Limit Check -10 dBm -20 dBm -50 dBm -50 dBm -80 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm <t< th=""><th>Offset 8.42 dB</th><th>Mode Auto PABS PABS</th><th>pts Frequency 998,78811 MHz</th><th></th><th>Stop 27.0 GHz</th><th></th><th></th><th></th><th>N</th><th>/Α</th><th></th><th></th></t<>	Offset 8.42 dB	Mode Auto PABS PABS	pts Frequency 998,78811 MHz		Stop 27.0 GHz				N	/Α		
1.000 GHz 2.665 GHz 3.000 GHz 10.000 GHz 10.000 GHz 18.000 GHz 18.000 GHz te: 28 SEP 2022 21:31:	2.525 GHz 3.000 GHz 7.000 GHz 10.000 GHz 14.000 GHz 18.000 GHz 27.000 GHz 45	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	2.49165 GHz 2.82949 GHz 5.20047 GHz 7.80162 GHz 11.93501 GHz 17.04737 GHz 24.30090 GHz	-53.71 dBm -43.17 dBm -43.11 dBm -52.30 dBm -50.62 dBm -50.68 dBm	-29.38 dB -28.71 dB -18.17 dB -18.11 dB -27.30 dB -25.82 dB -25.68 dB							

Frequency Stability

Test Conditions		LTE Band 38C (QPSK) / Middle Channel	
Temperature (°C)		BW 40MHz	Note 2.
	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0016	
40	Normal Voltage	0.0028	
30	Normal Voltage	0.0013	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0025	
0	Normal Voltage	0.0008	
-10	Normal Voltage	0.0012	PASS
-20	Normal Voltage	0.0019	
-30	Normal Voltage	0.0022	
20	Maximum Voltage	0.0027	
20	Normal Voltage	0.0016	
20	Battery End Point	0.0031	

Note:

- 1. Normal Voltage =3.87 V. ; Battery End Point (BEP) =3.55 V. ; Maximum Voltage =4.45 V.
- 2. Note: The frequency fundamental emissions stay within the authorized frequency block.

Appendix B. Test Results of Radiated Test

Radiated Spurious Emission

Tost Engineer -	Levi ZHUO	Temperature :	22~23°C
Test Engineer :		Relative Humidity :	41~42%

LTE Band 38C / 20MHz + 20MHz / QPSK / Ant.0								
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	5144	-63.15	-25	-38.15	-73.36	3.03	13.24	Н
	5176	-63.90	-25	-38.90	-73.35	3.56	13.01	Н
	7712	-55.86	-25	-30.86	-65.38	3.92	13.44	Н
	7768	-62.68	-25	-37.68	-72.60	4.44	14.36	Н
	10280	-61.04	-25	-36.04	-71.41	4.77	15.14	Н
1	10360	-60.62	-25	-35.62	-71.50	4.86	15.74	Н
Lowest	5144	-63.63	-25	-38.63	-73.84	3.03	13.24	V
	5176	-63.96	-25	-38.96	-73.41	3.56	13.01	V
	7712	-53.64	-25	-28.64	-63.16	3.92	13.44	V
	7768	-62.53	-25	-37.53	-72.45	4.44	14.36	V
	10280	-61.51	-25	-36.51	-71.88	4.77	15.14	V
	10360	-60.95	-25	-35.95	-71.83	4.86	15.74	V
	5152	-62.55	-25	-37.55	-72.76	3.03	13.24	Н
	5188	-63.89	-25	-38.89	-73.34	3.56	13.01	Н
	7728	-53.06	-25	-28.06	-62.58	3.92	13.44	Н
	7784	-62.76	-25	-37.76	-72.68	4.44	14.36	Н
	10300	-61.55	-25	-36.55	-71.92	4.77	15.14	Н
	10380	-60.85	-25	-35.85	-71.73	4.86	15.74	Н
Middle	5152	-63.30	-25	-38.30	-73.51	3.03	13.24	V
	5188	-64.11	-25	-39.11	-73.56	3.56	13.01	V
	7728	-50.00	-25	-25.00	-59.52	3.92	13.44	V
	7784	-62.09	-25	-37.09	-72.01	4.44	14.36	V
	10300	-61.81	-25	-36.81	-72.18	4.77	15.14	V
	10380	-61.05	-25	-36.05	-71.93	4.86	15.74	V
Highest	5160	-63.22	-25	-38.22	-73.43	3.03	13.24	Н
	5200	-63.93	-25	-38.93	-73.38	3.56	13.01	Н
	7744	-53.94	-25	-28.94	-63.46	3.92	13.44	Н
	7796	-62.40	-25	-37.40	-72.32	4.44	14.36	Н
	10320	-61.56	-25	-36.56	-71.93	4.77	15.14	Н
	10400	-60.87	-25	-35.87	-71.75	4.86	15.74	Н
	5160	-63.32	-25	-38.32	-73.53	3.03	13.24	V
	5200	-63.81	-25	-38.81	-73.26	3.56	13.01	V
	7744	-53.12	-25	-28.12	-62.64	3.92	13.44	V
	7796	-62.43	-25	-37.43	-72.35	4.44	14.36	V
	10320	-61.65	-25	-36.65	-72.02	4.77	15.14	V
	10400	-60.98	-25	-35.98	-71.86	4.86	15.74	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.