

FCC RF Test Report

FCC ID	:	UZ7ET45BB
EQUIPMENT	:	Tablet
BRAND NAME	:	Zebra
MODEL NAME	:	ET45BB
APPLICANT	:	Zebra Technologies Corporation
		1 Zebra Plaza, Holtsville, NY 11742
MANUFACTURER	:	Zebra Technologies Corporation
		1 Zebra Plaza, Holtsville, NY 11742
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DSS) Spread Spectrum Transmitter
TEST DATE(S)	:	May 18, 2022 ~ Jul. 26, 2022

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE\	/ISION	I HISTORY	3
SUN	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Test Software	6
	1.6	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	
	3.4	20dB and 99% Bandwidth Measurement	22
	3.5	Output Power Measurement	34
	3.6	Conducted Band Edges Measurement	36
	3.7	Conducted Spurious Emission Measurement	43
	3.8	Radiated Band Edges and Spurious Emission Measurement	53
	3.9	AC Conducted Emission Measurement	
		Antenna Requirements	
4		OF MEASURING EQUIPMENT	
5	UNCE	RTAINTY OF EVALUATION	61
		X A. AC CONDUCTED EMISSION TEST RESULT	
		X B. RADIATED SPURIOUS EMISSION	
		X C. RADIATED SPURIOUS EMISSION PLOTS	
		X D. DUTY CYCLE PLOTS	
APF	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR230405A	Rev. 01	Initial issue of report	Aug. 03, 2022

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
		Radiated Band Edges			Under limit
3.8	15.247(d)	and Radiated Spurious	15.209(a) & 15.247(d)	Pass	7.02 dB at
		Emission			45.520 MHz
		AC Conducted			Under limit
3.9	15.207	Emission	15.207(a)	Pass	15.92 dB at
		Limbolofi			0.187 MHz
3.10	15.203 &	Antenna Requirement	15.203 & 15.247(b)	Pass	_
0.10	15.247(b)		10.200 & 10.247(0)	1 455	

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment	Tablet		
Brand Name	Zebra		
Model Name	ET45BB		
FCC ID	UZ7ET45BB		
HW Version	EV2-2		
SW Version	ET45USERDEBUG 11 11-10-12.00-RG-U00-PRD-GSE MXJ release-keys		
MFD	07MAY22		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Specification of Accessory						
Battery	Brand Name	Zebra	Model Number	BT-000456		

Sup	Supported Unit used in test configuration and system						
AC Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US			
Earphone 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01			
Earphone 2	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01			
USB Cable (Type C to Type A)	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01			
Type C-Audio Cable (Type C to 3.5mm)	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01			

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 2.42 dBm (0.0017 W) Bluetooth EDR (2Mbps) : 4.24 dBm (0.0027 W) Bluetooth EDR (3Mbps) : 4.77 dBm (0.0030 W)			
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.900MHz Bluetooth EDR (2Mbps) : 1.190MHz Bluetooth EDR (3Mbps) : 1.172MHz			
Antenna Type / Gain	IFA Antenna with gain 0.9 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)				
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158 FAX : +86-512-57900958				
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
Test Site No.	CO01-KS 03CH05-KS TH01-KS	CN1257	314309		

1.5 Test Software

I	ltem	Site	Manufacturer	Name	Version
	1.	03CH05-KS	AUDIX	E3	6.2009-8-24al
	2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

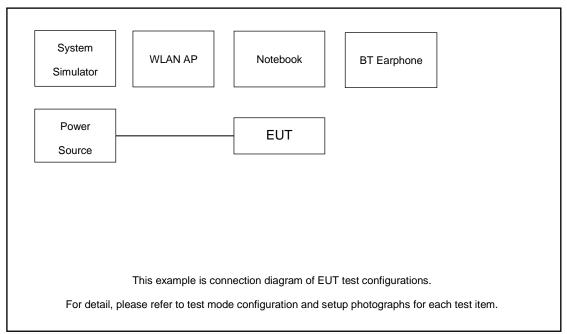
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

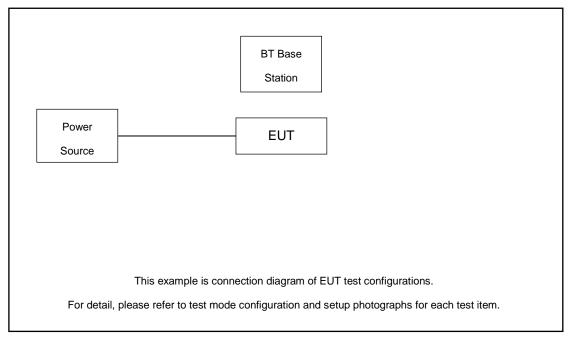
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases						
	Data Rate / Modulation						
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps				
	GFSK	π/4-DQPSK	8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
	В	luetooth EDR 3Mbps 8-DPS	К				
Radiated		Mode 1: CH00_2402 MHz					
Test Cases		Mode 2: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz						
AC	Mode 1 : LTE Band 5 Idle +	Bluetooth Link + WLAN Link	(2.4G) + Battery(BT-000456)				
Conducted	+ USB Cable(CB	BL-TC5X-USBC2A-01) + Ch	narging from AC Adapter				
Emission	(PWR-WUA5V12W0US)						
Remark:							
1. For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate							
has the highest RF output power at preliminary tests, and no other significantly frequencies found in							
conducted	conducted spurious emission.						


The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. The AC Conduction and RSE are tested with accessories from the worst case of Part 15B report.



2.3 Connection Diagram of Test System

For Conducted Emission

For Radiated Emission

2.4	Support Unit us	ed in test configuration	and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritus	MT8821C	N/A	N/A	Unshielded,1.8m
2.	BT Base Station	R&S	СВТ	N/A	N/A	Unshielded, 1.8m
3.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
4.	Notebook	Lenovo	V130-15IKB005	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
5.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 6.0 dB.

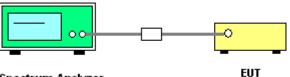
Offset(dB) = RF cable loss(dB). = 6.0 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

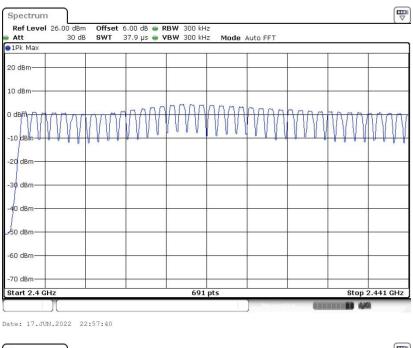

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

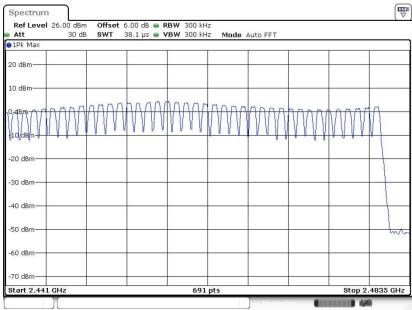
3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer


3.1.5 Test Result of Number of Hopping Frequency

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

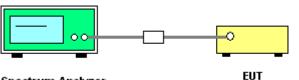
Number of Hopping Channel Plot on Channel 00 - 78

Date: 17.JUN.2022 22:58:05

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

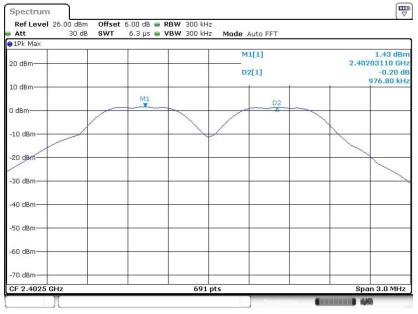
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

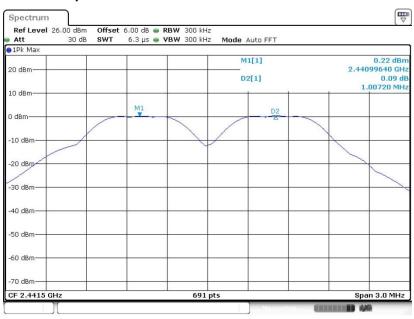
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

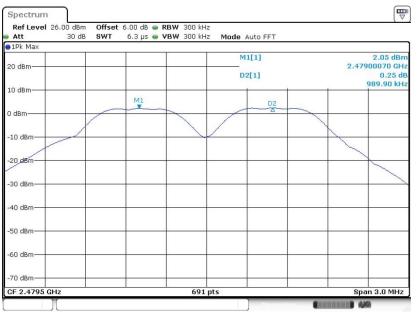
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.977	0.6638	Pass
DH	1Mbps	1	39	2441	1.007	0.6676	Pass
DH	1Mbps	1	78	2480	0.990	0.6619	Pass
2DH	2Mbps	1	0	2402	1.116	0.8596	Pass
2DH	2Mbps	1	39	2441	1.003	0.8886	Pass
2DH	2Mbps	1	78	2480	0.997	0.8915	Pass
3DH	3Mbps	1	0	2402	0.994	0.8481	Pass
3DH	3Mbps	1	39	2441	0.990	0.8596	Pass
3DH	3Mbps	1	78	2480	0.997	0.8596	Pass

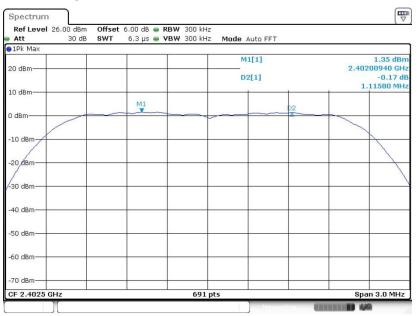

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 17.JUN.2022 22:56:28

Channel Separation Plot on Channel 39 - 40

Date: 17.JUN.2022 23:02:40



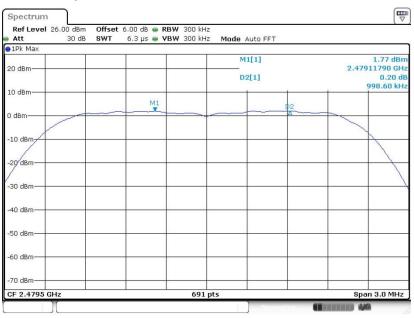
Channel Separation Plot on Channel 77 - 78

Date: 17.JUN.2022 23:07:18

<2Mbps>

Channel Separation Plot on Channel 00 - 01

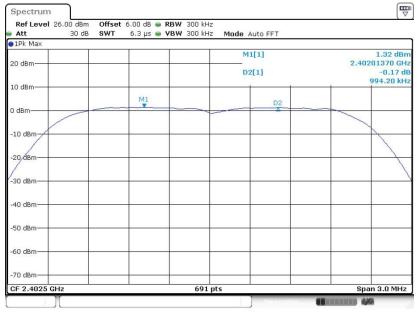
Date: 17.JUN.2022 23:13:59



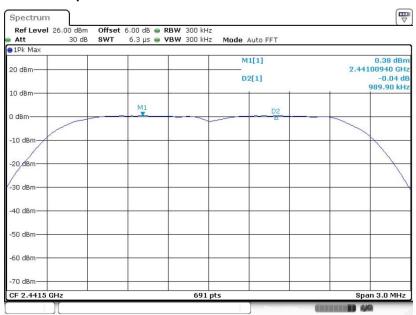
Channel Separation Plot on Channel 39 - 40

Date: 17.JUN.2022 23:21:52

Channel Separation Plot on Channel 77 - 78



Date: 17.JUN.2022 23:33:17


<3Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 17.JUN.2022 23:51:32

Channel Separation Plot on Channel 39 - 40

Date: 17.JUN.2022 23:58:45

Channel Separation Plot on Channel 77 - 78

Date: 18.JUN.2022 00:04:50

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

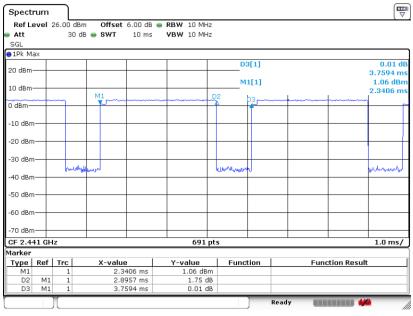
3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec) (MHz)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.8957	0.31	0.4	Pass
AFH	20	53.33	2.8957	0.15	0.4	Pass

Package Transfer Time Plot

Date: 18.MAY.2022 15:37:20

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s),

Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

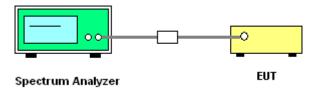
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

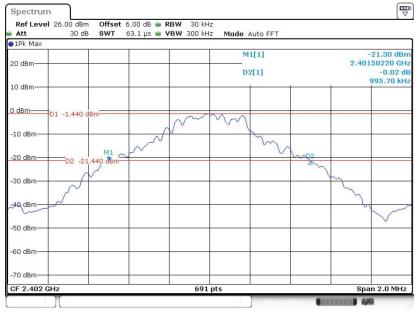

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak;
 Trace = max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

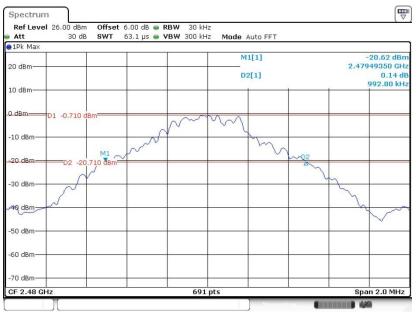
3.4.4 Test Setup


3.4.5 Test Result of 20dB Bandwidth

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.996	Pass
DH	1Mbps	1	39	2441	1.001	Pass
DH	1Mbps	1	78	2480	0.993	Pass
2DH	2Mbps	1	0	2402	1.289	Pass
2DH	2Mbps	1	39	2441	1.333	Pass
2DH	2Mbps	1	78	2480	1.337	Pass
3DH	3Mbps	1	0	2402	1.272	Pass
3DH	3Mbps	1	39	2441	1.289	Pass
3DH	3Mbps	1	78	2480	1.289	Pass

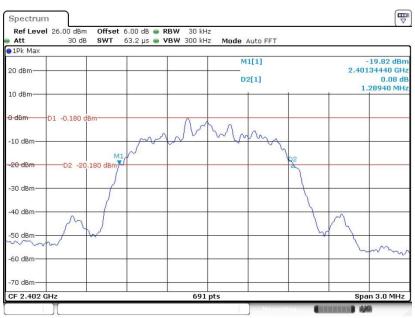
<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 17.JUN.2022 22:35:06

20 dB Bandwidth Plot on Channel 39

Date: 17.JUN.2022 22:59:18



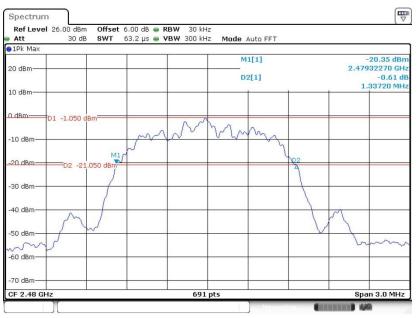
20 dB Bandwidth Plot on Channel 78

Date: 17.JUN.2022 23:03:44

<2Mbps>

20 dB Bandwidth Plot on Channel 00

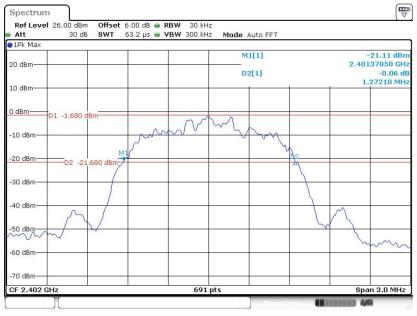
Date: 17.JUN.2022 23:08:35



20 dB Bandwidth Plot on Channel 39

Date: 17.JUN.2022 23:15:29

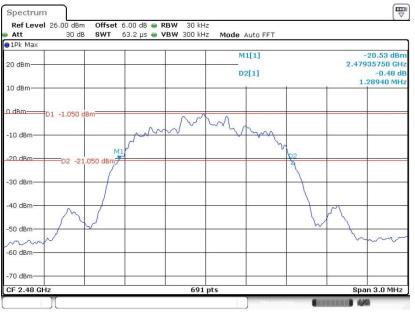
20 dB Bandwidth Plot on Channel 78



Date: 17.JUN.2022 23:23:40

<3Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 17.JUN.2022 23:34:39

20 dB Bandwidth Plot on Channel 39

Date: 17.JUN.2022 23:52:58

20 dB Bandwidth Plot on Channel 78

Date: 17.JUN.2022 23:59:51

3.4.6 Test Result of 99% Occupied Bandwidth

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.897	Pass
DH	1Mbps	1	39	2441	0.900	Pass
DH	1Mbps	1	78	2480	0.897	Pass
2DH	2Mbps	1	0	2402	1.187	Pass
2DH	2Mbps	1	39	2441	1.190	Pass
2DH	2Mbps	1	78	2480	1.187	Pass
3DH	3Mbps	1	0	2402	1.172	Pass
3DH	3Mbps	1	39	2441	1.172	Pass
3DH	3Mbps	1	78	2480	1.172	Pass


<1Mbps>

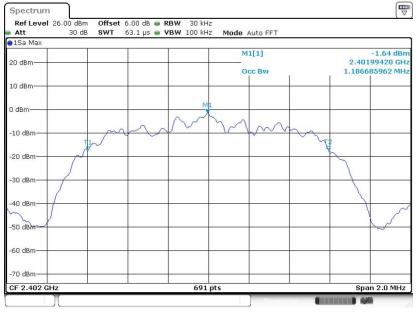
99% Occupied Bandwidth Plot on Channel 00

Date: 17.JUN.2022 22:38:53

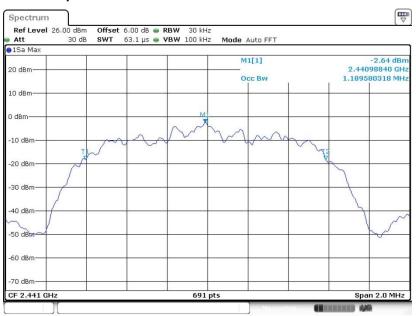
99% Occupied Bandwidth Plot on Channel 39

Date: 17.JUN.2022 22:59:56

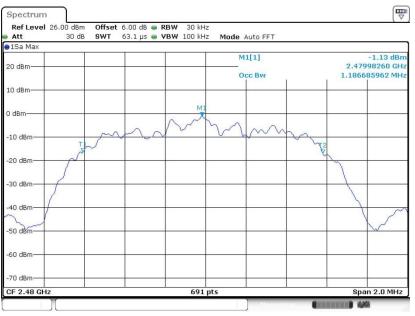
99% Occupied Bandwidth Plot on Channel 78



Date: 17.JUN.2022 23:05:21

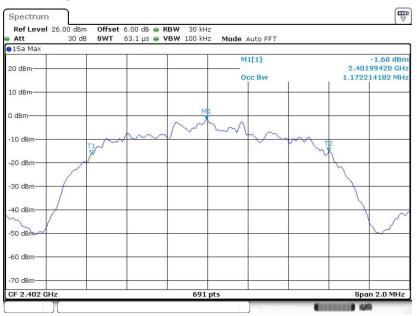

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 17.JUN.2022 23:11:37

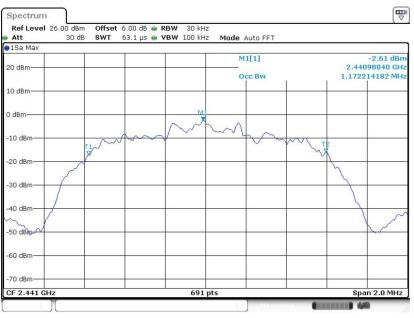
99% Occupied Bandwidth Plot on Channel 39

Date: 17.JUN.2022 23:16:37

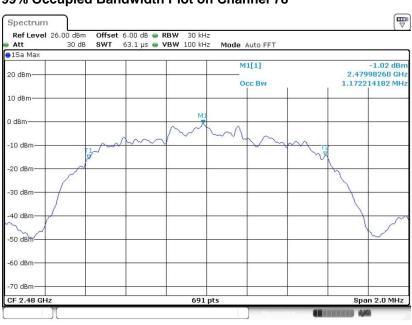


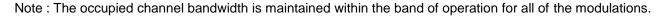
99% Occupied Bandwidth Plot on Channel 78

Date: 17.JUN.2022 23:25:52


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 17.JUN.2022 23:41:12


99% Occupied Bandwidth Plot on Channel 39

Date: 17.JUN.2022 23:54:49

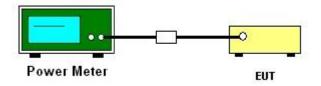
99% Occupied Bandwidth Plot on Channel 78

Date: 18.JUN.2022 00:01:28

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	1.81	20.97	Pass
DH1	DH1 39		2.24	20.97	Pass
	78	1	2.42	20.97	Pass

2DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	3.45	20.97	Pass
2DH1	39	1	4.24	20.97	Pass
	78	1	4.12	20.97	Pass

3DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
			3.86	20.97	Pass
3DH1			4.77	20.97	Pass
	78	1	4.52	20.97	Pass

3.5.6 Test Result of Average Output Power (Reporting Only)

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	1.40	5.18
DH1	39	1	1.92	5.18
	78	1	2.07	5.18

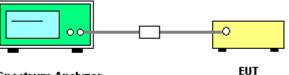
2DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	1.22	5.08
2DH1	39	1	1.90	5.08
	78	1	2.00	5.08

3DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
3DH1	0	1	1.26	5.08
	39	1	2.05	5.08
	78	1	1.87	5.08

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

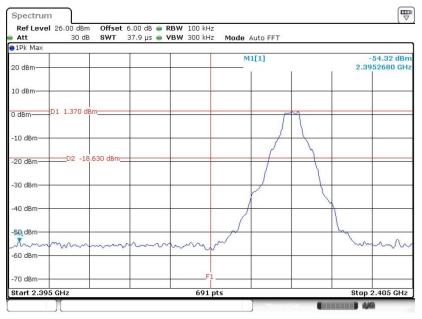

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

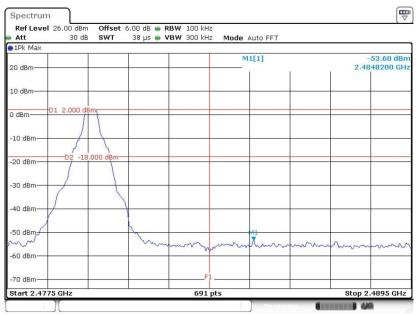
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

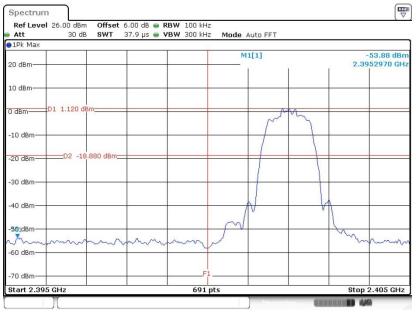
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

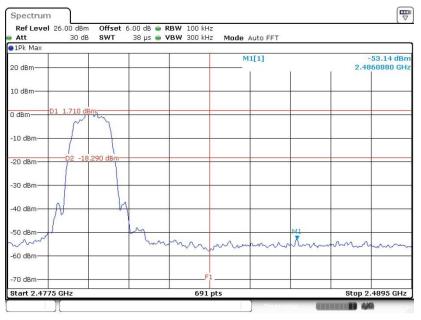
Low Band Edge Plot on Channel 00

Date: 17.JUN.2022 22:35:37

High Band Edge Plot on Channel 78



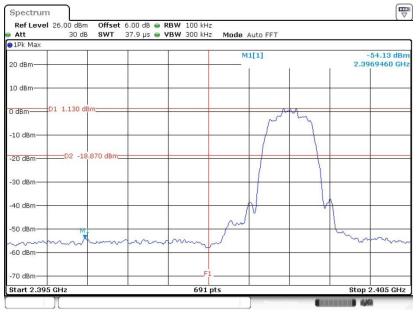
Date: 17.JUN.2022 23:04:05


<2Mbps>

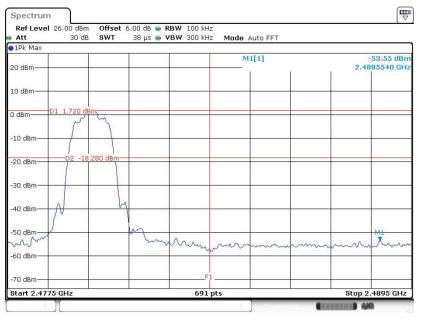
Low Band Edge Plot on Channel 00

Date: 17.JUN.2022 23:09:02

High Band Edge Plot on Channel 78



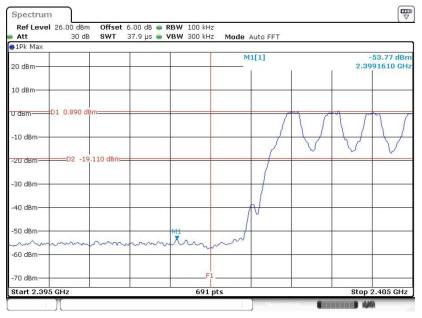
Date: 17.JUN.2022 23:24:12


<3Mbps>

Low Band Edge Plot on Channel 00

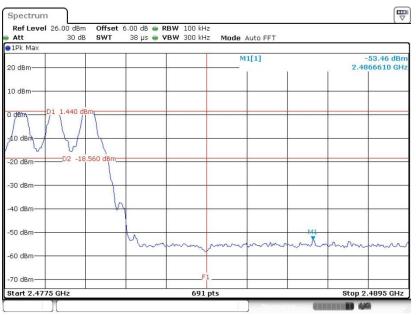
Date: 17.JUN.2022 23:36:25

High Band Edge Plot on Channel 78



Date: 18.JUN.2022 00:00:13

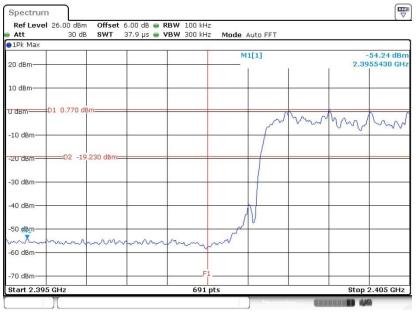
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

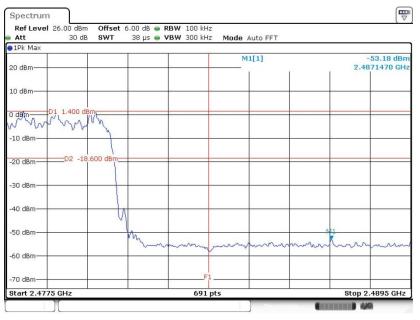
Hopping Mode Low Band Edge Plot

Date: 17.JUN.2022 22:37:58

Hopping Mode High Band Edge Plot



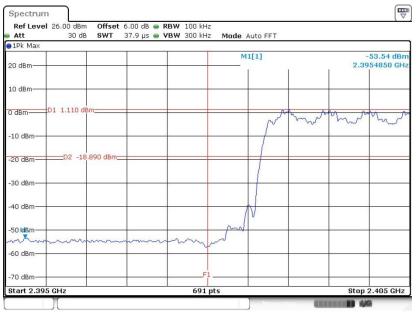
Date: 17.JUN.2022 23:04:41


<2Mbps>

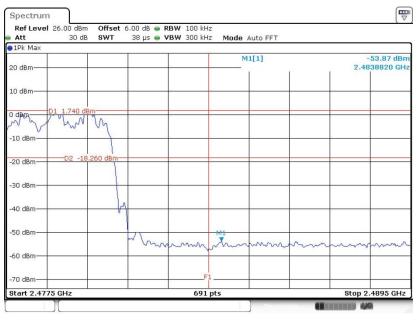
Hopping Mode Low Band Edge Plot

Date: 17.JUN.2022 23:09:29

Hopping Mode High Band Edge Plot



Date: 17.JUN.2022 23:25:12


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 17.JUN.2022 23:40:24

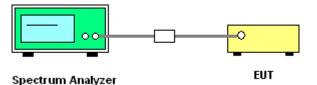
Hopping Mode High Band Edge Plot

Date: 18.JUN.2022 00:00:51

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

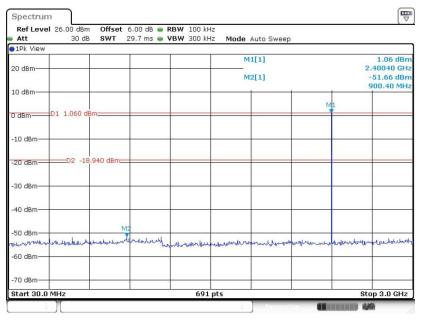

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

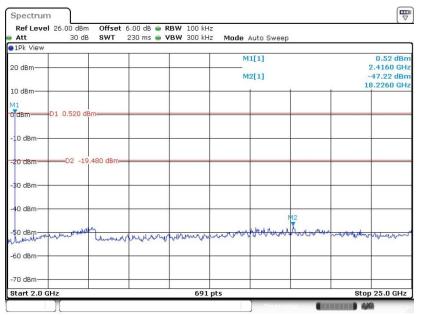
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup


Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: UZ7ET45BB

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 17.JUN.2022 22:53:53

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 17.JUN.2022 22:54:32

RefLevel 26.00 dBm Offse Att 30 dB SWT	et 6.00 dB 👄 RBW 100 k 29.7 ms 👄 VBW 300 k			
1Pk View				
20 dBm		M1[1] M2[1]		-0.09 dBn 2.43910 GH -51.90 dBn
10 dBm		1 1		951.90 MH
0 dBm D1 -0.090 dBm			M1	
-10 dBm				
20 dBmD2 -20.090 dBr	n			
30 dBm				
40 dBm				
50 dBm	M2 mundermander Hagen durade	human	woursonmenter	Hundradeline
60 dBm				
-70 dBm				
Start 30.0 MHz	69:	1 pts		Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 17.JUN.2022 23:00:36

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

	BO dB SWT	230 ms 🖷 V	'BW 300 kHz	Mode	Auto Sweep			
1Pk View		-						o cr do-
20 dBm		_		IVI	1[1]			-0.65 dBr 2.4490 GH
				M	2[1]			-47.20 dBi
10 dBm		_						6.6100 GH
M1								
	650 dBm							
-10 dBm		_						
20 dBmD;	2 -20.650 dBm-							
-30 dBm								-
40 dBm								
	M2			2.1	Mar Marine	A 1.		
50 dBm	Wanty	www.huhuhuh	where we have the	manufille	Phys. a. Parameter	1 M H H H	manu	whenter
60 dBm								
70 dBm								
Start 2.0 GHz			691	nts			Stor	25.0 GHz

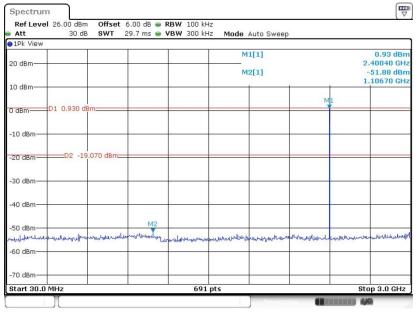
Date: 17.JUN.2022 23:01:27

RefLevel 26.00 dBm Offs Att 30 dB SWT	et 6.00 dB 👄 RBW 100 k 29.7 ms 👄 VBW 300 k		р		
1Pk View					-
20 dBm		M1[1]		2	2.12 dBn .48210 GH;
		M2[1]			-51.41 dBn
10 dBm		1	1	2	.33590 GH:
D1 2.120 dBm				M1	
D dBm					
-10 dBm					
-10 dBill					
-20 dBm D2 -17.880 dBr	m-				
6.17 00.0516/2010					
-30 dBm					
-40 dBm					
-50 dBm			M2		
would an anount rate worked	where ment mon work aller	pure presentation of manageneration	and more when	un marke	munner
60 dBm					
-70 dBm					
Start 30.0 MHz	691	L pts		Sto	op 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 17.JUN.2022 23:05:57

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att 30 1Pk View	dB SWT 23	80 ms 🖷 VBN	N 300 KH2	MODE A	uto Sweep			
20 dBm				M1 M2			12	1.53 dBr 2.4830 GH -47.35 dBr
10 dBm							1	9.5910 GH
D dBm D1 1.53	0 dBm							
10 dBm								
20 dBm D2	-18.470 dBm							
30 dBm								
40 dBm						M2		
50 dBm	human	have when	howen the	hand	bon Astor A	Anna	with the	Munum
60 dBm								
	1 1							

Date: 17.JUN.2022 23:06:27


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 17.JUN.2022 23:12:22

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 17.JUN.2022 23:12:51

	6.00 dB 👄 RBW 100 k 29.7 ms 👄 VBW 300 k		5	
1Pk View	T T			
20 dBm-		M1[1]		-0.08 dBn 2.43910 GH
		M2[1]		-52.15 dBn
10 dBm		1	1 1	2.62390 GH
			M1	
0 dBm D1 -0.080 dBm			1 I	
-10 dBm				
-20 dBm D2 -20.080 dBm				
-30 dBm				
-40 dBm				
-50 dBm				M2
and the supervision of the second second	all and the second and the second and the second se	when and the second and	mounder	whenter polleton and
-60 dBm				
-70 dBm				
Start 30.0 MHz		1 pts		Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 17.JUN.2022 23:19:20

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	30 dB 😫	SWT 23	Jms 🥃 🗸	BW 300 kH	z Mode	Auto Sweep	C		
1Pk View					M	11[1]			0.13 dBr 2.4490 GH
					M	12[1]			47.93 dBn
10 dBm						1	1	1	8.2930 GH
	0.130 dBm-								
-10 dBm									
-20 d8m	-D2 -19.870) dBm							
-30 dBm									
40 dBm						2			
50 dBm	Andread the					www.			
50 dBm	www	workingen	an April	werturch	and whether	A & & a mano	a alto al-a	hurtrand	minum
-60 dBm									
-70 dBm									
Start 2.0 GH	7			691	nts			Stor	25.0 GHz

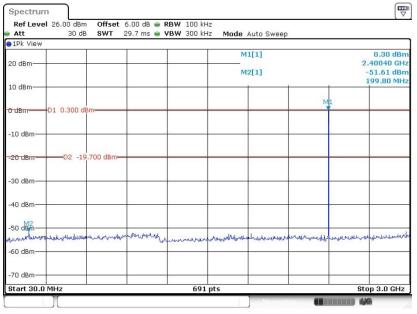
Date: 17.JUN.2022 23:20:58

	29.7 ms 🥌 VBW 300 kHz	Mode Auto Sweep		
20 dBm-		M1[1]		1.44 dBn 2.48210 GH
10 dBm		M2[1]		-51.32 dBn 2.98500 GH
			M1	
D dBmD1 1.440 dBm				
-10 dBm				
20 dBmD2 -18.560 dBm				
30 dBm				_
40 dBm				
50 dBm				N
60 dBm	and an and and a second with the	children and the second	when the angle of the second	mellowenterholdered
70 dBm				_
Start 30.0 MHz	691 p	its	S	top 3.0 GHz

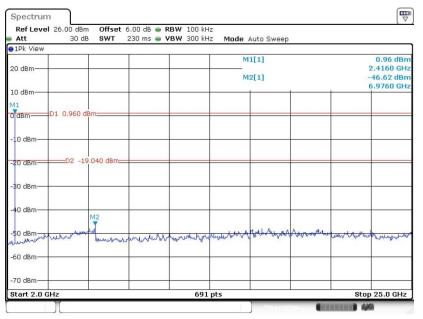
CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

Date: 17.JUN.2022 23:28:36

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	30 dB	SWT	230 ms 🖷 🖌	/BW 300 kH	z Mode	Auto Sweep			
1Pk View					M	1[1]			1.62 dBr
20 dBm									2.4830 GH
					M	2[1]			-47.05 dBr 8.2930 GH
10 dBm						1	İ	1	8.2930 GH
M1		-							
0 dBm	01 1.620 di	sm-		18					
-10 dBm									
-20 dBm		.380 dBm—		2					
-30 dBm									
-40 dBm									
							12		
-90 dBm	- nor and a second	hardhours	Annahana	rendered	. Lun when	Wat Hunder	Andrew Mary	understand	through
-60 dBm					-				
70 dBm									
Start 2.0 GH	17			691	nts			Stor	25.0 GHz

Date: 17.JUN.2022 23:29:04


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 17.JUN.2022 23:42:07

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 17.JUN.2022 23:42:56

Att 30 d	B SWT	29.7 ms 👄	VBW 300 kH	z Mode	Auto Sweep	i i		
20 dBm					1[1] 2[1]			0.18 dBm .43910 GHz -52.32 dBm
10 dBm	-		+		1	1	1	960.50 MHz
0 dBm-D1 0.180 d	dBm						M1	
-10 dBm								
- 20 dBm D 2 -1	9.820 dBm-							
-30 dBm								
-40 dBm	-							2
-50 dBm-	www.e.wallip	M2 Millimany		whenwhilm	multiplication	withmention	mynum	pendoralinana
-60 dBm				-				
-70 dBm								

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$

Date: 17.JUN.2022 23:55:59

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att 3	0 dB SWT 230	ms 👄 VBW 300	kHz Mode Auto	oweah	
20 dBm			M1[1] M2[1]		-0.09 dBr 2.4490 GH -47.92 dBr
10 dBm			Í.	1 1	6.6100 GH
M1 BidBm D1 -0.0	190 dBm				
-10 dBm					
2 0 dBm D 2	-20.090 dBm				
30 dBm					
40 dBm	M2				
SO dBm	manufacture	enounderand	Mohnoradora	Marchard Marchard	and white which
60 dBm					
-70 dBm					

Date: 17.JUN.2022 23:56:29