

FCC RF Test Report

FCC ID	: UZ7ET45BB
EQUIPMENT	: Tablet
BRAND NAME	: Zebra
MODEL NAME	: ET45BB
APPLICANT	: Zebra Technologies Corporation
	1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation
	1 Zebra Plaza, Holtsville, NY 11742
STANDARD	: 47 CFR Part 2, 96
CLASSIFICATION	: Citizens Band End User Devices (CBE)
EQUIPMENT TYPE	: End User Equipment
TEST DATE(S)	: May 26, 2022 ~ Jun. 24, 2022

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.26 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Table of Contents

His	tory o	f this test report	3
Su	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Maximum EIRP Power and Emission Designator	6
	1.4	Testing Site	
	1.5	Test Software	
	1.6	Applied Standards	
2		Configuration of Equipment Under Test	
	2.1	Test Mode	
	2.2	Connection Diagram of Test System	
	2.3 2.4	Support Unit used in test configuration	
	2.4 2.5	Frequency List of Low/Middle/High Channels1	
3		ucted Test Items1	
5			
	3.1 3.2	Measuring Instruments	
	3.2 3.3	EIRP1	
	3.4	Occupied Bandwidth1	
	3.5	Conducted Band Edge1	
	3.6	Conducted Spurious Emission1	7
	3.7	Frequency Stability1	8
4	Radia	ited Test Items1	9
	4.1	Measuring Instruments1	9
	4.2	Test Setup1	
	4.3	Test Result of Radiated Test	
	4.4	Radiated Spurious Emission2	
5		f Measuring Equipment2	
6	Unce	rtainty of Evaluation2	3
Ар	pendix	A. Test Results of Conducted Test	
Ap	pendix	B. Test Results of Radiated Test	

Appendix C. Test Setup Photographs

History of this test report

01		
01	Initial issue of report	Aug. 03, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.2	§2.1046	Conducted Output Power	Reporting only	-
3.3	§96.41	Maximum E.I.R.P	Pass	-
3.4	§2.1049 §96.41	Occupied Bandwidth	Reporting only	-
3.5	§2.1051 §96.41	Conducted Band Edge Measurement Adjacent Channel Leakage Ratio	Pass	-
3.6	§2.1051 §96.41	Conducted Spurious Emission	Pass	
3.7	§2.1055	Frequency Stability for Temperature & Voltage	Pass	-
4.4	4.4 §2.1051 §96.41 Radiated Spurious Emissio		Pass	Under limit 5.19 dB at 7362.000 MHz

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Feature of Equipment Under Test

Product Feature				
Equipment	Tablet			
Brand Name	Zebra			
Model Name	ET45BB			
FCC ID	UZ7ET45BB			
HW Version	EV2-2			
SW Version	ET45USERDEBUG 11 11-10-12.00-RG-U00-PRD-GSE MXJ release-keys			
MFD	07MAY22			
EUT Stage	Identical Prototype			

Specification of Accessory				
Battery	Brand Name	Zebra	Model Number	BT-000456

Supported Unit used in test configuration and system						
AC Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US		
Earphone 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01		
Earphone 2	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01		
USB Cable (Type C to Type A)	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01		
Type C-Audio Cable (Type C to 3.5mm)	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01		

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx Frequency	LTE Band 48: 3550 MHz ~ 3700 MHz			
Rx Frequency	LTE Band 48: 3550 MHz ~ 3700 MHz			
Bandwidth	5MHz / 10MHz / 15MHz / 20MHz			
Antenna Gain	<ant. 3=""> Lowest Channel: -1.4 dBi Middle Channel: -1.6 dBi Highest Channel: -2.2 dBi</ant.>			
Cype of Modulation QPSK / 16QAM / 64QAM				

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

2. The maximum EIRP is calculated from max output power and max antenna gain .

1.3	Maximum	EIRP	Power	and	Emission	Designator
-----	---------	------	-------	-----	----------	------------

LTE Band 48		QPSK		16QAM/64QAM	
BW (MHz)	Frequency Range (MHz)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)
20	3560~3690	0.1762	17M9G7D	0.1396	17M9W7D

LTE Band 48 CA	QP	SK	16QAM/64QAM		
BW (MHz) Frequency (MHz)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)	
20MHz+20MHz (3560 ~ 3690 MHz)	0.1742	37M6G7D	0.1722	37M6W7D	

Note: All modulations have been tested, and only the worst test results of PSK & QAM are shown in the report.

1.4 Testing Site

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)				
	No. 1098, Pengxi North	n Road, Kunshan Economi	c Development Zone		
Test Site Location	Jiangsu Province 215300 People's Republic of China				
Test Sile Location	TEL : +86-512-57900158				
	FAX : +86-512-57900958				
	Sporton Site No.	FCC Designation No.	FCC Test Firm		
Test Site No.	Sporton Site No.	T CC Designation No.	Registration No.		
	03CH04-KS TH01-KS	CN1257	314309		

1.5 Test Software

lte	m	Site	Manufacturer	Name	Version	
1	•	03CH04-KS	AUDIX	E3	6.2009-8-24a	

1.6 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- + ANSI C63.26-2015
- ANSI / TIA-603-E
- 47 CFR Part 2, 96
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 940660 D01 Part 96 CBRS v03
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01

Remark:

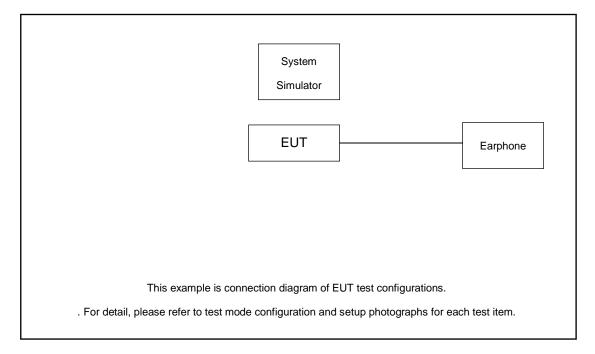
- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.


Test Items	Dand	Bandwidth (MHz)					Modulation			RB #			Test Channel			
lest items	Band	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	1	Half	Full	L	М	н
Max. Output Power	48	-	-	v	v	v	v	v	v	v	v		v	v	v	v
Adjacent Channel Leakage Ratio	48	-	-	v	v	v	v	v	v	v	v		v	v	v	v
26dB and 99% Bandwidth	48	-	-	v	v	v	v	v	v				v		v	
Conducted Band Edge	48	-	-	v	v	v	v	v	v	v	v		v	v		v
Conducted Spurious Emission	48	-	-	v	v	v	v	v	v		v		v	v	v	v
E.R.P / E.I.R.P	48	-	-	v	v	v	v	v	v	v	v			v	v	v
Frequency Stability	48	-	-		v			v			v				v	
Radiated Spurious Emission	48		Worst Case						v	v	v					

Test Items	Band		Bandwidth (MHz)							Mod	ulation		RB #			Test Channel			
loot nome	Fana		20+15	15+20	20+10	10+20	10+10	20+5	5+20	QPSK	16QAM	64QAM	256QAM	1	Half	Full	L	М	н
Max. Output Power	48C	v	v	v	v	v	-	v	v	v	v	v	-	v		v	v	v	v
26dB and 99% Bandwidth	48C	v	v	v	v	v	-	v	v	v	v		-			v		v	
Conducted Band Edge	48C	v	v	v	v	v	-	v	v	v	v	v	-	v		v	v	v	v
Conducted Spurious Emission	48C	×	v	v	v	v	-	v	v	v			-	v			>	>	v
Adjacent Channel Leakage Ratio	48C	v	v	v	v	v	-	v	v	v	v	v	-	v		v	v	v	v
E.R.P/E.I.R.P	48C	v	v	v	v	v	-	v	v	v	v	v	-	v		v	v	v	v
Radiated Spurious Emission	48C		Worst Case v v v																
Note	2. 3. 4.	The ma The de differer reporte	ency stability only shows the worst case of LTE Band 48.					er											

All test items are based on engineering evaluation.
 All the radiated test cases were performed with Earphone.

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration

ltem	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	Power Supply	GWINSTEK	PSS-2002	N/A	N/A	Unshielded, 1.8 m
2.	LTE Base Station	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 8.72 dB.

Example :

Offset(dB) = RF cable loss(dB).

= 8.72 (dB)

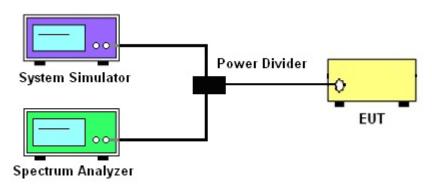
2.5 Frequency List of Low/Middle/High Channels

	LTE Band 48 Channel and Frequency List									
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest						
	Channel	55340	55990	56640						
20	Frequency	3560.0	3625.0	3690.0						
15	Channel	55315	55990	56665						
15	Frequency	3557.5	3625.0	3692.5						
10	Channel	55290	55990	56690						
10	Frequency	3555.0	3625.0	3695.0						
5	Channel	55265	55990	56715						
5	Frequency	3552.5	3625.0	3697.5						

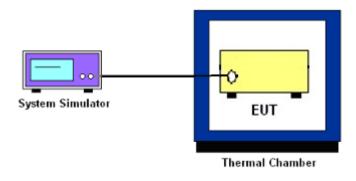
LTE Band 48C_CA Channel and Frequency List										
BW [MHz]	Channe	/Frequency(MHz)	Lowest	Middle	Highest					
	PCC	Channel	55273	55898	56523					
5 . 00	PCC	Frequency	3553.3	3615.8	3678.3					
5 + 20	600	Channel	55390	56015	56640					
	SCC	Frequency	3565	3627.5	3690					
	PCC	Channel	55340	55965	56590					
20 . 5	PCC	Frequency	3560	3622.5	3685					
20 + 5	SCC	Channel	55457	56082	56707					
	500	Frequency	3571.7	3634.2	3696.7					
	PCC	Channel	55295	55896	56496					
10 + 20	PCC	Frequency	3555.5	3615.6	3675.6					
10 + 20	SCC	Channel	55439	56040	56640					
		Frequency	3569.9	3630	3690					
	PCC	Channel	55340	55941	56541					
20 + 40	PCC	Frequency	3560	3620.1	3680.1					
20 + 10	SCC	Channel	55484	56085	56685					
		Frequency	3574.4	3634.5	3694.5					
	PCC	Channel	55318	55893	56469					
45 . 00		Frequency	3557.8	3615.3	3672.9					
15 + 20	SCC	Channel	55489	56064	56640					
	SUC	Frequency	3574.9	3632.4	3690					
	PCC	Channel	55340	55916	56491					
00 + 45	PCC	Frequency	3560	3617.6	3675.1					
20 + 15	800	Channel	55511	56087	56662					
	SCC	Frequency	3577.1	3634.7	3692.2					
	DOO	Channel	55340	55891	56442					
	PCC	Frequency	3560	3615.1	3670.2					
20 +20		Channel	55538	56089	56640					
	SCC	Frequency	3579.8	3634.9	3690					

3 Conducted Test Items

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.1.1 Test Setup


3.1.2 Conducted Output Power

3.1.3 PSD, Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power

3.2.1 Description of the Conducted Output Power Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.3 EIRP

3.3.1 Description of the EIRP Measurement

EIRP and PSD limits for CBRS equipment as below table:

De	evice	Maximum EIRP	Maximum PSD
		(dBm/10 MHz)	(dBm/MHz)
Applied	End User Device	23	n/a
	Category A CBSD	30	20
	Category B CBSD	47	37

Remark: The worst case EIRP shown in this section is found with LTE operating only using 1RB. As such, the EIRP/10MHz and full channel EIRP values will be identical since 1RB is fully contained within all available channel bandwidths for LTE Band 48 (i.e. 5, 10, 15, 20MHz)

3.3.2 Test Procedures for EIRP

- Establishing a communications link with the call box (Base station) to measure the Maximum conducted power, the parameters were set to force the EUT transmitting at maximum output power level. Use the average power measurement function to measure total channel power of each channel bandwidth (per ANSI C63.26-2015 Section 5.2.1)
- Determining ERP and/or EIRP from conducted RF output power measurements (Per ANSI C63.26-2015 Section 5.2.5.5)

 $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

 L_{C} = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.4 Occupied Bandwidth

3.4.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.4.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.5 Conducted Band Edge

3.5.1 Description of Conducted Band Edge Measurement

Part 96.41 (e) (1) (i)

For CBSD the emission limits outside the fundamental are as follows: Within 0 MHz to 10 MHz above and below the assigned channel ≤ -13 dBm/MHz Greater than 10 MHz above and below the assigned channel ≤ -25 dBm/MHz

Part 96.41 (e) (1) (ii)

For End User Devices the emission limits outside the fundamental are as follows:

Within 0 MHz to B MHz above and below the assigned channel \leq -13 dBm/MHz

Greater than B MHz above and below the assigned channel ≤ -25 dBm/MHz

where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device.

Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

Part 96.41 (e) (2)

For CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz

3.5.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used
- 5. Offset has included the duty factor for LTE Band 48. Duty factor =10 log (1/x), where x is the measured duty cycle.
- 6. Set spectrum analyzer with RMS detector.
- 7. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.6 Conducted Spurious Emission

3.6.1 Description of Conducted Spurious Emission Measurement

96.41 (e)(2)

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is -40dBm/MHz.

3.7 Frequency Stability

3.7.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency

3.7.2 Test Procedures for Temperature Variation

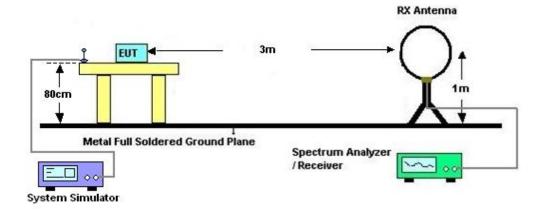
The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

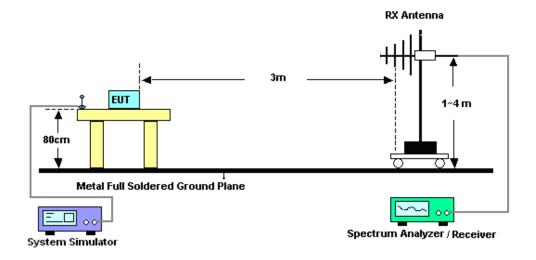
3.7.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

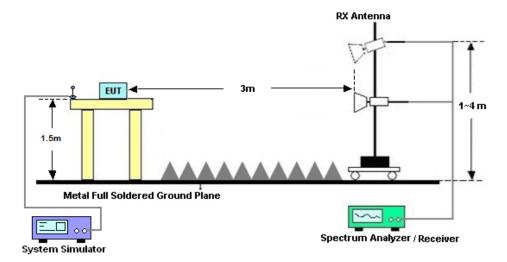

4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.2 Test Setup

4.2.1 For radiated test below 30MHz



4.2.2 For radiated test from 30MHz to 1GHz

4.2.3 For radiated test above 1GHz

4.3 Test Result of Radiated Test

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Please refer to Appendix B.

4.4 Radiated Spurious Emission

4.4.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least -40dBm / MHz.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- A horn antenna was substituted in place of the EUT and was driven by a signal generator. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission. EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain
 - ERP(dBm) = EIRP 2.15
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is -40dBm/MHz

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 14, 2021	May 26, 2022~ Jun. 20, 2022	Oct. 13, 2022	Conducted (TH01-KS)
Power divider	STI	STI08-0055	-	0.5~40GHz	Aug. 26, 2021	May 26, 2022~ Jun. 20, 2022	Aug. 25, 2022	Conducted (TH01-KS)
Temperature &hu midity chamber	Hongzhan	LP-150U	H2014011 440	-40~+150°C 20%~95%RH	Jul. 12, 2021	May 26, 2022~ Jun. 20, 2022	Jul. 11, 2022	Conducted (TH01-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY575410 79	10Hz-44G,MAX 30dB	Oct. 14, 2021	Jun. 24, 2022	Oct. 13, 2022	Radiation (03CH04-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 30, 2021	Jun. 24, 2022	Oct. 29, 2022	Radiation (03CH04-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	May 24, 2022	Jun. 24, 2022	May 23, 2023	Radiation (03CH04-KS)
Horn Antenna	Schwarzbeck	BBHA9120D	1284	1GHz~18GHz	Oct. 18, 2021	Jun. 24, 2022	Oct. 18, 2022	Radiation (03CH04-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2022	Jun. 24, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Jan. 05, 2022	Jun. 24, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 05, 2022	Jun. 24, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
high gain Amplifier	EM	EM01G18GA	060839	1Ghz-18Ghz	Oct. 14, 2021	Jun. 24, 2022	Oct. 13, 2022	Radiation (03CH04-KS)
Amplifier	Keysight	83017A	MY572801 06	500MHz~26.5G Hz	Oct. 13, 2021	Jun. 24, 2022	Oct. 12, 2022	Radiation (03CH04-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jun. 24, 2022	NCR	Radiation (03CH04-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jun. 24, 2022	NCR	Radiation (03CH04-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jun. 24, 2022	NCR	Radiation (03CH04-KS)

NCR: No Calibration Required

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.3dB
Confidence of 95% (U = 2Uc(y))	3.30B

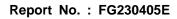
Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	2.8dB
Confidence of 95% (U = 2Uc(y))	2.000

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.8dB

----- THE END ------

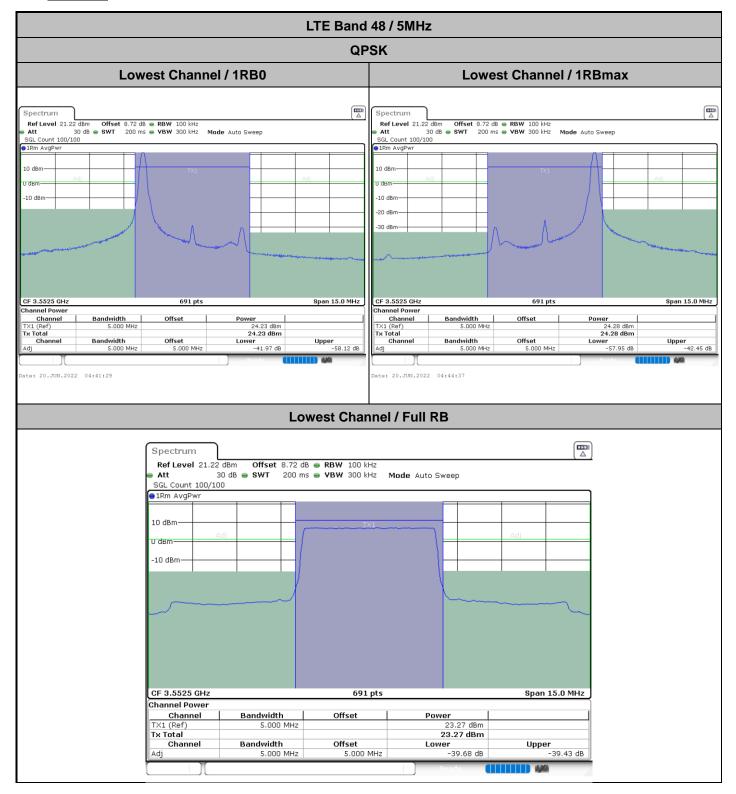

Appendix A. Test Results of Conducted Test

Test Engineer :	Simle Wang	Temperature :	22~23°C
rest Engineer .	Sinne wang	Relative Humidity :	40~42%

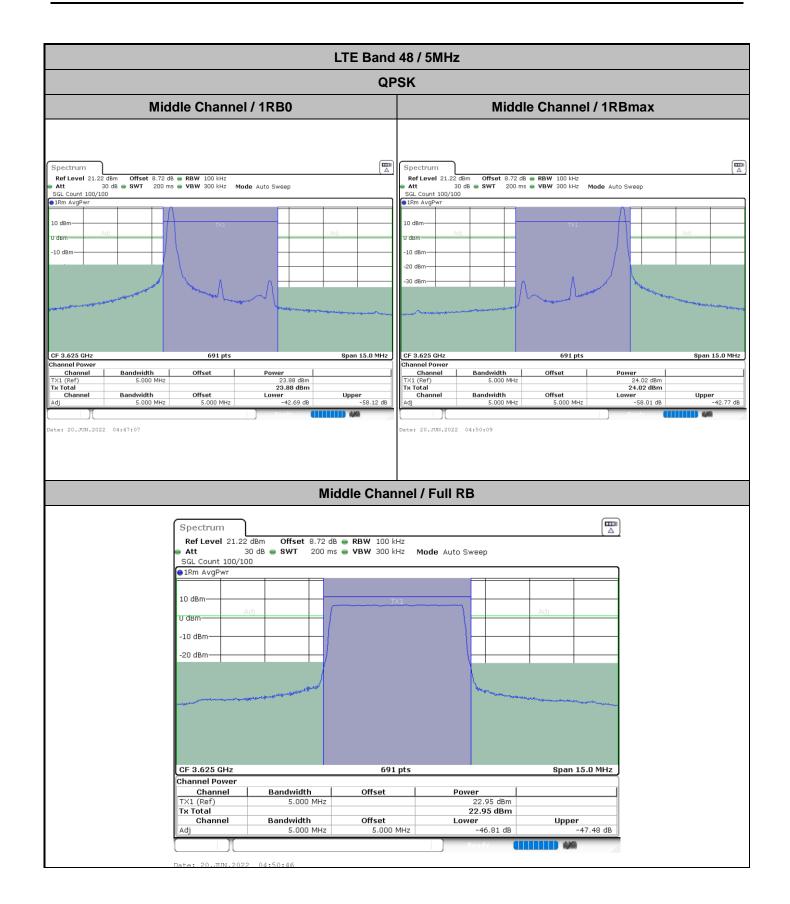
Conducted Output Power(Average power) and EIRP

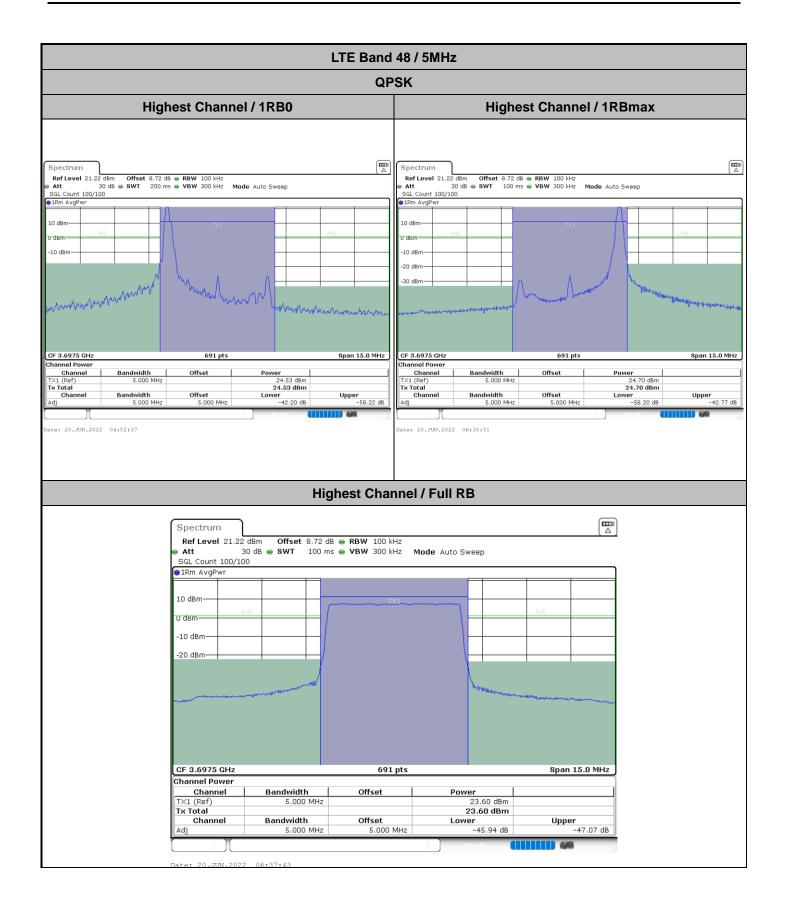
LTE Band 48

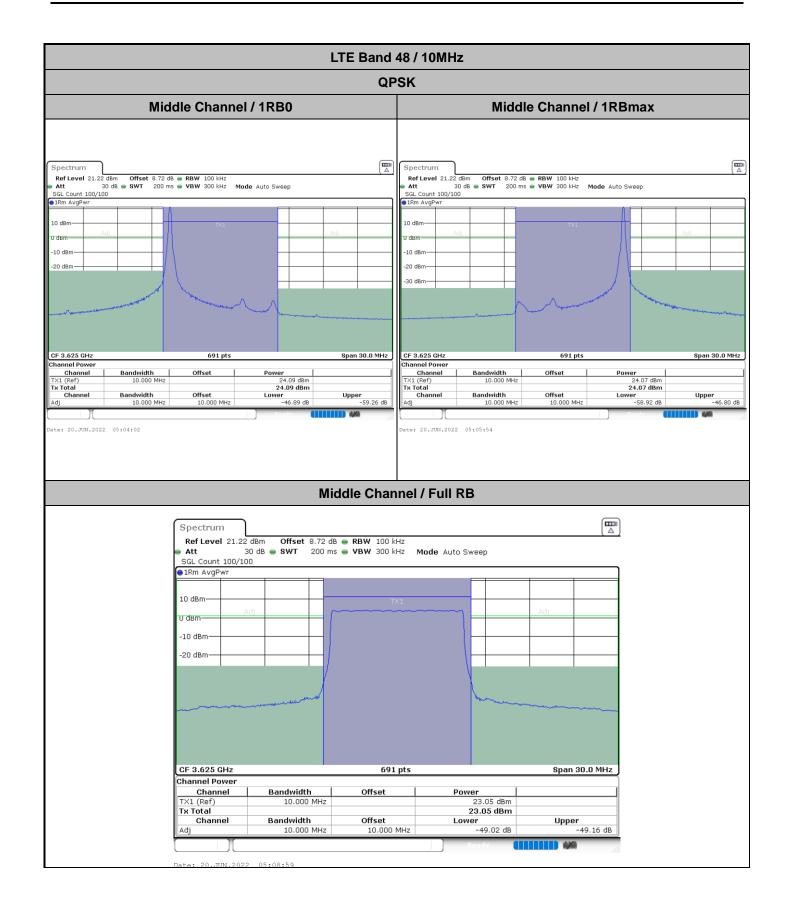
BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	EIRP(W)		
Channel				55340	55990	56640			
Frequency (MHz)				3560	3625	3690	<u> </u>	М	Н
20	QPSK	1	0	23.70	23.86	23.83	0.1698	0.1762	0.1750
20	QPSK	1	99	23.72	23.78	23.70	0.1706	0.1729	0.1698
20	QPSK	100	0	22.62	22.84	22.65	0.1324	0.1393	0.1334
20	16QAM	1	0	22.69	22.85	22.75	0.1346	0.1396	0.1365
20	64QAM	1	0	21.66	21.82	21.84	0.1062	0.1102	0.1107
Channel				55315	55990	56665	EIRP(W)		
Frequency (MHz)				3557.5	3625	3692.5	L	М	Н
15	QPSK	1	0	23.67	23.79	23.80	0.1687	0.1734	0.1738
15	16QAM	1	0	22.56	22.69	22.79	0.1306	0.1346	0.1377
Channel				55290	55990	56690	EIRP(W)		
Frequency (MHz)				3555	3625	3695	L	М	Н
10	QPSK	1	0	23.56	23.75	23.81	0.1644	0.1718	0.1742
10	16QAM	1	0	22.51	22.71	22.77	0.1291	0.1352	0.1371
Channel				55265	55990	56715	EIRP(W)		
Frequency (MHz)				3552.5	3625	3697.5	L	М	Н
5	QPSK	1	0	23.48	23.70	23.83	0.1614	0.1698	0.1750
5	16QAM	1	0	22.56	22.82	22.70	0.1306	0.1387	0.1349

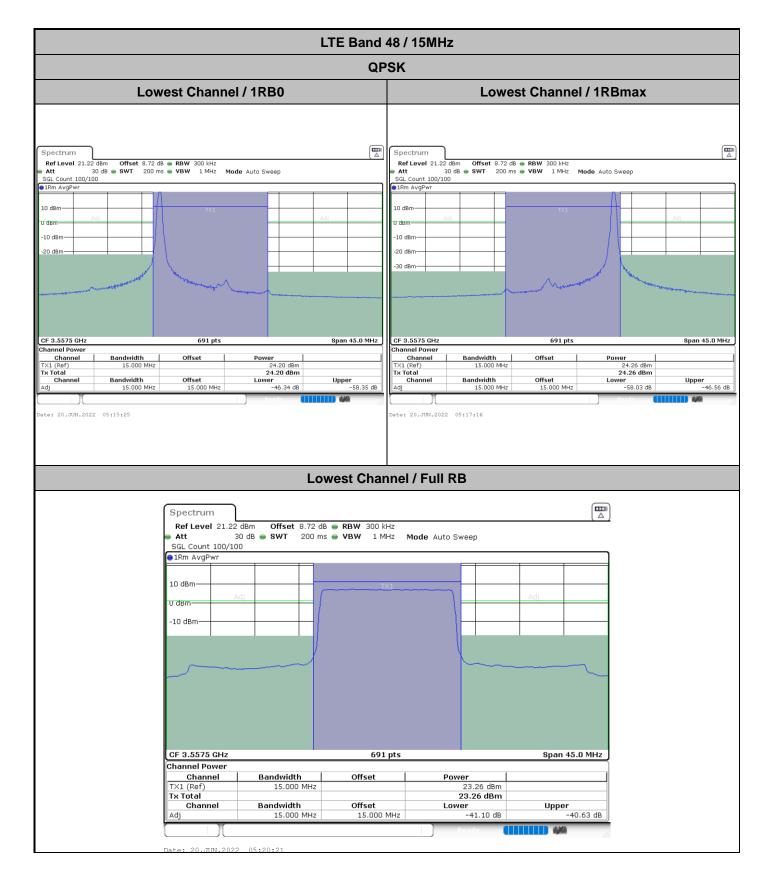

CA_48C

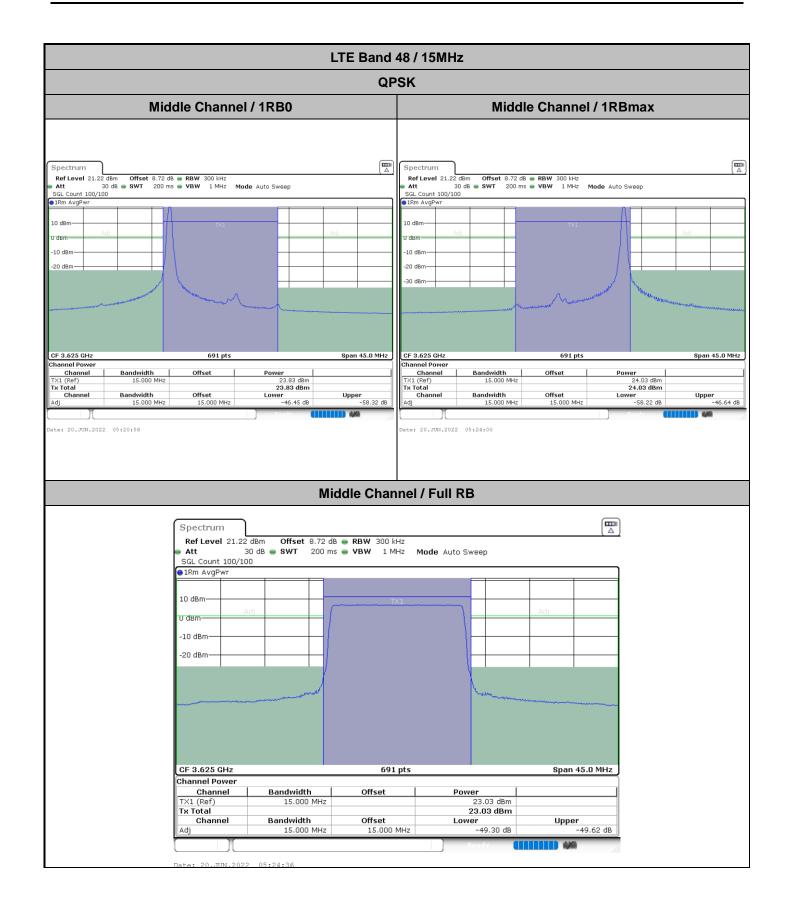
		Comb	pination 20MHz+2	0MHz (100RB+1	00RB)		
Observal	Madulation	PCC		S	CC	Measured	
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)
L	QPSK	1	Max	1	0	23.75	0.1718
М	QPSK	1	Max	1	0	23.81	0.1742
н	QPSK	1	Max	1	0	23.66	0.1683
L	16QAM	1	Max	1	0	23.65	0.1679
М	16QAM	1	Max	1	0	23.76	0.1722
н	16QAM	1	Max	1	0	23.45	0.1603
L	64QAM	1	Max	1	0	22.36	0.1247
М	64QAM	1	Max	1	0	22.54	0.1300
н	64QAM	1	Max	1	0	22.28	0.1225
		Com	bination 20MHz+2	15MHz (100RB+7	75RB)		
		PCC		S	CC	Measured	
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)
М	QPSK	1	Max	1	0	23.78	0.1730
М	16QAM	1	Max	1	0	23.65	0.1679
		Com	bination 15MHz+2	20MHz (100RB+7	75RB)		
<u>.</u>	Modulation	PCC		SCC		Measured	
Channel		RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)
М	QPSK	1	Max	1	0	23.74	0.1714
М	16QAM	1	Max	1	0	23.59	0.1656
	· · · · · · · · · · · · · · · · · · ·	Com	bination 20MHz+ ²	10MHz (100RB+5	50RB)	ł	
		PCC		SCC		Measured	
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)
М	QPSK	1	Max	1	0	23.70	0.1698
М	16QAM	1	Max	1	0	23.50	0.1622
		Com	bination 10MHz+2	20MHz (50RB+10	DORB)		
		PCC		SCC		Measured	
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)
М	QPSK	1	Max	1	0	23.60	0.1660
М	16QAM	1	Max	1	0	23.48	0.1614
		Corr	bination 20MHz+	5MHz (100RB+2	5RB)		
		PCC		SCC		Measured	
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)
М	QPSK	1	Max	1	0	23.77	0.1726
М	16QAM	1	Max	1	0	23.54	0.1637
		Com	bination 5MHz+2	0MHz (2 <u>5RB+10</u>	0RB)		
		PCC		SCC		Measured	
Channel	Modulation	RB Size	RB offset	RB Size	RB offset	Power	EIRP(W)
М	QPSK	1	Max	1	0	23.80	0.1738
M	16QAM	1	Max	1	0	23.67	0.1687

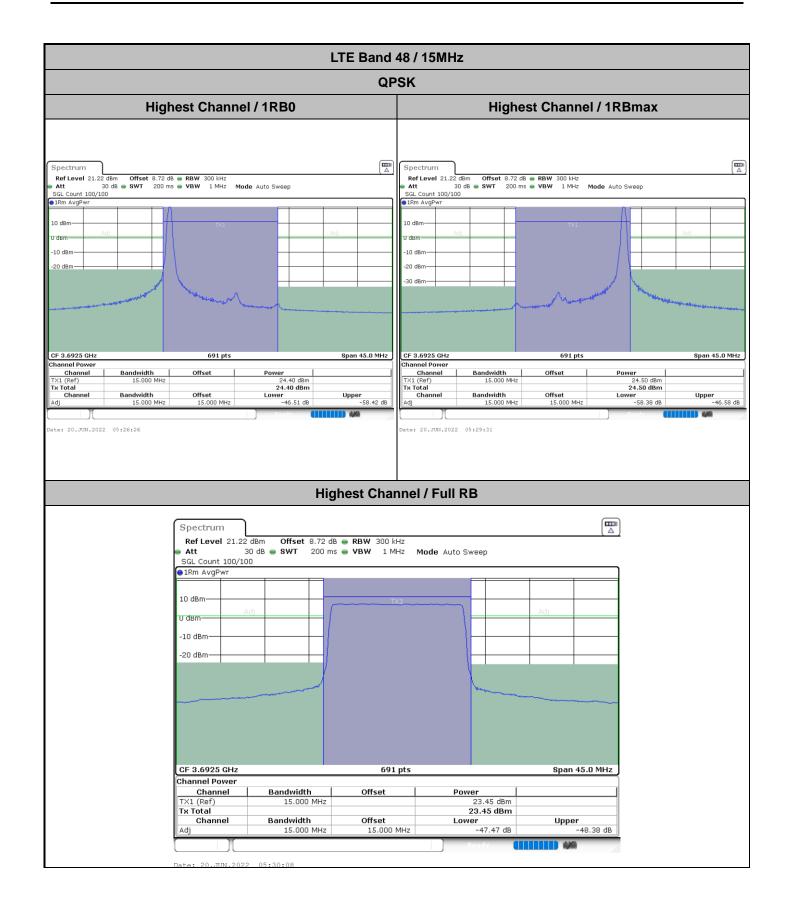

LTE Band 48

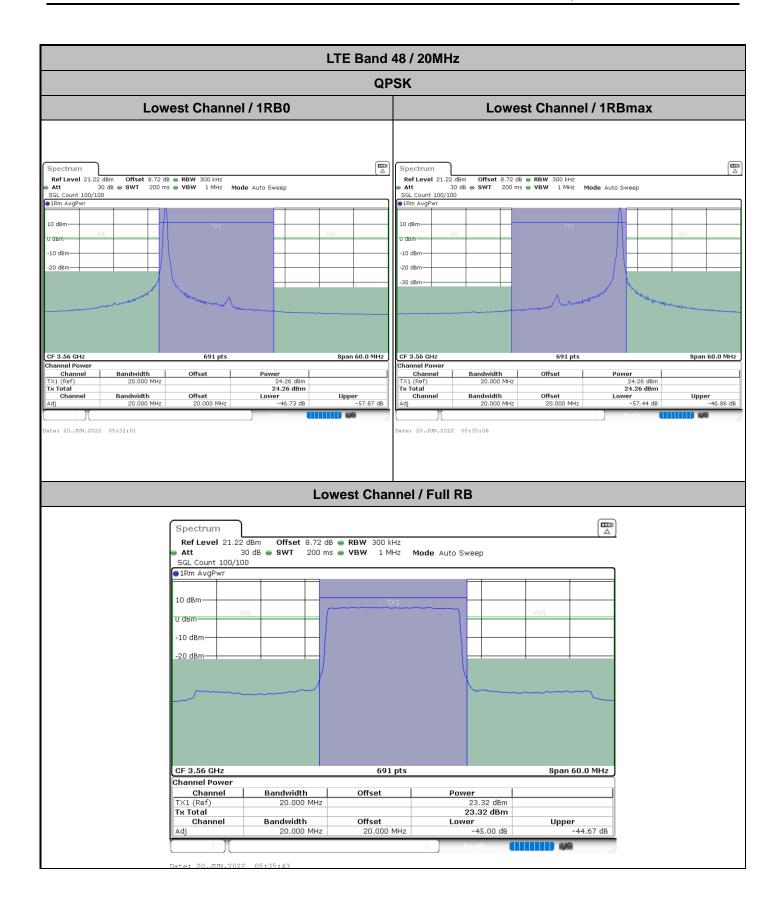


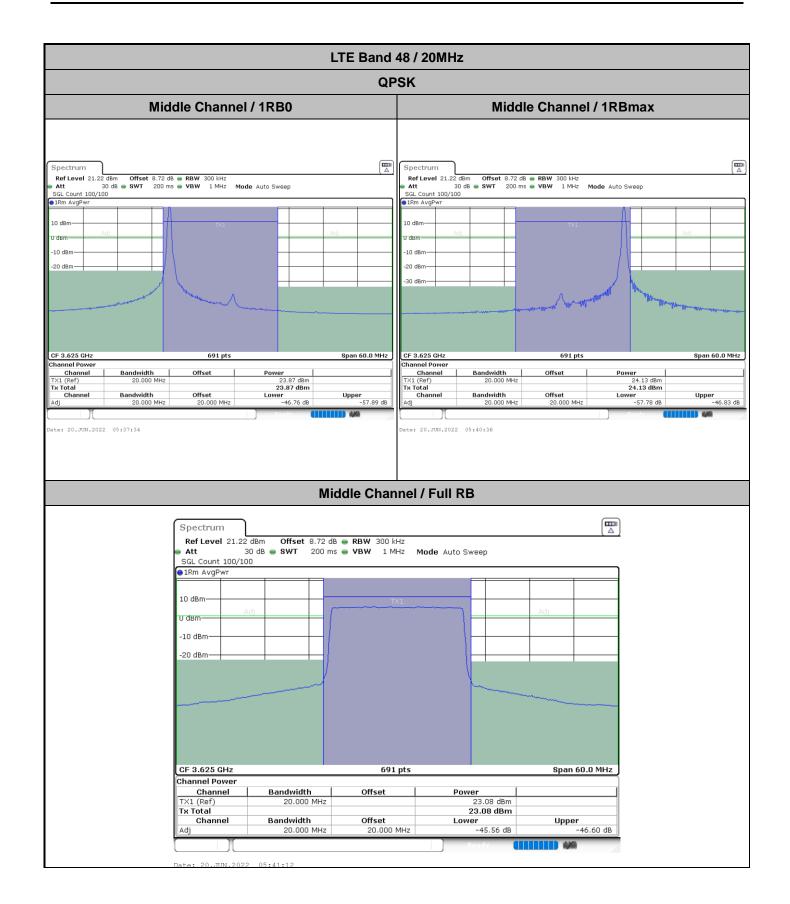




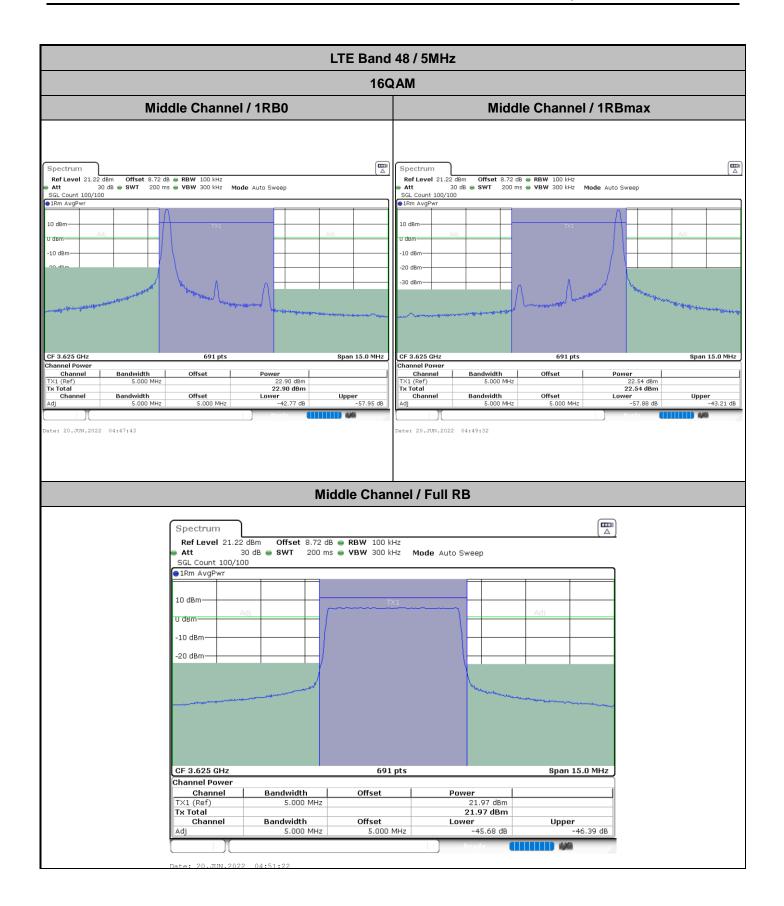


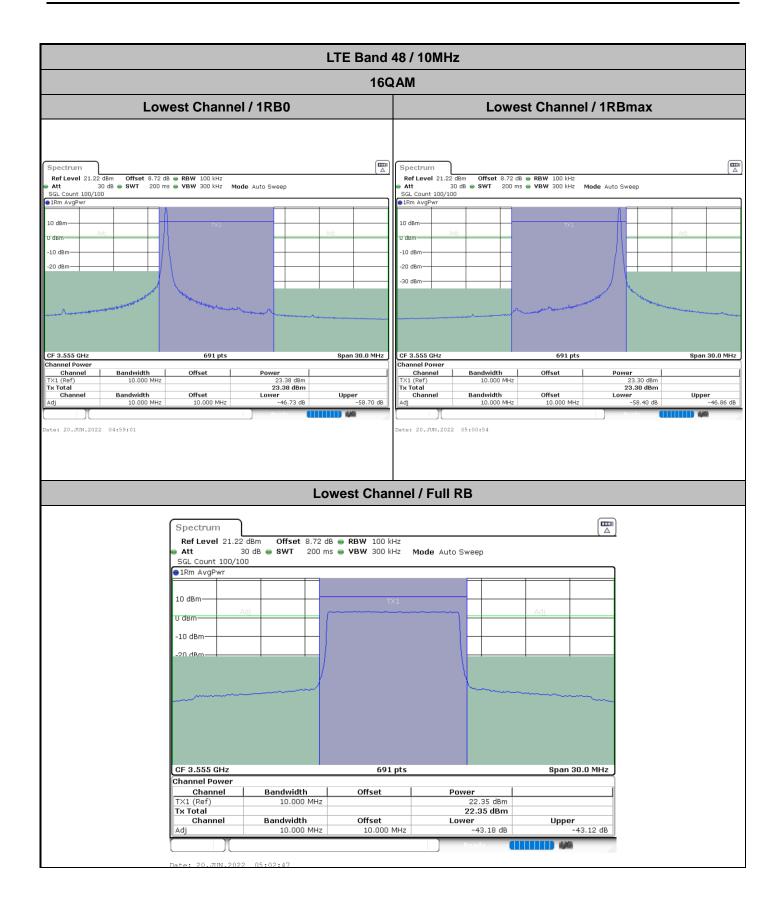


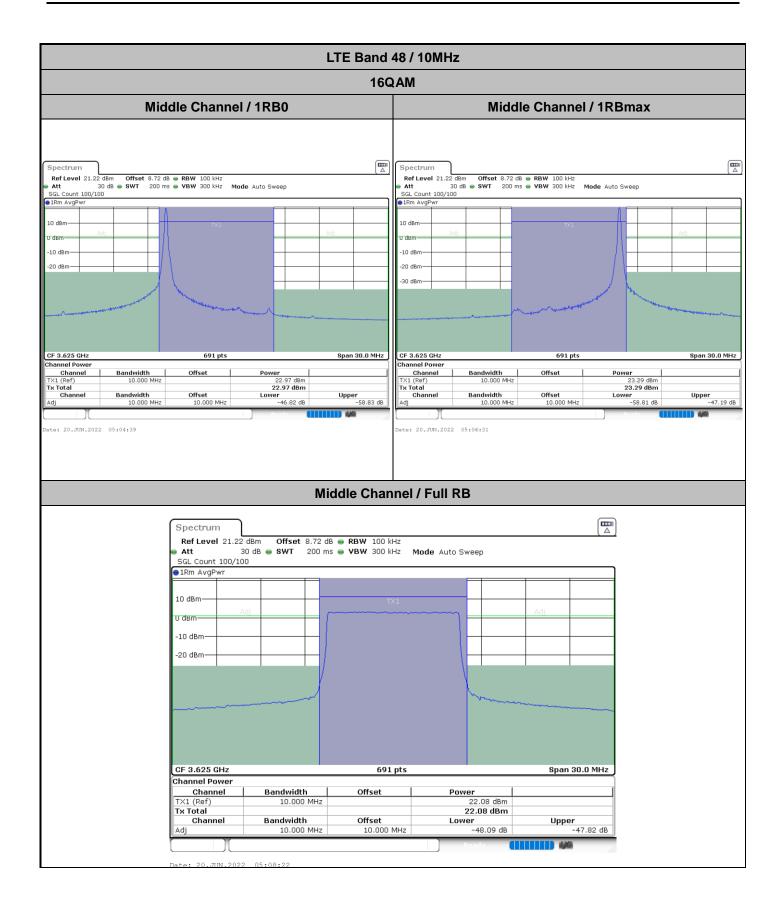

Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: UZ7ET45BB



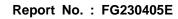


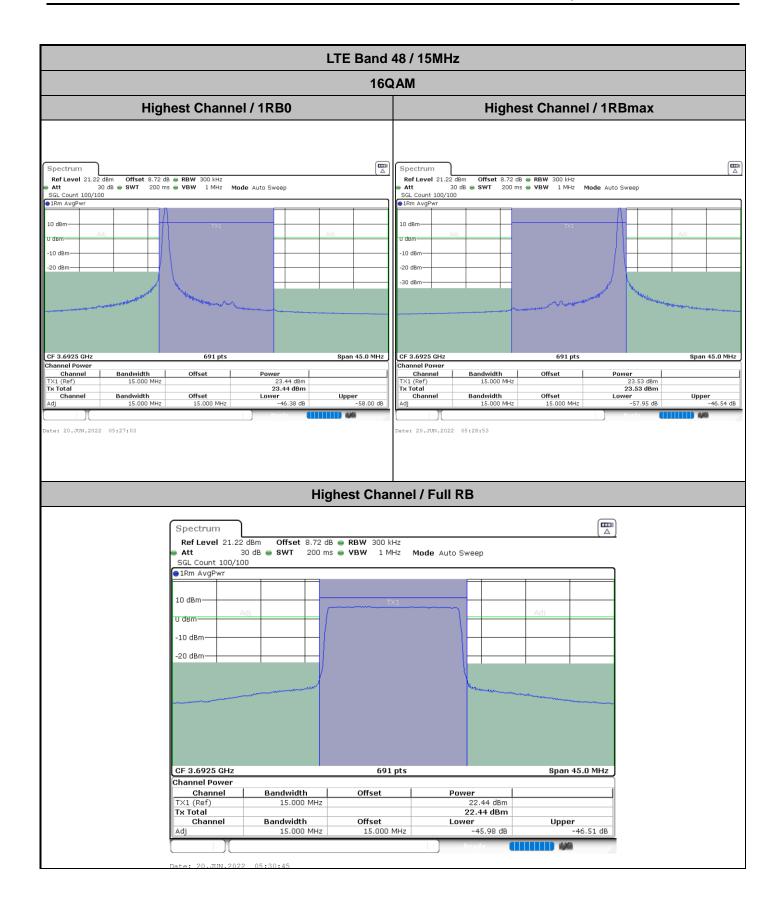










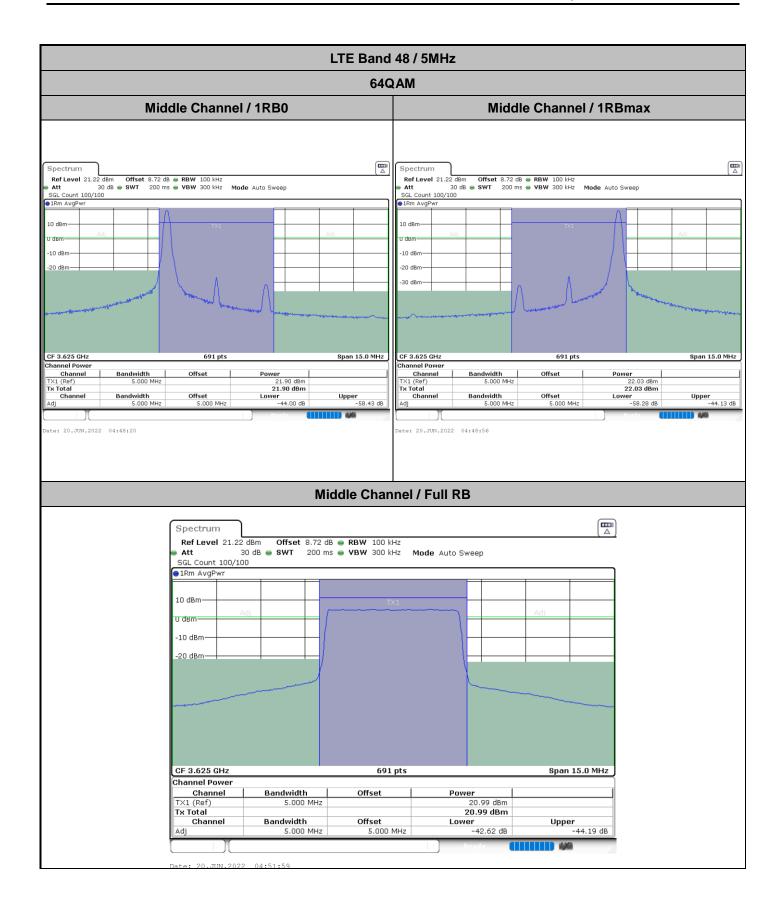


LTE Band 48 / 15MHz								
16QAM								
Middle Channel	Mid	Middle Channel / 1RBmax						
Spectrum Ref Level 21.22 dBm Offset 8.72 dB • RBW 300 kHz Att 30 dB • SWT 200 ms • VBW 1 MHz Mod SGL Count 100/100 • IRm AvgPwr • I 0 dBm • I <th>Ie Auto Sweep Adj Adj Image: Adj Image: Adj Image: Adj</th> <th></th> <th>2 dB • RBW 300 kHz 0 ms • VBW 1 MHz Mode Auto 1X1</th> <th>Sweep</th>	Ie Auto Sweep Adj Adj Image: Adj Image: Adj Image: Adj		2 dB • RBW 300 kHz 0 ms • VBW 1 MHz Mode Auto 1X1	Sweep				
CF 3.625 GHz 691 pts Channel Power Offset TX 104 TX 104 Channel Bandwidth Offset Channel Bandwidth Offset Adj 15.000 MHz Date: 20,JUN.2022 05:21:34	Span 45.0 Mł Power 22.90 d8m 22.90 d8m Lower -46.53 d8 -57.90 c	Channel Power Channel Bandwidth TX1 (Ref) 15.000 MH Tx Total Channel Channel Bandwidth	Offset La	Span 45.0 MHz 23.07 dBm 23.07 dBm 23.07 dBm -57.76 dB -46.69 dB				
	Middle Ch	annel / Full RB						
SGL Count 100/10 1Rm AvgPwr 10 dBm	30 dB 👄 SWT 🛛 200 ms 👄 VBW							
U dBm								
CF 3.625 GHz Channel Power Channel TX1 (Ref) TX Total Channel Adj	Bandwidth Offse	22.02 dBm 22.02 dBm						

Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: UZ7ET45BB

LTE Band 48 / 20MHz								
16QAM								
Lowest Channel / 1RB0				Lowest Channel	I / 1RBmax			
Spectrum Ref Level 21.22 dBm Offset 8.72 (and the second se	B RBW 300 kHz ns Mode Auto Sweep IMHz Immunological Sweep IMHz Immunological Sweep Immunological Sweep Immunological Sweep Immunological Swee	Acij	SGL Count 100/100 ● IRm AvgPwr 10 dBmAdj) U dBmAdj -10 dBm -20 dBm -20 dBm -30 dBm CF 3.56 GHz Channel Power Channel B TX1 (Ref) Tx Total	Offset 8.72 dB • RBW 300 kHz SWT 200 ms • VBW 1 MHz P TX1 691 pts andwidth Offset 20.000 MHz 20.000 MHz	Mode Auto Sweep	Adj Adj Span 60.0 MHz Upper -46.85 dB		
	Spectrum Ref Level 21.22 dBm Offset 8.	Lowest Char	Чz					
	Att 30 dB SWT 2 SGL Count 100/100 IRm AvgPwr 0 dBm Adi U dBm Adi -10 dBm	691	(1	Adj	0 MHz			
	Channel Power Channel Bandwidth TX1 (Ref) 20.000 N Tx Total Channel Bandwidth Adj 20.000 N Date: 20.JUN.2022 05:36:20	MHz Offset	Power 22 22 Lower	r 12.29 dBm 2.29 dBm r Upper	.77 dB			

LTE Band 48 / 20MHz								
16QAM								
Middle Channel / 1RB0			Middle Channel / 1RBmax					
Spectrum Offset 8.72 d8 Att 30 d8 SWT 200 ms SGL Count 100/100 Image: SWT 200 ms SWT 10 d8m		Span 60.0 MHz Upper -57.17 dB	SGL Count 100/100 ● IPm AvgPwr 10 dBm	Offset 8.72 dB RBW 300 kHz SWT 200 ms VBW 1 MHz M Offset Constant of the second s	ode Auto Sweep	Span 60.0 MHz 46.86 dB		
		Middle Chan	Hz					
-1 -2 -2	SGL Count 100/100 IRm AvgPwr 0 dBm Adj dBm Adj 10 dBm 20 dBm 2	00 ms • VBW 1 MI	(1	eep	MHz			
T. Ts A	Bannel Power Channel Bandwidth X1 (Ref) 20.000 M X Total	Offset	22 Lower	2.05 dBm 2.05 dBm • Upper	24 dB			



LTE Band 48 / 20MHz									
16QAM									
Highest Channel / 1RB0			Highest Channel / 1RBmax						
Spectrum Ref Level 21.22 Att 3 SGL Count 100/10 IRm AvgPwr 10 dBm -10 dBm -20 dBm	0 dB 🖷 SWT 🛛 200 m	iB • RBW 300 kHz IS • VBW 1 MHz 1 IX1 • X1 • 691 pts	Mode Auto Sweep	(Ⅲ) Add: Add: Span 60.0 MHz	SGL Count 100/100 IRm AvgPwr 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm CF 3.69 GHz	0 dB 😑 SWT 🛛 200 r	dB • RBW 300 kHz ns • VBW 1 MHz TX1 	Mode Auto Sweep	Adj Adj Adj Adj Bandard Bandard Span 60.0 MHz
Channel Power Channel	Bandwidth	Offset	Power	opan oolo milit	Channel Power Channel	Bandwidth	Offset	Power	
TX1 (Ref) Tx Total	20.000 MHz		23.48 dBm 23.48 dBm		TX1 (Ref) Tx Total	20.000 MHz		23.52 dBm 23.52 dBm	
Adj	Bandwidth 20.000 MHz	Offset 20.000 MHz	-46.80 dB	Upper -57.40 dB	Adj	Bandwidth 20.000 MHz	20.000 MHz	Lower -57.36 dB	Upper -46.73 dB
	Highest Channel / Full RB								
		Spectrum Ref Level 21 Att SGL Count 100	30 dB 😑 SWT 🛛 2	.72 dB e RBW 300 k 200 ms e VBW 1 M) Sweep			
		●1Rm AvgPwr		_					
		10 dBm		Т	×1				
		U dBm	Adj	=(Adj		
		-10 dBm		-1					
		-20 dBm		-1				_	
						N N			
		CF 3.69 GHz Channel Power		691	pts		Span 60	.0 MHz	
		Channel TX1 (Ref)	Bandwidth 20.000 f	Offset	P	ower 22.53 dBm			
		Tx Total Channel	Bandwidth	Offset		22.53 dBm ower	Upper		
		Adj	20.000 1			-46.09 dB		6.85 dB	
		Date: 20.JUN.2	022 05:47:20			Ready		lh	

