Variant FCC RF Test Report

APPLICANT
: Zebra Technologies Corporation
EQUIPMENT
BRAND NAME
MODEL NAME
FCC ID
: Enterprise Tablet
: Zebra
STANDARD
: ET1N2
: UZ7ET1N2
CLASSIFICATION
: FCC Part 15 Subpart E §15.407
: (NII) Unlicensed National Information Infrastructure

This is a variant report which is only valid together with the original test report. The product was received on Aug. 21, 2015 and testing was completed on Nov. 16, 2015. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya $1^{\text {st }}$ Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

TABLE OF CONTENTS

REVISION HISTORY 3
SUMMARY OF TEST RESULT 4
1 GENERAL DESCRIPTION 5
1.1 Applicant 5
1.2 Manufacturer 5
1.3 Feature of Equipment Under Test 5
1.4 Product Specification of Equipment Under Test 5
1.5 Modification of EUT 6
1.6 Testing Location 6
1.7 Applicable Standards 6
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST 7
2.1 Carrier Frequency and Channel 7
2.2 Pre-Scanned RF Power 8
2.3 Test Mode 8
2.4 Connection Diagram of Test System 9
2.5 EUT Operation Test Setup 9
2.6 Measurement Results Explanation Example 9
3 TEST RESULT 10
3.1 6dB and 26dB and 99\% Occupied Bandwidth Measurement 10
3.2 Maximum Conducted Output Power Measurement 13
3.3 Power Spectral Density Measurement 14
3.4 Unwanted Emissions Measurement 16
3.5 Frequency Stability Measurement 20
3.6 Automatically Discontinue Transmission 21
3.7 Antenna Requirements 22
4 LIST OF MEASURING EQUIPMENT 23
5 UNCERTAINTY OF EVALUATION 24
APPENDIX A. CONDUCTED TEST RESULTS
APPENDIX B. RADIATED SPURIOUS EMISSION
APPENDIX C. SETUP PHOTOGRAPHS

REVISION HISTORY

| REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE |
| :--- | :--- | :--- | :--- | :--- |
| FR252422-20 | Rev. 01 | This is a variant report for updating the standard FCC
 new rule. Because conducted power of U-NII band I
 is not increasing, tests are not performed for U-NII
 band I. In this report, tests are performed only for
 U-NII band IV. | Dec. 09, 2015 |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.403(i)	6dB Bandwidth	$>500 \mathrm{kHz}$	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	$\leq 30 \mathrm{dBm}$	Pass	-
3.3	15.407(a)	Power Spectral Density	$\leq 30 \mathrm{dBm} / 500 \mathrm{kHz}$	Pass	-
3.4	15.407(b)	Unwanted Emissions	$\begin{gathered} \leq-17,-27 \mathrm{dBm} / \mathrm{MHz} \\ \& 15.209(\mathrm{a}) \end{gathered}$	Pass	$\begin{gathered} \hline \text { Under limit } \\ 1.01 \mathrm{~dB} \text { at } \\ 5724.600 \mathrm{MHz} \end{gathered}$
3.5	15.407(g)	Frequency Stability	Within Operation Band	Pass	-
3.6	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.7	$\begin{aligned} & 15.203 \& \\ & 15.407(a) \end{aligned}$	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Zebra Technologies Corporation
1 Zebra Plaza, Holtsville, NY 11742

1.2 Manufacturer

Zebra Technologies Corporation
1 Zebra Plaza, Holtsville, NY 11742

1.3 Feature of Equipment Under Test

Product Feature	
Equipment	Enterprise Tablet
Brand Name	Zebra
Model Name	ET1N2
FCC ID	UZ7ET1N2
EUT supports Radios application	CDMA/EV-DO/GSM/EGPRS/WCDMA/HSPA WLAN 11a/b/g HT20 Bluetooth v2.1 EDR
HW Version	Rev B
SW Version	$92-4 A 11-2478-0200-00-$ D1-030215
FW Version	A_3.01.0.0.050
EUT Stage	Identical Prototype
MFD	13MAR15
IMEI	352269050337968

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard	
Tx/Rx Channel Frequency Range	$5725 \mathrm{MHz} \sim 5850 \mathrm{MHz}$
Maximum Output Power	$802.11 \mathrm{a}: 20.68 \mathrm{dBm} / 0.1169 \mathrm{~W}$
	$802.11 \mathrm{n} \mathrm{HT20:20.69dBm/0.1172W}$
	$802.11 \mathrm{a}: 36.10 \mathrm{MHz}$
99\% Occupied Bandwidth	$802.11 \mathrm{n} \mathrm{HT20}: 40.35 \mathrm{MHz}$
Type of Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Antenna Type	PIFA Antenna
Antenna Gain	2.15 dBi

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No. 52, Hwa Ya 1 ${ }^{\text {st }}$ Rd., Hwa Ya Technology Park,		
	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
	TH02-HY		03CH07-HY

Note: The test site complies with ANSI C63.4 2009 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01
- ANSI C63.10-2009

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. FCC permits the use of the 1.5 meter table as an alternative in C63.10-2013 through inquiry tracking number 961829.

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz , whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. The worst cases (X plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. $(\mathbf{M H z})$	Channel	Freq. $\mathbf{(M H z)}$
$5725-5850 \mathrm{MHz}$ Band 4 (U-NII-3)	149	5745	157	5785
	151	5755	159	5795
	153	5765	161	5805
	155	5775	165	5825

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test in the following tables. Final Output Power equals to Measured Output Power adds the duty factor.

5 GHz 802.11 a mode									
Channel	Frequency	Data Rate (MHz)							
		6M bps	9M bps	12M bps	18M bps	24M bps	36M bps	48M bps	54M bps
CH 149	5745 MHz	14.25	14.13	14.12	14.10	14.08	14.02	14.06	14.21
CH 157	5785 MHz	20.68	20.56	20.51	20.66	20.57	20.52	20.54	20.59
CH 165	5825 MHz	17.41	17.35	17.40	17.31	17.19	17.38	17.36	17.32

5GHz 802.11a HT20 mode									
Channel	Frequency	Data Rate (MHz)							
		MCS 0	MCS 1	MCS 2	MCS 3	MCS 4	MCS 5	MCS 6	MCS 7
CH 149	5745 MHz	14.02	13.98	13.95	14.00	13.97	13.69	14.01	13.97
CH 157	5785 MHz	20.69	20.67	20.62	20.62	20.68	20.65	20.59	20.42
CH 165	5825 MHz	16.84	16.41	16.41	16.29	16.60	16.21	16.56	16.46

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

Modulation	Data Rate
802.11 a	6 Mbps
802.11 n HT20	MCSO

Ch. \#	Band IV : 5725-5850 MHz		
	Low	802.11 a	$\mathbf{8 0 2 . 1 1 \mathrm { n } \text { HT20 }}$
M	Middle	149	149
H	High	157	157

2.4 Connection Diagram of Test System

2.5 EUT Operation Test Setup

For WLAN function, programmed RF utility, "RFtool" installed in the EUT make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor
Offset $=$ RF cable loss + attenuator factor
Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

$$
=4.2+10=14.2(\mathrm{~dB})
$$

3 Test Result

3.1 6dB and 26dB and 99\% Occupied Bandwidth Measurement

3.1.1 Description of 6 dB and 26dB and 99\% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz .
26dB and 99\% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01. Section C) Emission bandwidth for the band $5.725-5.85 \mathrm{GHz}$
2. Set RBW $=100 \mathrm{kHz}$.
3. Set the VBW $\geq 3 \times$ RBW.
4. Detector $=$ Peak.
5. Trace mode = max hold
6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
7. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB and 26dB and 99\% Occupied Bandwidth

Please refer to Appendix A.

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band $5.725-5.85 \mathrm{GHz}$, the maximum conducted output power over the frequency band of operation shall not exceed 1 W .

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.

Method PM (Measurement using an RF average power meter):

1. Measurement is performed using a wideband RF power meter.
2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log (1 / x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power
 Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band $5.725-5.85 \mathrm{GHz}$, the maximum power spectral density shall not exceed 30 dBm in any $500-\mathrm{kHz}$ band

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01. Section F) Maximum power spectral density.

\# Method SA-2 \#

 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).1. The testing follows Method SA-2 of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW $=300 \mathrm{kHz}$.
- \quad Set $V B W \geq 1 \mathrm{MHz}$.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- \quad Detector $=$ RMS
- Trace average at least 100 traces in power averaging mode.
- Add $10 \log (500 \mathrm{kHz} / \mathrm{RBW})$ to the test result.
- Add $10 \log (1 / x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add $10 \log (1 / 0.25)=6$ $d B$ if the duty cycle is 25 percent.

2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
3. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407 (b)(1) to (6), and restricted bands per FCC Part15.205.

3.4.1 Limit of Unwanted Emissions

(1) For transmitters operating in the $5725-5850 \mathrm{MHz}$ band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 $\mathrm{dBm} / \mathrm{MHz}(78.3 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of $-27 \mathrm{dBm} / \mathrm{MHz}(68.3 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$.
(2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency $(M H z)$	Field Strength (microvolts/meter)	Measurement Distance (meters)
$0.009-0.490$	$2400 / F(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / F(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.
$\mathrm{E}=\frac{1000000 \sqrt{30 P}}{3} \quad \mu \mathrm{~V} / \mathrm{m}$, where P is the eirp (Watts)

EIRP $(\mathbf{d B m})$	Field Strength at $3 \mathrm{~m}(\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$
-17	78.3
-27	68.3

(3) KDB 789033 D02 General UNII Test Procedures New Rules v01 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of $-27 \mathrm{dBm} / \mathrm{MHz}$ (or $-17 \mathrm{dBm} / \mathrm{MHz}$ as specified in 15.407 (b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the $-27 \mathrm{dBm} / \mathrm{MHz}$ or $-17 \mathrm{dBm} / \mathrm{MHz}$ peak emission limit.

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.

Section G) Unwanted emissions measurement.
(1) Procedure for Unwanted Emissions Measurements Below 1000 MHz

- $\quad \mathrm{RBW}=120 \mathrm{kHz}$
- $\quad \mathrm{VBW}=300 \mathrm{kHz}$
- Detector = Peak
- Trace mode = max hold
(2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
- \quad RBW $=1 \mathrm{MHz}$
- $\quad V B W \geq 3 \mathrm{MHz}$
- \quad Detector $=$ Peak
- Sweep time = auto
- Trace mode = max hold
(3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
- \quad RBW $=1 \mathrm{MHz}$
- $\quad V B W=10 \mathrm{~Hz}$, when duty cycle is no less than 98 percent.
- VBW $\geq 1 / T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Antenna	Band	Duty Cycle(\%)	T(us)	$\mathbf{1 / T}(\mathbf{k H z})$	VBW Setting
1	802.11 a	100	-	-	10 Hz
1	5 GHz 802.11 n HT20	100	-	-	10 Hz

2. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
6. For testing below 1 GHz , if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
7. For testing above 1 GHz , the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup

For radiated emissions below 30 MHz

For radiated emissions from 30 MHz to 1 GHz
Spectrum Analyzer / Receiver

For radiated emissions above 1 GHz

3.4.5 Test Results of Radiated Emissions ($\mathbf{9} \mathbf{~ k H z ~ ~ ~} \mathbf{3 0} \mathbf{~ M H z) ~}$

The low frequency, which started from 9 kHz to 30 MHz , was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.4.6 Test Result of Radiated Band Edges

Please refer to Appendix B.

3.4.7 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

3.5 Frequency Stability Measurement

3.5.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

1. To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10 dB lower than the measured peak value.
3. The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.5.4 Test Setup

3.5.5 Test Result of Frequency Stability

Please refer to Appendix A.

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3.7 Antenna Requirements

3.7.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2) ,if transmitting antenna directional gain is greater than 6 dBi , both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna gain is less than 6 dBi . Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	1132003	$300 \mathrm{MHz} \sim 40 \mathrm{GHz}$	Aug. 12, 2015	Aug. 25, 2015 ~ Nov. 16, 2015	Aug. 11, 2016	$\begin{aligned} & \text { Conducted } \\ & \text { (TH05-HY) } \end{aligned}$
Power Sensor	Anritsu	MA2411B	1126017	$300 \mathrm{MHz} \sim 40 \mathrm{GHz}$	Aug. 12, 2015	Aug. 25, 2015 ~ Nov. 16, 2015	Aug. 11, 2016	Conducted (TH05-HY)
Spectrum Analyzer	 Schwarz	FSP40	100055	$9 \mathrm{kHz}-40 \mathrm{GHz}$	Jun. 18, 2015	Aug. 25, 2015 ~ Nov. 16, 2015	Jun. 17, 2016	$\begin{aligned} & \text { Conducted } \\ & \text { (TH05-HY) } \end{aligned}$
Temperature Chamber	ESPEC	SU-241	92003713	$-30^{\circ} \mathrm{C} \sim 95^{\circ} \mathrm{C}$	Jun. 15, 2015	Aug. 25, 2015 ~ Nov. 16, 2015	Jun. 14, 2016	Conducted (TH05-HY)
Loop Antenna	TESEQ	HLA 6120	31244	9kHZ~30MHz	Feb. 02, 2015	Sep. 07, 2015	Feb. 01, 2016	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 07-\mathrm{HY}) \\ \hline \end{gathered}$
Bilog Antenna	Schaffner	CBL6111C	2726	30 MHz ~ 1GHz	Sep. 27, 2014	Sep. 07, 2015	Sep. 26, 2015	Radiation (03CH07-HY)
Double Ridge Horn Antenna	EMCO	3117	00066583	1GHz~18GHz	Jul. 20, 2015	Sep. 07, 2015	Jul. 19, 2016	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 07-\mathrm{HY}) \end{gathered}$
Horn Antenna	$\begin{array}{\|c\|} \hline \text { SCHWARZBE } \\ \text { CK } \end{array}$	BBHA 9170	$\begin{array}{\|c\|} \hline \text { BBHA917058 } \\ 4 \\ \hline \end{array}$	18GHz- 40GHz	Nov. 03, 2014	Sep. 07, 2015	Nov. 02, 2015	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 07-\mathrm{HY}) \end{gathered}$
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1000MHz	Mar. 12, 2015	Sep. 07, 2015	Mar. 11, 2016	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 07-\mathrm{HY}) \end{gathered}$
Preamplifier	MITEQ	$\begin{array}{\|c} \hline \text { AMF-7D-0010 } \\ \text { 1800-30-10P } \\ \hline \end{array}$	1590075	1GHz ~ 18GHz	Apr. 20, 2015	Sep. 07, 2015	Apr. 19, 2016	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 07-\mathrm{HY}) \end{gathered}$
Preamplifier	Agilent	8449B	3008A02362	$1 \mathrm{GHz} \sim 26.5 \mathrm{GHz}$	Oct. 21, 2014	Sep. 07, 2015	Oct. 20, 2015	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 07-\mathrm{HY}) \end{gathered}$
Preamplifier	MITEQ	$\begin{array}{c\|} \hline \text { JS44-1800400 } \\ 0-33-8 \mathrm{P} \\ \hline \end{array}$	1840917	$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	Jun. 02, 2015	Sep. 07, 2015	Jun. 01, 2016	$\begin{gathered} \text { Radiation } \\ (03 \mathrm{CH} 07-\mathrm{HY}) \end{gathered}$
EMI Test Receiver	 Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 26, 2015	Sep. 07, 2015	Aug. 25, 2016	$\begin{array}{\|c\|} \hline \text { Radiation } \\ \text { (03CH07-HY) } \\ \hline \end{array}$
Signal Analyzer	 Schwarz	FSV40	101397	$10 \mathrm{~Hz} \sim 40 \mathrm{GHz}$	Sep. 17, 2014	Sep. 07, 2015	Sep. 16, 2015	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	$1 \mathrm{~m} \sim 4 \mathrm{~m}$	N/A	Sep. 07, 2015	N/A	$\begin{array}{\|c\|} \hline \text { Radiation } \\ \text { (03CH07-HY) } \\ \hline \end{array}$
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 degree	N/A	Sep. 07, 2015	N/A	Radiation (03CH07-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement ($\mathbf{3 0} \mathbf{~ M H z}$ ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of $95 \%(U=2 U c(y))$	4.8

Appendix A. Conducted Test Results

