

FCC RADIO TEST REPORT

FCC ID	:	UZ7DS8178A
Equipment	:	Digital Scanner
Brand Name	:	Zebra
Model Name	:	DS8178A
Applicant	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Feb. 03, 2023 and testing was performed from Feb. 17, 2023 to Mar. 03, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Lunis Win

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	/ of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Product Specification of Equipment Under Test	.5
	1.3	Modification of EUT	.6
	1.4	Testing Location	.6
	1.5	Applicable Standards	.6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	14
	3.3	Power Spectral Density Measurement	15
	3.4	Conducted Band Edges and Spurious Emission Measurement	18
	3.5	Radiated Band Edges and Spurious Emission Measurement	22
	3.6	AC Conducted Emission Measurement	26
	3.7	Antenna Requirements	28
4	List o	of Measuring Equipment	29
5	Unce	rtainty of Evaluation	31
Арр	oendix	A. Conducted Test Results	
Арр	oendix	B. AC Conducted Emission Test Result	
Арр	oendix	C. Radiated Spurious Emission	
Арр	oendix	D. Radiated Spurious Emission Plots	
Арр	oendix	E. Duty Cycle Plots	

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR320318-01	01	Initial issue of report	Mar. 22, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	7.01 dB under the limit at 719.670 MHz
3.6	15.207	AC Conducted Emission	Pass	15.22 dB under the limit at 0.524 MHz
3.7	15.203	Antenna Requirement	Pass	-

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards if

It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.

2. The measurement uncertainty please refer to report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Rachel Hsieh

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature
Equipment	Digital Scanner
Brand Name	Zebra
Model Name	DS8178A
FCC ID	UZ7DS8178A
EUT supports Radios application	Bluetooth - LE
HW Version	DV
MFD	12DEC22
EUT Stage	Identical Prototype

Remark: The EUT's information above is declared by manufacturer.

Specification of Accessories					
Battery	Brand Name	Zebra	Model Name	82-176890-01	
5V Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V4W0US	
RJ-50-RS232 Cable	Brand Name	Zebra	Model Name	CBA-R01-S07PAR	
RJ-50 to USB Cable	Brand Name	Zebra	Model Name	CBA-U21-S07ZBR	

Support Unit used in test configuration and system					
Presentation Cradle 1 Brand Name Zebra Model Name CR8178A-PC					
Presentation Cradle 2	Brand Name	Zebra	Model Name	CR8178A-SC	

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard			
Tx/Rx Frequency Range2402 MHz ~ 2480 MHz			
Number of Channels	40		
Carrier Frequency of Each Channel 40 Channel (37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	Bluetooth – LE (1Mbps): 4.78 dBm / 0.0030 W		
99% Occupied Bandwidth 1.053 MHz			
Antenna Type / Gain	SMD Antenna type with gain 0.3 dBi		
Type of Modulation	Bluetooth LE: GFSK		

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
Remark	CO05-HY (TAF Code: 1190) The Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, 03CH15-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

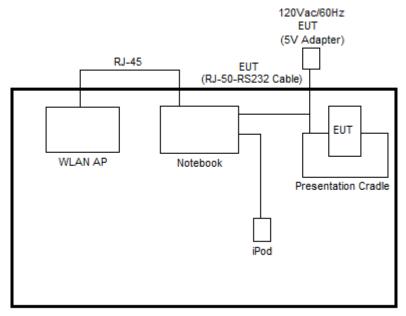
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
-	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summar		 and a second sec	a a sudda da a ata a ala sal
I he following summar	v tania ie enowin	monstrate in complian	ce with the standard
The following summar			

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth – LE / GFSK					
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
Test Cases	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
Dediated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
Radiated	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
AC Conducted Mode 1: EUT Charging with Presentation Cradle 1 + Scanner Scan B Presentation Cradle RJ-50-RS232 cable + 5V Adapter + RS2						
		Emission	Link with Notebook			
Remark:						
1. For Radiated Test Cases, the tests were performed with Presentation Cradle 1.						
2. Data Link	with Notebook means data application transferred mode between EUT and					
Notebook.						

2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth – LE Tx Mode>

EUT

TEL : 886-3-327-0868	Page Number	: 9 of 31
FAX : 886-3-327-0855	Issue Date	: Mar. 22, 2023
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name FCC ID		Data Cable	Power Cord	
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m	
2.	Notebook	DELL	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m	
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m	
4.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A	
5.	Bar code	N/A	N/A	N/A	N/A	N/A	

2.5 EUT Operation Test Setup

The RF test items, utility "BT Regulatory Test App 2.2.0.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

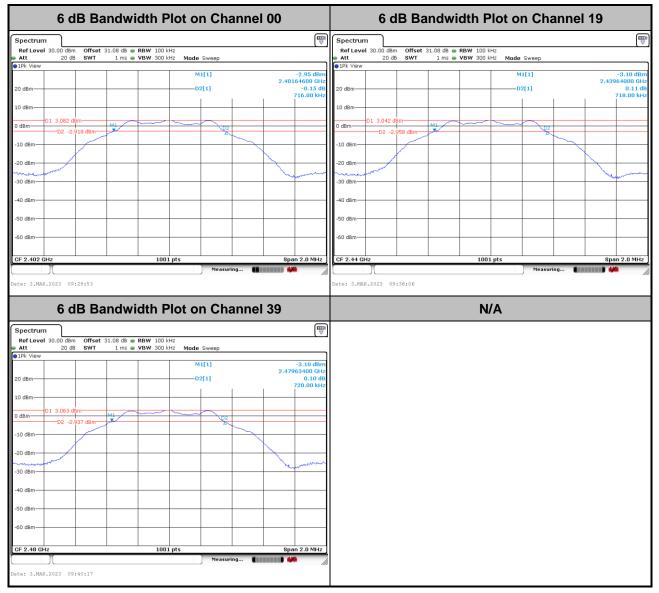
3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

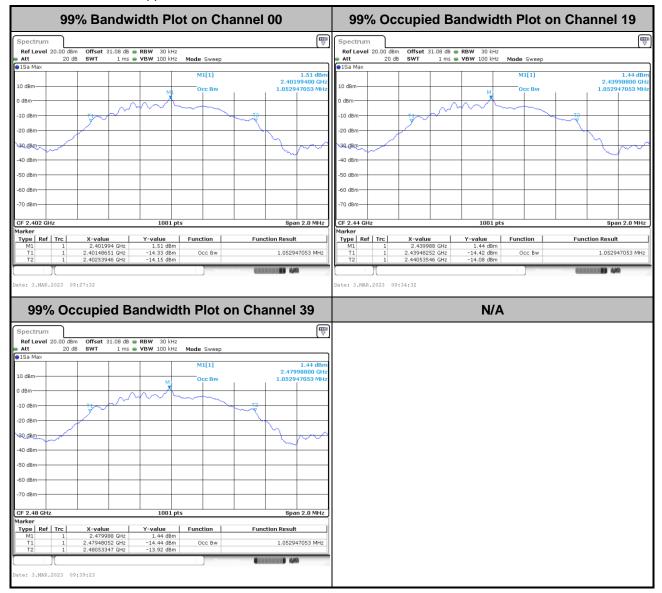
- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup



EUT

Spectrum Analyzer



3.1.5 Test Result of 6dB Bandwidth

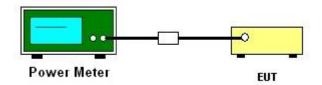
3.1.6 Test Result of 99% Occupied Bandwidth

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD	100kHz Plot on Channe	1 00	P	SD 100kHz Plot on	Channel 19
Spectrum			Spectrum		⊽
Att 20 dB SWT	t 31.08 dB 🗰 RBW 100 kHz 1 ms 🖷 VBW 300 kHz Mode Sweep			Offset 31.08 dB RBW 100 kHz SWT 1 ms VBW 300 kHz Mod	de Sweep
1Pk Max	M1[1]	3.06 dBm	●1Pk Max		M1[1] 3.01 dBr
	MILIJ	2.40198610 GHz			MI[1] 3.01 0Br 2.44000110 GH
10 dBm	MI		10 dBm	M1	
) dBm			0 dBm		
-10 dBm			-10 dBm		
20 dBm			-20 dBm		
30 dBm			-30 dBm		
-40 dBm			-40 dBm		
			10 0.0.11		
50 dBm			-50 dBm		
-60 dBm			-60 dBm		
70 10-1			70 40-2		
-70 dBm			-70 dBm		
CF 2.402 GHz	1001 pts	Span 1.074 MHz	CF 2.44 GHz	1001 pts	Span 1.077 MHz
	Measuring	(IIIIII) 4/4			Neasuring
Spectrum					
Ref Level 20.00 dBm Offse	t 31.08 dB 🖷 RBW 100 kHz	\bigtriangledown			
Att 20 dB SWT	1 ms 🖶 VBW 300 kHz Mode Sweep				
	M1[1]	3.07 dBm 2.47998060 GHz			
10 dBm	M1				
) dBm					
-10 dBm					
-20 dBm					
30 dBm					
40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.48 GHz	1001 pts	Span 1.08 MHz			
	Measuring.				
ate: 3.MAR.2023 09:41:08					

PSD 3kHz Plot on Channel 00 **PSD 3kHz Plot on Channel 19** Spectrum ⊽ Spectrum ₩ Offset 31.08 dB RBW 3 kHz SWT 12 ms VBW 10 kHz Mode Sweep Ref Level 20.00 Ref Level 20.00 dBm Att 20 dB Offset 31.08 dB RBW 3 kHz SWT 12 ms VBW 10 kHz Mode Sweep Att 20 dB SWT 20 dB Att 1Pk Max 1Pk Max M1[1] 10.24 dBr 98280 GH M1[1] 10.29 dE 2.401 2.43 0 GF 10 dBm 10 dBr) dBm -10 dBm 10 dB www.hannonmannon M naman Mash MANNER MAN MMM mannanna 20 dB 20 di the with Whi AM MM Y Marth Martin Mart ų M μ mpspi 40 dB 40 di -50 dBr 60 dBn -70 dBm 1.077 MHz CF 2.402 GH 1001 pts 1001 pt: CF 2.44 G ate: 3.MAR.2023 09:30:13 ate: 3.MAR.2023 09:36:32 **PSD 3kHz Plot on Channel 39** N/A Spectrum Ref Level 20.00 Att 2 1Pk Max Offset 31.08 dB ● RBW 3 kHz SWT 12 ms ● VBW 10 kHz Mode Sweep 20 dB M1[1] -10.24 dE 2.47997840 G 10 dBr 10 dB MMA Ann^D MAN MA 4 h A Joy dem Manna 40 dB -50 dBn -60 dBr 70 dBm .08 MHz CF 2.48 GF 1001 te: 3.MAR.2023 09:40:40

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

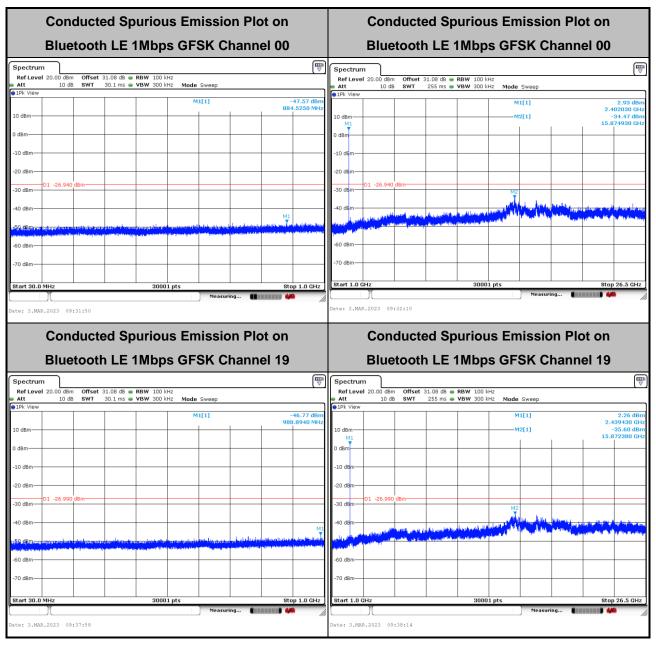
3.4.2 Measuring Instruments

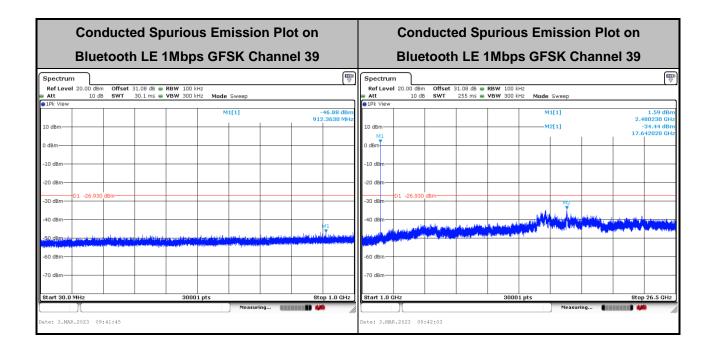
Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup




3.4.5 Test Result of Conducted Band Edges Plots

Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 39
Spectrum Image: Constraint of the state of	Ref Level 20:00 dBm Offset 31:08 dB RBW 100 kHz Att 20 dB SWT 8 ms VBW 300 kHz Image: Provide the system Mode Sweep 100 kHz Image: Provide the system 100 kHz Mode Sweep Image: Provide the system 100 kHz 100 kHz Image: Provide the system 100 kHz 100 kHz
0 dBm	0 dBm
-50 dBm -60 dBm -70	-50 dBm -60 dBm -70 dBm -70 dBm F1 Start 2.475 GHz 8001 pts Stap 2.505 GHz Measuring

3.4.6 Test Result of Conducted Spurious Emission Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

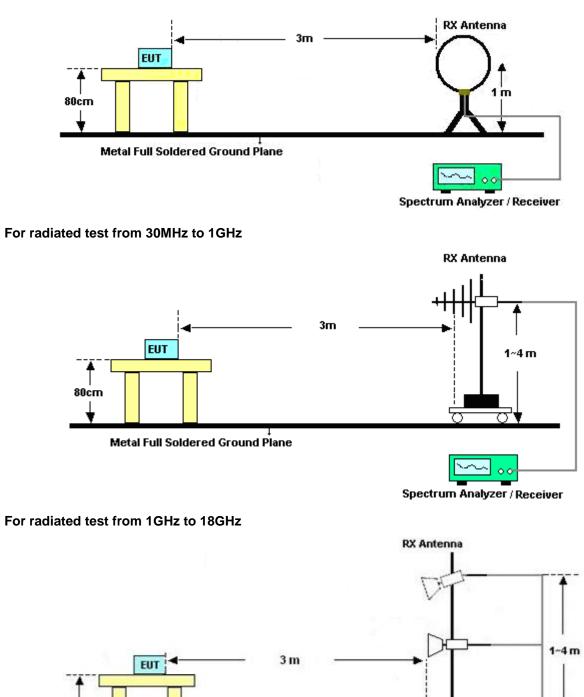
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

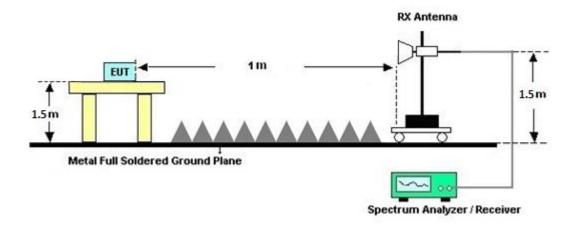
Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz



Spectrum Analyzer / Receiver

1.5m

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

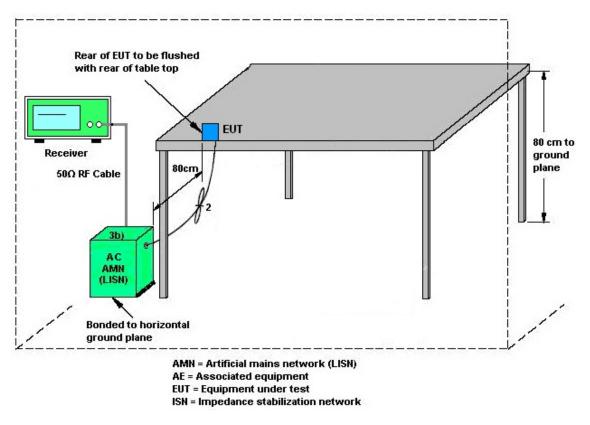
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of omission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	TESEQ	HLA 6120	31244	9 kHz~30 MHz	Mar. 18, 2022	Feb. 18, 2023~ Feb. 24, 2023	Mar. 17, 2023	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	40103 & 07	30MHz~1GHz	Apr. 24, 2022	Feb. 18, 2023~ Feb. 24, 2023	Apr. 23, 2023	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02294	1GHz~18GHz	Jun. 23, 2022	Feb. 18, 2023~ Feb. 24, 2023	Jun. 22, 2023	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00994	18GHz~40GHz	Nov. 04, 2022	Feb. 18, 2023~ Feb. 24, 2023	Nov. 03, 2023	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 26, 2022	Feb. 18, 2023~ Feb. 24, 2023	Dec. 25, 2023	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3K	17100018000 54002	1GHz~18GHz	Sep. 28, 2022	Feb. 18, 2023~ Feb. 24, 2023	Sep. 27, 2023	Radiation (03CH15-HY)
Preamplifier	EM Electronics	EM01G18G	060802	1GHz~18GHz	Mar. 08, 2022	Feb. 18, 2023~ Feb. 24, 2023	Mar. 07, 2023	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 28, 2022	Feb. 18, 2023~ Feb. 24, 2023	Jun. 27, 2023	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY54130085	20MHz~8.4GHz	Oct. 18, 2022	Feb. 18, 2023~ Feb. 24, 2023	Oct. 17, 2023	Radiation (03CH15-HY
Spectrum Analyzer	Agilent	E4446A	MY50180136	3Hz~44GHz	May 11, 2022	Feb. 18, 2023~ Feb. 24, 2023	May 10, 2023	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Feb. 18, 2023~ Feb. 24, 2023	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Feb. 18, 2023~ Feb. 24, 2023	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24 (k5)	RK-000451	N/A	N/A	Feb. 18, 2023~ Feb. 24, 2023	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104, 102E	MY582185/4, MY9838/4PE, 519228/2	30MHz~18G	Jun. 21, 2022	Feb. 18, 2023~ Feb. 24, 2023	Jun. 20, 2023	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804011/2,804 012/2	30MHz-40GHz	Jan. 03, 2023	Feb. 18, 2023~ Feb. 24, 2023	Jan. 02, 2024	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 10, 2022	Feb. 18, 2023~ Feb. 24, 2023	Mar. 09, 2023	Radiation (03CH15-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Feb. 21, 2023~ Mar. 03, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 13, 2022	Feb. 21, 2023~ Mar. 03, 2023	Dec. 12, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz	Aug. 03, 2022	Feb. 21, 2023~ Mar. 03, 2023	Aug. 02, 2023	Conducted (TH05-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Feb. 17, 2023	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2022	Feb. 17, 2023	Nov. 30, 2023	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 17, 2022	Feb. 17, 2023	Nov. 16, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 01, 2022	Feb. 17, 2023	Nov. 30, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 17, 2022	Feb. 17, 2023	Nov. 16, 2023	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Feb. 17, 2023	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Aug. 01, 2022	Feb. 17, 2023	Jul. 31, 2023	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 29, 2022	Feb. 17, 2023	Dec. 28, 2023	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.5 dB
of 95% (U = 2Uc(y))	3.3 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.3 dB
of 95% (U = 2Uc(y))	0.3 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.2 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.4 dB
of 95% (U = 2Uc(y))	5.4 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2 dB
of 95% (U = 2Uc(y))	5.2 dB

Report Number : FR320318-01

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Henry Ke	Temperature:	21~25	°C
Test Date:	2023/2/21~2023/3/3	Relative Humidity:	51~54	%

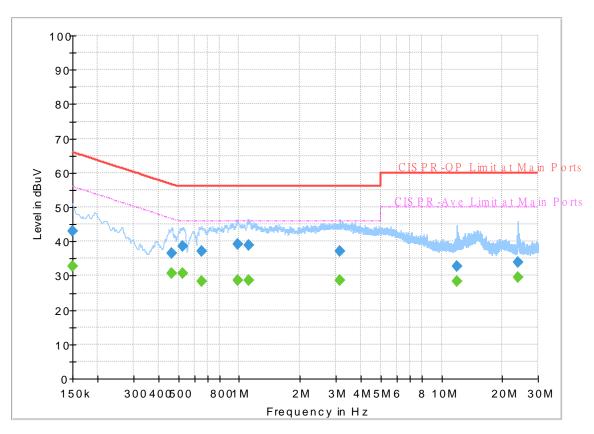
	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
ļ	BLE	1Mbps	1	0	2402	1.053	0.716	0.50	Pass		
	BLE	1Mbps	1	19	2440	1.053	0.718	0.50	Pass		
	BLE	1Mbps	1	39	2480	1.053	0.720	0.50	Pass		

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	4.68	30.00	0.30	4.98	36.00	Pass
BLE	1Mbps	1	19	2440	4.68	30.00	0.30	4.98	36.00	Pass
BLE	1Mbps	1	39	2480	4.78	30.00	0.30	5.08	36.00	Pass

TEST RESULTS DATA Peak Power Density

N	/lod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)
E	BLE	1Mbps	1	0	2402	3.06	-10.24	0.30	8.00
E	BLE	1Mbps	1	19	2440	3.01	-10.29	0.30	8.00
E	BLE	1Mbps	1	39	2480	3.07	-10.24	0.30	8.00

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

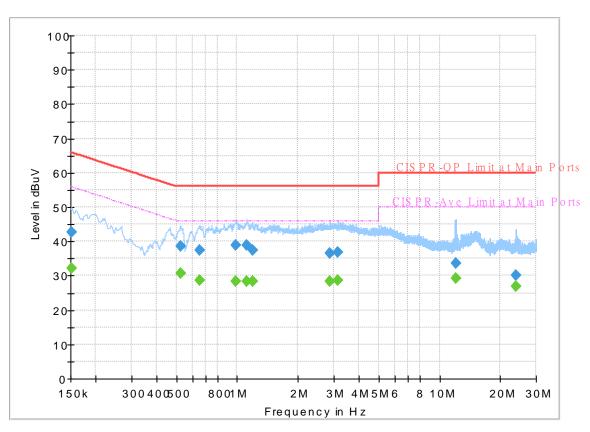


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Tom Loo	Temperature :	23~26 ℃
Test Engineer.	TOIN Lee	Relative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 320318-01 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		32.69	56.00	23.31	L1	OFF	19.9
0.150000	43.00		66.00	23.00	L1	OFF	19.9
0.465000		30.56	46.60	16.04	L1	OFF	19.9
0.465000	36.56		56.60	20.04	L1	OFF	19.9
0.523500		30.76	46.00	15.24	L1	OFF	19.9
0.523500	38.57		56.00	17.43	L1	OFF	19.9
0.651750		28.50	46.00	17.50	L1	OFF	19.9
0.651750	37.27		56.00	18.73	L1	OFF	19.9
0.980250		28.55	46.00	17.45	L1	OFF	19.9
0.980250	39.26		56.00	16.74	L1	OFF	19.9
1.117500		28.51	46.00	17.49	L1	OFF	19.9
1.117500	38.92		56.00	17.08	L1	OFF	19.9
3.147000		28.76	46.00	17.24	L1	OFF	20.0
3.147000	37.15		56.00	18.85	L1	OFF	20.0
11.937750		28.34	50.00	21.66	L1	OFF	20.3
11.937750	32.85		60.00	27.15	L1	OFF	20.3
24.015750		29.53	50.00	20.47	L1	OFF	20.6
24.015750	33.97		60.00	26.03	L1	OFF	20.6

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 320318-01 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		32.09	55.88	23.79	Ν	OFF	19.9
0.152250	42.72		65.88	23.16	Ν	OFF	19.9
0.523500		30.78	46.00	15.22	Ν	OFF	19.9
0.523500	38.56		56.00	17.44	Ν	OFF	19.9
0.649500		28.59	46.00	17.41	Ν	OFF	19.9
0.649500	37.57		56.00	18.43	Ν	OFF	19.9
0.987000		28.26	46.00	17.74	Ν	OFF	19.9
0.987000	38.82		56.00	17.18	Ν	OFF	19.9
1.117500		28.43	46.00	17.57	Ν	OFF	19.9
1.117500	38.90		56.00	17.10	Ν	OFF	19.9
1.189500		28.41	46.00	17.59	Ν	OFF	19.9
1.189500	37.41		56.00	18.59	Ν	OFF	19.9
2.879250		28.44	46.00	17.56	Ν	OFF	19.9
2.879250	36.49		56.00	19.51	Ν	OFF	19.9
3.140250		28.60	46.00	17.40	Ν	OFF	20.0
3.140250	36.78		56.00	19.22	Ν	OFF	20.0
12.007500		29.12	50.00	20.88	Ν	OFF	20.3
12.007500	33.77		60.00	26.23	Ν	OFF	20.3
23.871750		26.78	50.00	23.22	Ν	OFF	20.8
23.871750	30.06		60.00	29.94	Ν	OFF	20.8

Appendix C. Radiated Spurious Emission

Test Engineer :	Eric Xiao, Quentin Liu and Bigshow Wang	Temperature :	21.0~23.2°C
rest Engineer :		Relative Humidity :	45~60%

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.662	51.08	-22.92	74	44.59	27.32	16.03	36.86	285	113	Ρ	Н
		2384.868	41.14	-12.86	54	34.7	27.28	16.02	36.86	285	113	А	Н
	*	2402	94.8	-	-	88.2	27.41	16.05	36.86	285	113	Ρ	н
	*	2402	94.29	-	-	87.69	27.41	16.05	36.86	285	113	А	Н
BLE													н
CH 00 2402MHz		2314.284	50.26	-23.74	74	44.22	27	15.9	36.86	153	346	Ρ	V
240211112		2383.032	41.19	-12.81	54	34.77	27.26	16.02	36.86	153	346	А	V
	*	2402	100.12	-	-	93.52	27.41	16.05	36.86	153	346	Ρ	V
	*	2402	99.62	-	-	93.02	27.41	16.05	36.86	153	346	А	V
													V
		2357.04	50.29	-23.71	74	44.12	27.06	15.97	36.86	307	113	Ρ	Н
		2346.68	40.99	-13.01	54	34.9	27	15.95	36.86	307	113	А	Н
	*	2440	93.7	-	-	86.8	27.64	16.11	36.85	307	113	Ρ	Н
	*	2440	93.21	-	-	86.31	27.64	16.11	36.85	307	113	А	Н
51 5		2483.76	51.43	-22.57	74	44.26	27.84	16.18	36.85	307	113	Ρ	Н
BLE CH 19		2496.57	42.04	-11.96	54	34.8	27.89	16.2	36.85	307	113	А	Н
2440MHz		2374.96	49.99	-24.01	74	43.65	27.2	16	36.86	193	345	Ρ	V
2440101112		2387.14	41.42	-12.58	54	34.95	27.3	16.03	36.86	193	345	А	V
	*	2440	101.18	-	-	94.28	27.64	16.11	36.85	193	345	Ρ	V
	*	2440	100.7	-	-	93.8	27.64	16.11	36.85	193	345	А	V
		2496.78	51.93	-22.07	74	44.69	27.89	16.2	36.85	193	345	Ρ	V
		2485.86	42.04	-11.96	54	34.87	27.84	16.18	36.85	193	345	А	V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	94.75	-	-	87.61	27.82	16.17	36.85	298	92	Р	Н
	*	2480	94.22	-	-	87.08	27.82	16.17	36.85	298	92	А	Н
		2483.59	53.5	-20.5	74	46.34	27.83	16.18	36.85	298	92	Р	Н
		2494	42.11	-11.89	54	34.88	27.88	16.2	36.85	298	92	А	Н
													Н
BLE													Н
CH 39 2480MHz	*	2480	101.34	-	-	94.2	27.82	16.17	36.85	153	345	Р	V
240010112	*	2480	100.79	-	-	93.65	27.82	16.17	36.85	153	345	А	V
		2483.5	58.2	-15.8	74	51.04	27.83	16.18	36.85	153	345	Р	V
		2483.83	43.46	-10.54	54	36.29	27.84	16.18	36.85	153	345	Α	V
													V
													V
	1. No	o other spurious	s found.										
Remark	 All results are PASS against Peak and Average limit line. 												

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				J	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	48.12	-25.88	74	56.74	32.32	9.42	50.36	-	-	Р	Н
		4804	39.33	-14.67	54	47.95	32.32	9.42	50.36	-	-	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
BLE													Н
CH 00 2402MHz		4804	48.75	-25.25	74	57.37	32.32	9.42	50.36	-	-	Ρ	V
240211112		4804	39.96	-14.04	54	48.58	32.32	9.42	50.36	-	-	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	49.34	-24.66	74	57.72	32.6	9.4	50.38	-	-	P	H
		4880	40.55	-13.45	54	48.93	32.6	9.4	50.38	-	-	А	Н
		7320	51.24	-22.76	74	56.01	36.62	10.85	52.24	-	-	Ρ	Н
		7320	42.45	-11.55	54	47.22	36.62	10.85	52.24	-	-	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19													Н
2440MHz		4880	48.64	-25.36	74	57.02	32.6	9.4	50.38	-	-	Ρ	V
		4880	39.85	-14.15	54	48.23	32.6	9.4	50.38	-	-	А	V
		7320	51.22	-22.78	74	55.99	36.62	10.85	52.24	-	-	Р	V
		7320	42.43	-11.57	54	47.2	36.62	10.85	52.24	-	-	А	V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	49.41	-24.59	74	57.49	32.94	9.37	50.39	-	-	Р	Н
		4960	40.62	-13.38	54	48.7	32.94	9.37	50.39	-	-	A	Н
		7440	52.65	-21.35	74	57.56	36.34	10.96	52.21	-	-	Р	Н
		7440	43.86	-10.14	54	48.77	36.34	10.96	52.21	-	-	А	Н
													Н
													Н
													Н
													н
													Н
													Н
D I E													Н
BLE													н
CH 39 2480MHz		4960	49.69	-24.31	74	57.77	32.94	9.37	50.39	-	-	Р	V
240010112		4960	40.9	-13.1	54	48.98	32.94	9.37	50.39	-	-	А	V
		7440	51.57	-22.43	74	56.48	36.34	10.96	52.21	-	-	Р	V
		7440	42.78	-11.22	54	47.69	36.34	10.96	52.21	-	-	А	V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	lo other spuriou	s found.	1		1	1		1	1	<u>. </u>		
Remark	2. A	II results are PA	.SS against F	Peak and	Average lim	it line.							
Reinark	3. Т	he emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	fl	oor only.											

Emission above 18GHz

2.4GHz E	BLE (SHF)
----------	-----------

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		24380	44.06	-29.94	74	60.73	39	-2.17	53.5	-	-	Р	Н
													Н
													Н
													Н
													н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz BLE													н
SHF		23742	44.77	-29.23	74	62.12	38.8	-2.25	53.9	-	-	Р	V
													V
													V
													V
													v
													V
													V
													V
													V
													V
													V
			 , .										V
		o other spuriou											
Remark		II results are PA					ninning fr	- المن الم	4 :				
		he emission po	sition marked	as "-" n	neans no sus	spected er	TIISSION TOUR	ia with s	unicient m	iargin a	gainst li	mit line	e or
	n	oise floor only.											

Emission below 1GHz

					2.40112	BLE (LF)							
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz) 30.97	(dBµV/m) 22.64	(dB)	(dBμV/m) 40	(dBµV) 30.12	(dB/m) 24.24	(dB) 0.67	(dB) 32.39	(cm)	(deg)	(P/A) P	(H/V) H
		124.09	17.29	-26.21	40	31.01	17.4	1.33	32.39	-	-	P	н
		307.42	19.33	-26.67	43.5	30.05	19.49	2.12	32.33	-	-	P	н
		561.56	26.89	-20.07	40	30.26	26.18	2.12	32.33	-	-	P	н
		719.67	38.99	-7.01	46	41.06	26.98	3.23	32.28	-	-	P	H
		898.15	35.67	-10.33	46	34.41	29.04	3.69	31.47	-	-	Р	Н
													Н
													Н
													н
													н
2.4GHz													н
BLE												_	Н
LF		30	22.07	-17.93	40	29.29	24.53	0.64	32.39	-	-	P	V
		129.91	27.78	-15.72	43.5	41.37	17.48	1.36	32.43	-	-	P	V
		355.92	21.42	-24.58	46	30.78	20.78	2.25	32.39	-	-	Р	V
		593.57	30.95	-15.05	46	34.82	25.59	2.97	32.43	-	-	Р	V
		736.16	38.89	-7.11	46	40.18	27.68	3.28	32.25	-	-	Р	V
		893.3	37.94	-8.06	46	36.86	28.91	3.68	31.51	-	-	Р	V
													V
													V
													V
													V
													V
													V
		o other spurious											
Remark		l results are PA											
		e emission pos				pected em	nission foun	d and em	ission leve	el has at	t least 60	dB ma	rgin
	ag	ainst limit or er	nission is no	ise floor	only.								

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

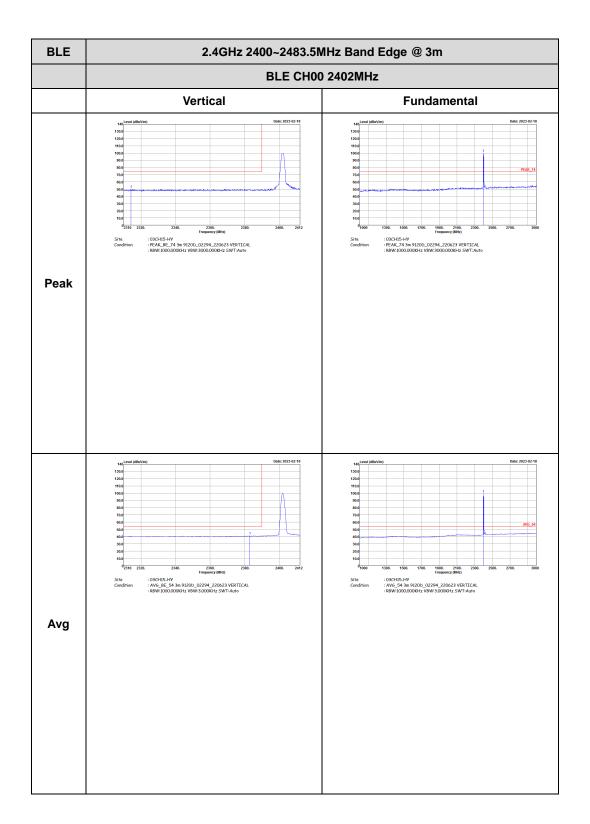
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

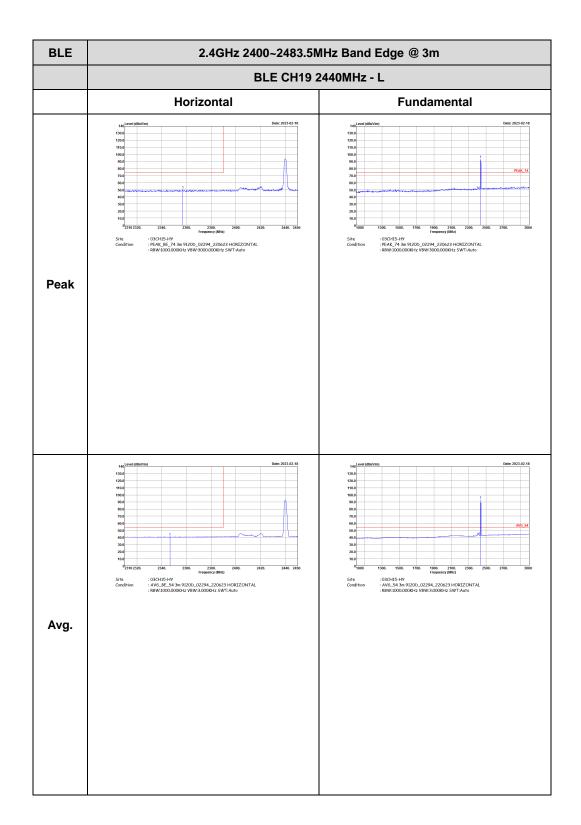
Test Engineer :	Eric Xiao, Quentin Liu and Bigshow Wang	Temperature :	21.0~23.2°C
rest Engineer .	Elic Alao, Quentin Elu and Bigshow Wang	Relative Humidity :	45~60%

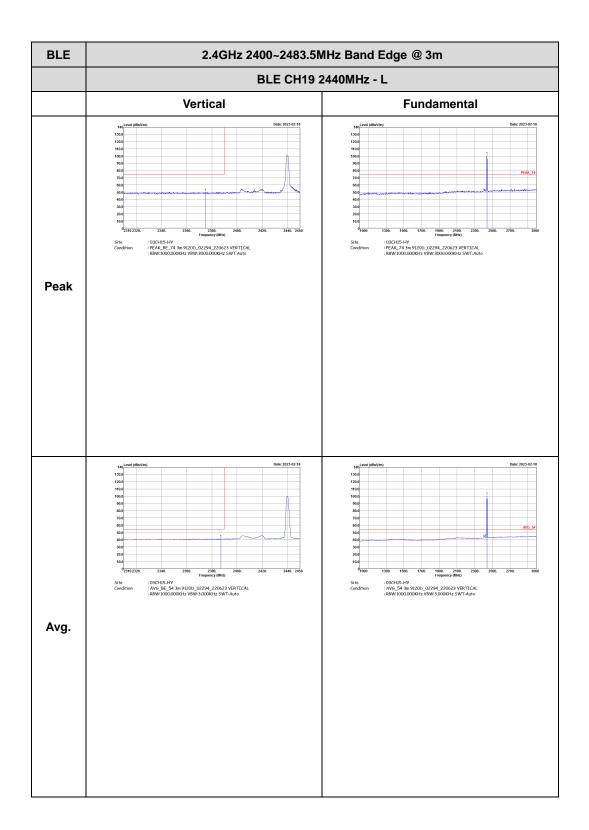

Note symbol

-L	Low channel location
-R	High channel location

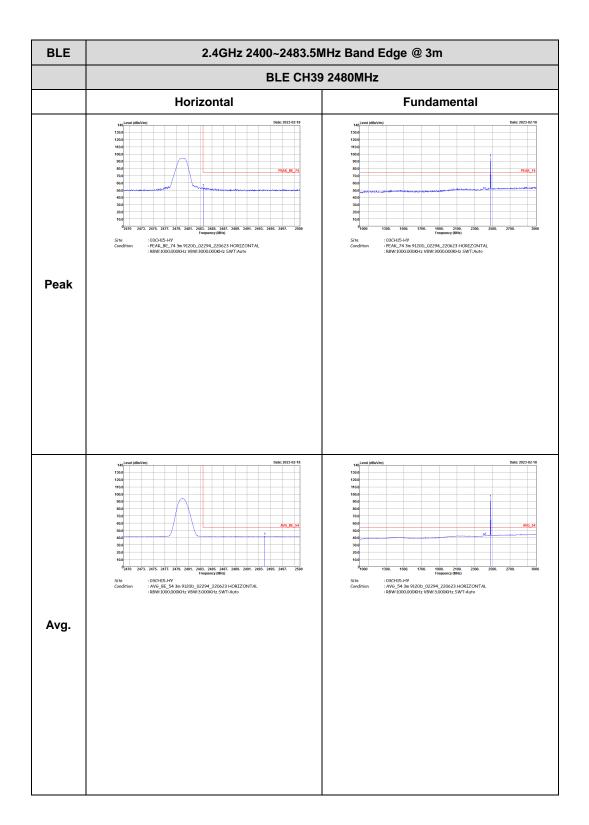


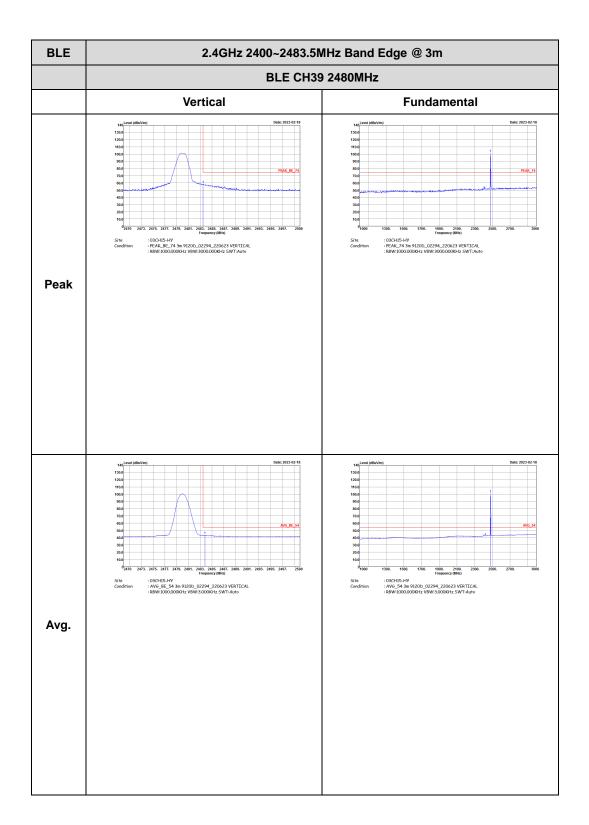
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

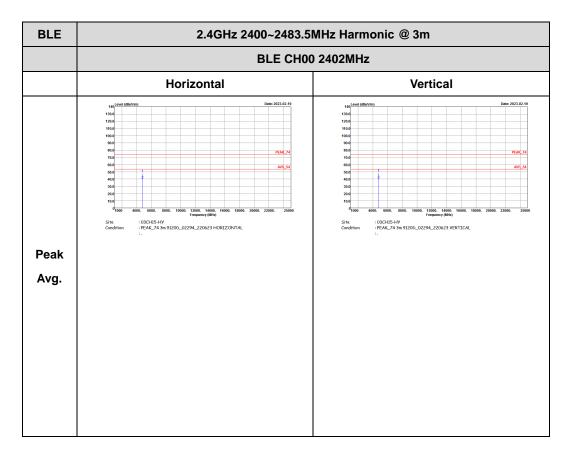


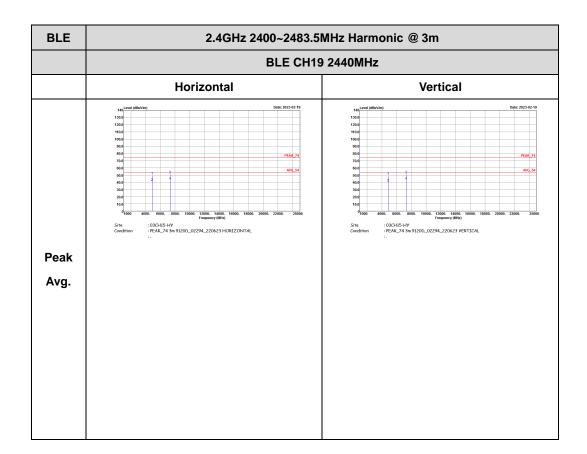
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m								
	BLE CH19 2440	MHz - R							
	Horizontal	Fundamental							
Peak	Image: provide state st	Left blank							
Avg.	her 2020 2 a 1 her denomination of the second seco	Left blank							



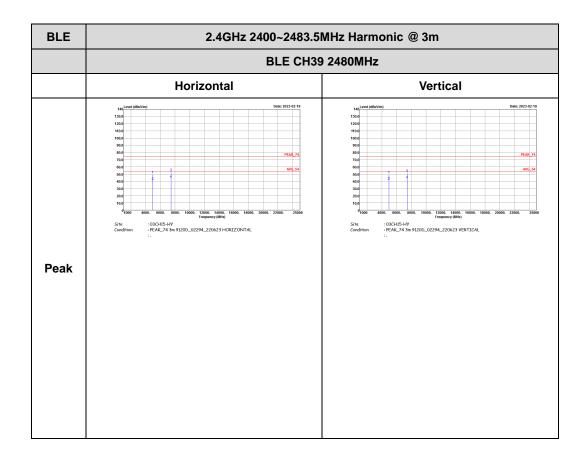


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Vertical	Fundamental				
Peak	the function of the second sec	Left blank				
Avg.	here the form of the second se	Left blank				

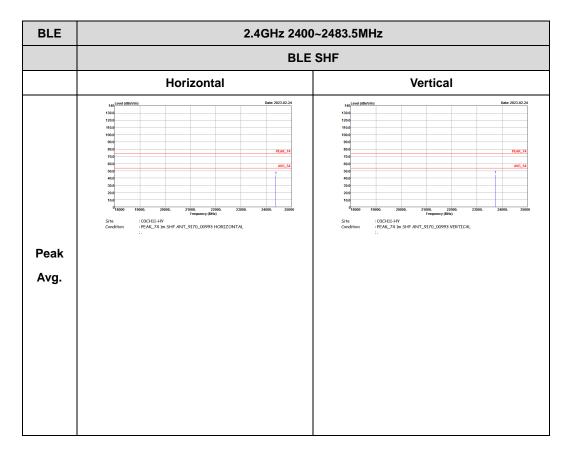


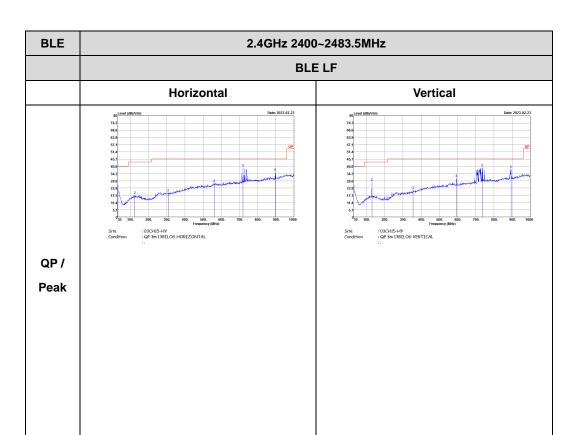


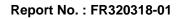
2.4GHz 2400~2483.5MHz



BLE (Harmonic @ 3m)




Emission above 18GHz


2.4GHz BLE (SHF @ 1m)

Emission below 1GHz

2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth –LE	61.26	381	2.63	3kHz

Keysight Spectrum Analyzer - Swept SA RL RF PRESEL 50 Ω AC arker 3 Δ 621.114 µs	PNO: Fast	SENSE:INT Trig: Free Run #Atten: 20 dB	ALIGN OFF #Avg Type: RMS Avg Hold: 1/1	04:32:40 AM Feb 18, 2023 TRACE 2 3 4 5 6 TYPE MWWWWWW DET PPNNNN	Marker Select Marke
dB/div Ref 116.99 dBµ	v			ΔMkr3 621.1 μs 0.005 dB	OCICCI Marke
	1∆2	3Δ4			Norn
7.0					De
	(L-11-4)	~			Fixe
nter 2.480000000 GHz s BW 1.0 MHz	#VBW	1.0 MHz	Sweep	Span 0 Hz 2.003 ms (200 pts)	(
R MODE TRC SCL X Δ2 1 t (Δ) F 1 t (Δ) F 1 t (Δ) F 1 t (Δ)	621.1 μs (Δ)	Y FU -0.218 dB 93.577 dBµV 0.005 dB 93.577 dBµV	INCTION FUNCTION WIDTH	FUNCTION VALUE	Propertie