

Report No. : FR050617-01D

FCC RADIO TEST REPORT

FCC ID	:	UZ7CR6080PC
Equipment	:	HC Cradle
Brand Name	:	Zebra
Model Name	:	CR6080-PC
Applicant	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	:	FCC Part 15 Subpart C §15.209

The product was received on May 15, 2020 and testing was started from May 27, 2020 and completed on Jul. 16, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

Table of Contents

History	of this test report	
Summa	of this test report rry of Test Result	4
1. Gene	eral Description	5
1.1	Product Feature of Equipment Under Test	
1.2	Product Specification of Equipment Under Test	
1.3	Modification of EUT	
1.4	Testing Location	
1.5	Applicable Standards	
2. Test	Configuration of Equipment Under Test	7
2.1	Descriptions of Test Mode	
2.2	Connection Diagram of Test System	
2.3	Support Unit used in test configuration and system	
2.4	EUT Operation Test Setup	
3. Test	Results	
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	11
3.3	Radiated Emissions Measurement	
3.4	Antenna Requirements	
4. List d	of Measuring Equipment	
5. Unce	ertainty of Evaluation	
Append	lix A. Test Results of Conducted Emission Test	
Append	lix B. Test Results of Conducted Test Items	

B1. Test Result

Appendix C. Test Results of Radiated Test Items

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR050617-01D	01	Initial issue of report	Aug. 17, 2020
FR050617-01D	02	Revise Tx/Rx Frequency in section 1.2	Aug. 19, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.207	AC Power Line Conducted Emissions	Pass	Under limit 6.88 dB at
3.1	15.207		Fd55	0.536MHz
2.2	15.215(c)	20dB Spectrum Bandwidth	20dB Spectrum Bandwidth Reporting only	
3.2 2.1049		99% OBW Spectrum Bandwidth	Reporting only	-
2.2	45 200	Field Strength of Fundamental Emissions	Pass	Max level -2.35 dBµV/m at 0.180 MHz
3.3 15.209		Radiated Spurious Emissions	Pass	Under limit 6.89 dB at 54.300MHz
3.4	15.203	Antenna Requirements	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Dara Chiu

1. General Description

1.1 **Product Feature of Equipment Under Test**

Product Feature				
Equipment HC Cradle				
Brand Name	Zebra			
Model Name	CR6080-PC			
FCC ID	UZ7CR6080PC			
EUT supports Radios application	NFC/WPC/WPT			
EOT Supports Radios application	Bluetooth BR/EDR/LE			
HW Version	EV2			
SW Version	N14			
MFD	29APR20			
EUT Stage	Engineering sample			

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories							
Adapter Brand Name Zebra Part Number PWR-WUA5V6W0WW							
USB type C cable 1 Brand Name Zebra Part Number CB-000722-01							
JSB type C cable 2 Brand Name Zebra Part Number CB-000723-01							

Supported Unit Used in Test Configuration and System					
Scanner Brand Name Zebra Model Number CS6080					

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency	111 kHz ~ 205 kHz			
Channel Number	1			
20dBW	0.750 kHZ			
99%OBW	0.660 kHZ			
Antenna Type	Loop Antenna			
Type of Modulation	ASK			

Remark: The above EUT's information was declared by manufacturer.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory				
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978				
Test Site No.	Sporton Site No.				
lest Site NO.	TH03-HY	CO05-HY	03CH07-HY		
Test Engineer	Oscar Chi Howard Huang Stan Hsieh				
Temperature	25.4~26.4℃ 21~24℃ 23~25℃				
Relative Humidity	54.6~55.6%	42~50%	56~62%		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.209
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. The TAF code is not including all the FCC KDB listed without accreditation.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

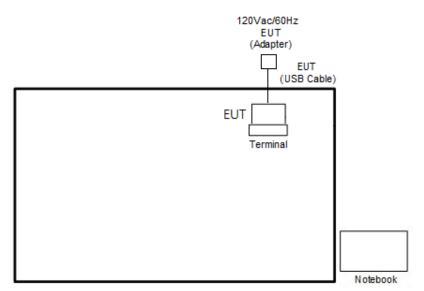
2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

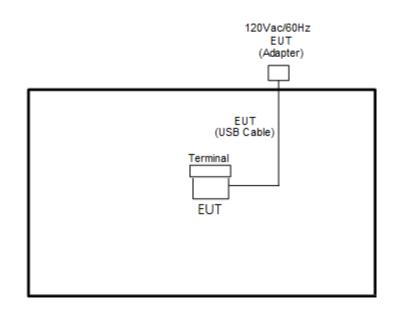
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items					
AC Power Line Conducted Emissions	20dB Spectrum Bandwidth				
Field Strength of Fundamental Emissions	Field Strength of Fundamental Emissions				
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz				


Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y Plane as worst plane) from all possible combinations.

Test Cases				
AC Conducted Mode 1: Scanner (CS6080) + Bluetooth Idle + NFC Link + Wireless Charging				
Emission	Emission + USB Cable 2 (Charging from AC Adapter)			
Remark: For Radiated Test Cases, the tests were performed with USB Cable 2.				



2.2 Connection Diagram of Test System

<AC Conducted Emission Mode>

<WPT Tx Mode>

2.3 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	DELL	Vostro 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.4 EUT Operation Test Setup

The Terminal charger from the EUT via wireless power transfer function.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

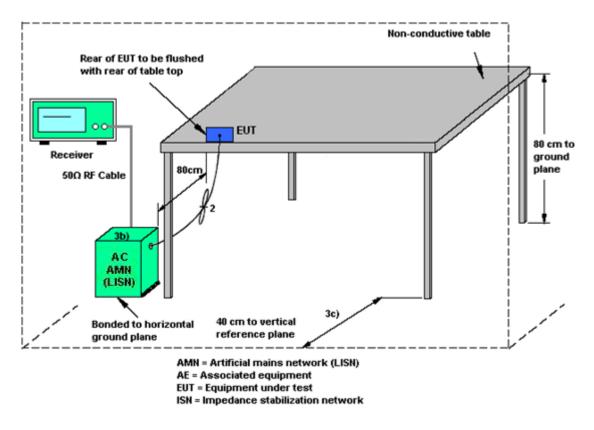
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)					
(MHz)	Quasi-Peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement 3.2.1 Limit

Reporting only

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

Spectrum Analyzer

3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Radiated Emissions Measurement 3.3.1 Limit

The field strength of any emissions which appear band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.3.2 Measuring Instruments

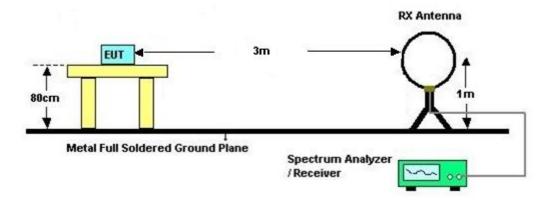
See list of measuring instruments of this test report.

3.3.3 Measuring Instrument Setting

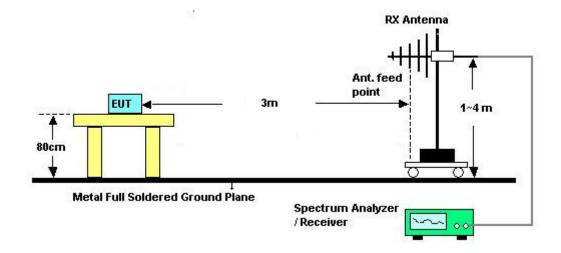
The following table is the setting of receiver:

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.3.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.



3.3.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.3.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

3.4 Antenna Requirements 3.4.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 26, 2020	Jul. 02, 2020	Mar. 25, 2021	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101329	9kHz~30GHz	Sep. 04, 2019	Jul. 02, 2020	Sep. 03, 2020	Conducted (TH03-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 27, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	May 27, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 07, 2019	May 27, 2020	Nov. 06, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	May 27, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 27, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	May 27, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	May 27, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35419 & 03	30MHz~1GHz	Apr. 29, 2020	Jul. 15, 2020 ~ Jul. 16, 2020	Apr. 28, 2021	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Dec. 26, 2019	Jul. 15, 2020 ~ Jul. 16, 2020	Dec. 25, 2020	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 19, 2020	Jul. 15, 2020 ~ Jul. 16, 2020	May 18, 2021	Radiation (03CH07-HY)
Filter	Wainwright	WHK20/1000C 7/40SS	SN3	20MHz High Pass Filter	Aug. 22, 2019	Jul. 15, 2020 ~ Jul. 16, 2020	Aug. 21, 2020	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/4, MY28655/4	9kHz~30MHz	Feb. 25, 2020	Jul. 15, 2020 ~ Jul. 16, 2020	Feb. 24, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4, MY24971/4, MY15682/4	30MHz~1GHz	Feb. 25, 2020	Jul. 15, 2020 ~ Jul. 16, 2020	Feb. 24, 2021	Radiation (03CH07-HY)
Controller	ChainTek	Chaintek 3000	N/A	Control Turn table	N/A	Jul. 15, 2020 ~ Jul. 16, 2020	N/A	Radiation (03CH07-HY)
Controller	Max-Full	MF7802	MF78020836 8	Control Ant Mast	N/A	Jul. 15, 2020 ~ Jul. 16, 2020	N/A	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Jul. 15, 2020 ~ Jul. 16, 2020	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Jul. 15, 2020 ~ Jul. 16, 2020	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A	N/A	Jul. 15, 2020 ~ Jul. 16, 2020	N/A	Radiation (03CH07-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290053	20Hz~26.5GHz	May 21, 2020	Jul. 15, 2020 ~ Jul. 16, 2020	May 20, 2021	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	80504004656 H	N/A	N/A	Jul. 15, 2020 ~ Jul. 16, 2020	N/A	Radiation (03CH07-HY)

5. Uncertainty of Evaluation

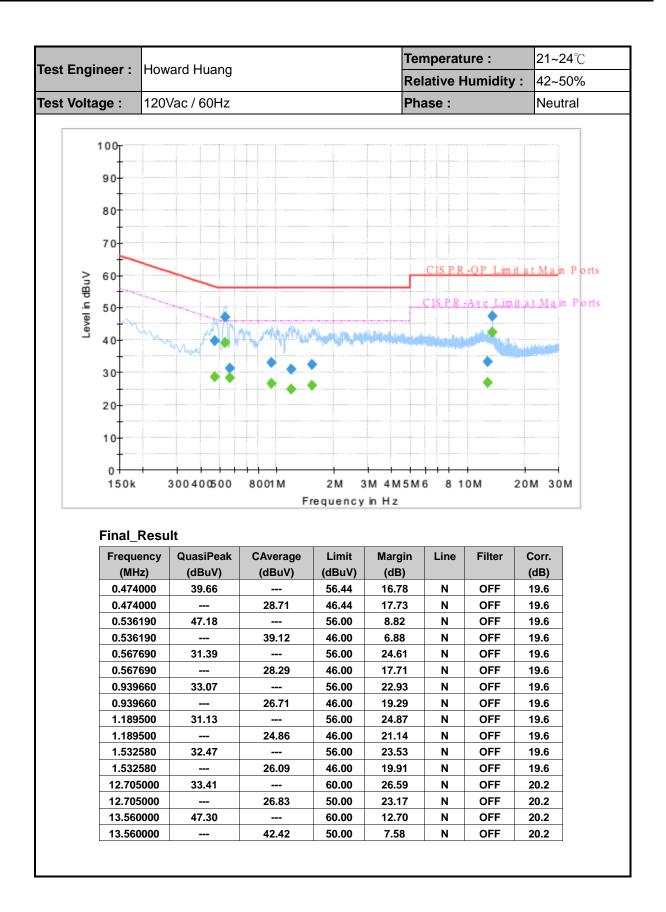
Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

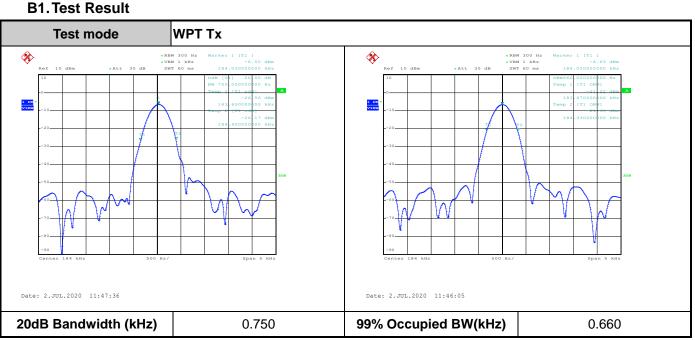
Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

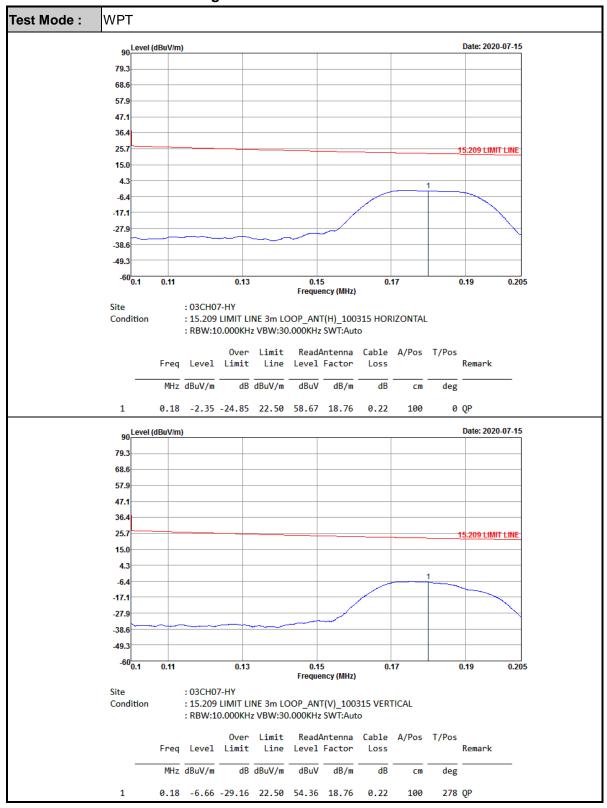
Measuring Uncertainty for a Level of Confidence	26
of 95% (U = 2Uc(y))	2.0

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)


Measuring Uncertainty for a Level of Confidence	4.6
of 95% (U = 2Uc(y))	4.6

Appendix A. Test Results of Conducted Emission Test


oct Ena	inoar		ard Huang			Ter	nperati	ure :	21~24 ℃
fest Eng	ineer:	now		Rel	ative H	42~50%			
Fest Volt	age :	120\	/ac / 60Hz			Pha	ase :		Line
	100 .					·····			······
	90								
	80								
	70								
	-						CIEDD	OD Link	at Main Dart
210	60						CISER	-QP Lmu	<u>at Ma</u> in Port
level in dBu V	50-	Constant of the second s					CIS PR -	Ave Limit	<u>at Ma</u> in Port
ave		Т., _{м.} ,							
-	40		mun Mala	Why MANY MAN	hen/hen		entlenetsler Normalise	A REAL PROPERTY AND	i tanataan ah
	30			• • •					
	20							******	
	10								
	+								
	0+								5 F F
	150	(300400500	8001 M	2M 3	M 4M5M	111 681	+ 0M 2	1 0M 30M
	150	¢	300400500		2M 3 requency		6 8 1	0M 2	0M 30M
	150						6 8 1	0M 2	н н ом зом
	Final_						Line	OM 2	Corr.
	Final_	_Resu ıency	lt	Fr	requency	in Hz		-	
	Final_ Frequ (MI 0.470	_Resu uency Hz) 6250	lt QuasiPeak (dBuV) 	Fr	Limit (dBuV) 46.40	in Hz Margin (dB) 16.36	Line L1	Filter	Corr. (dB) 19.6
	Final_ Frequ (MI 0.470	_Resu iency Hz) 6250 6250	lt QuasiPeak (dBuV) 39.77	Fr CAverage (dBuV) 30.04 	Limit (dBuV) 46.40 56.40	in Hz Margin (dB) 16.36 16.63	Line L1 L1	Filter OFF OFF	Corr. (dB) 19.6 19.6
	Final_ Frequ (Mi 0.470 0.530	_Resu Jency Hz) 6250 6250 6010	lt QuasiPeak (dBuV) 39.77 	Fr CAverage (dBuV) 30.04 38.91	Limit (dBuV) 46.40 56.40 46.00	in Hz Margin (dB) 16.36 16.63 7.09	Line L1 L1 L1	Filter OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6
	Final Frequ (MI 0.470 0.530 0.530	Resu lency Hz) 6250 6250 6010 6010	lt QuasiPeak (dBuV) 39.77	Fr CAverage (dBuV) 30.04 	Limit (dBuV) 46.40 56.40	in Hz Margin (dB) 16.36 16.63	Line L1 L1	Filter OFF OFF	Corr. (dB) 19.6 19.6
	Final_ Frequ (Mi 0.470 0.530	Resu lency Hz) 6250 6250 6010 6010 5250	lt QuasiPeak (dBuV) 39.77 47.29	Fr CAverage (dBuV) 30.04 38.91 	Limit (dBuV) 46.40 56.40 46.00 56.00	in Hz Margin (dB) 16.36 16.63 7.09 8.71	Line L1 L1 L1 L1 L1	Filter OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6
	Final_ Frequ (MI 0.470 0.530 0.530 0.530	Resu lency Hz) 6250 6250 6010 6010 5250 5250	lt QuasiPeak (dBuV) 39.77 47.29 	Fr CAverage (dBuV) 30.04 38.91 32.17	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00	in Hz Margin (dB) 16.36 16.63 7.09 8.71 13.83	Line L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6
	Final Frequ (MI 0.470 0.530 0.530 0.531 0.575 0.575 0.644 0.644	Resu lency Hz) 6250 6250 6010 6010 5250 5250 5000 5000	It QuasiPeak (dBuV) 39.77 47.29 39.78 36.47	Fr CAverage (dBuV) 30.04 38.91 32.17 28.87 	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00	in Hz Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final_ Frequ (MI 0.470 0.530 0.530 0.530 0.530 0.540 0.644 0.644 0.899	Resu lency Hz) 6250 6010 6010 5250 5250 5250 5000 5000 9430	It QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 	Fr CAverage (dBuV) 30.04 38.91 32.17 28.87 28.87 26.48	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00	in Hz Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.53	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final_ (MI 0.470 0.530 0.530 0.530 0.530 0.530 0.530 0.540 0.640 0.640 0.899 0.899	Resu lency Hz) 6250 6010 6010 5250 5250 5000 5000 5000 9430	It QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 32.92	Fr CAverage (dBuV) 30.04 38.91 32.17 28.87 26.48 	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	in H z Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final_ Frequ (MI 0.470 0.530 0.540000000000	Resu lency Hz) 6250 6010 6010 5250 5250 5000 5000 9430 9430 8520	lt QuasiPeak (dBuV) 39.77 47.29 39.78 39.78 36.47 32.92 	Fr CAverage (dBuV) 30.04 38.91 32.17 28.87 26.48 28.71	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	in H z Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08 17.29	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final_ (MI 0.470 0.530 0.530 0.530 0.530 0.530 0.530 0.540 0.640 0.640 0.899 0.899	Resu lency Hz) 6250 6250 6010 5250 5250 5000 5000 9430 9430 9430 8520	It QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 32.92	Fr CAverage (dBuV) 30.04 38.91 32.17 28.87 26.48 	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	in H z Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final_ Frequ (MI 0.470 0.530 0.533 0.537 0.547 0.537 0.547 0.537 0.547 0	Resu lency Hz) 6250 6250 6010 5250 5250 5000 9430 9430 9430 9520 8520 8520 4000	It QuasiPeak (dBuV) 39.77 47.29 39.78 39.78 36.47 32.92 36.56	Fr CAverage (dBuV) 30.04 38.91 32.17 28.87 28.87 28.71 28.71 	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	in H z Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08 17.29 19.44	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final_ Frequ (MI 0.470 0.530 0.530 0.530 0.530 0.530 0.575 0.644 0.644 0.644 0.644 0.899 0.899 1.175 1.175 1.2.71 1.2.71 1.3.56	Resu lency Hz) 6250 6010 6010 5250 5250 5000 5000 9430 9430 9430 8520 8520 4000 4000	It QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 32.92 36.56 	Fr CAverage (dBuV) 30.04 38.91 32.17 28.87 26.48 28.71 26.30	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 56.00 56.00	in H z Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08 17.29 19.44 23.70	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6


Appendix B. Test Results of Conducted Test Items

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

Appendix C. Test Results of Radiated Test Items

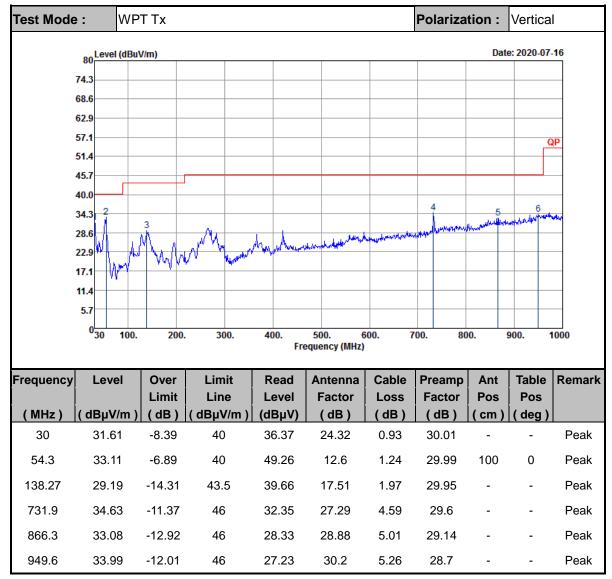
C1. Test Result of Field Strength of Fundamental Emissions

Test Mode : WPT Tx Pola						Polariza	Polarization : Horizontal			
ç	Devel (dBuV/	m)						Date	2020-07	-15
79										
68	.6									
57	.9									
47	.1									
36	.4							15.209) LIMIT LI	NE
25										
15										
	.35		8				9	10		
-0 -17	.4									
-27	A									
-38	.6									
-49	.3									
-(60 <mark>0.009 3.</mark>	5. 7.	9. 11	. 13. 15	5. 17.	19. 21.	23.	25. 2	27. 29	. 30
		Distance		Frequen	CY (MHZ)					
Frequency	Level	Distance extrapolation	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark
		Factor	Limit	Line	Level	Factor	Loss	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	
0.01298	-19.7	80	-65.04	45.34	41.48	18.7	0.12	-	-	Average
0.06981	-24.86	80	-55.59	30.73	35.99	19	0.15	-	-	Average
0.09186	-43.05	80	-71.39	28.34	18.28	18.5	0.17	-	-	QP
0.11512	-45.39	80	-71.77	26.38	15.84	18.59	0.18	-	-	Average
0.18	-2.35	80	-24.85	22.5	58.67	18.76	0.22	-	-	Average
0.25676	-38.8	80	-58.21	19.41	22.01	18.93	0.26	-	-	Average
0.52755	17.43	40	-15.73	33.16	37.91	19.19	0.33	100	0	QP
9.808	-3.54	40	-33.04	29.5	15.4	20.66	0.4	-	-	QP
22.3	-2.16	40	-31.66	29.5	15.56	21.88	0.4	-	-	QP
25.655	-0.91	40	-30.41	29.5	16.44	22.15	0.5	-	-	QP

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode : WPT Tx							Polarization : Vertical			
ç	Devel (dBuV/r	m)						Date	: 2020-07	-15
79	.3									
68	.6									
57	.9									
47	.1									
36								15.20	9 LIMIT LI	NE
25 15										
	.0									10
	.4		8			9				10
-17	.1									+
-27	.9									+
-38										+
-49										
-4	⁵⁰ 0.009 3.	5. 7.	9. 11	l. 13. 15 Frequenc		19. 21.	23.	25.	27. 29	9. 30
Frequency	Level	Distance extrapolation	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark
		Factor	Limit	Line	Level	Factor	Loss	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	
0.01298	-18.68	80	-64.02	45.34	42.5	18.7	0.12	-	-	Average
0.07119	-26.73	80	-57.29	30.56	34.12	19	0.15	-	-	Average
0.09	-44.77	80	-73.29	28.52	16.57	18.5	0.16	-	-	QP
0.11288	-49.39	80	-75.94	26.55	11.93	18.5	0.18	-	-	Average
0.18	-6.66	80	-29.16	22.5	54.36	18.76	0.22	-	-	Average
0.24894	-39.96	80	-59.64	19.68	20.86	18.93	0.25	-	-	Average
0.52004	13.11	40	-20.17	33.28	33.59	19.19	0.33	100	0	QP
10.704	-2.97	40	-32.47	29.5	15.86	20.77	0.4	-	-	QP
20.788	-2.21	40	-31.71	29.5	15.64	21.76	0.39	-	-	QP
29.39	-1.37	40	-30.87	29.5	15.31	22.45	0.87	-	-	QP

Note:


- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

Fest Mode	: WP	T Tx					Polariza	tion :	Horizor	ntal
	80 Level (dBu	V/m)						Dat	e: 2020-07	16
-	74.3									
	68.6									
	62.9									_
:	57.1)P
:	51.4									<u> </u>
	45.7									_
	40.0									_
:	34.3			4			5		6	
:	28.6	Λ	My	too b		How with and the same	appella representativ	Marken Andrewski -		_
:	22.9	<u>~~~</u> _[]\y	Nº Wytyw	" Want Wayson	All bergeralized and a second and					_
	17.1		<u> </u>							_
	11.4									-
	5.7									-
	⁰ 30 100.	200.	300.	400. Fre	500. 6 equency (MHz)	i00. 7	00. 80	00.	900. 1	1000
requency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remar
. ,		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
51.06	26.39	-13.61	40	41.43	13.74	1.21	29.99	-	-	Peak
108.57	34.08	-9.42	43.5	45.48	16.83	1.74	29.97	100	0	Peak
196.05	32.22	-11.28	43.5	44.91	14.89	2.35	29.93	-	-	Peak
420.4	30.22	-15.78	46	34.06	22.57	3.47	29.88	-	-	Peak
733.3	32.96	-13.04	46	30.64	27.33	4.59	29.6	-	-	Peak

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.