

FCC RADIO TEST REPORT

FCC ID	: UZ7CR6080PC
Equipment	: HC Cradle
Brand Name	: Zebra
Model Name	: CR6080-PC
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	: FCC Part 15 Subpart C §15.225

The product was received on May 15, 2020 and testing was started from May 27, 2020 and completed on Jul. 15, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

History	of this test report	3
Summa	of this test report ary of Test Result	4
1. Gene	eral Description	5
1.1	Product Feature of Equipment Under Test	5
1.2	Product Specification of Equipment Under Test	5
1.3	Modification of EUT	
1.4	Testing Location	6
1.5	Applicable Standards	6
2. Test	Configuration of Equipment Under Test	7
2.1	Descriptions of Test Mode	7
2.2	Connection Diagram of Test System	
2.3	Table for Supporting Units	9
2.4	EUT Operation Test Setup	9
3. Test	Results	
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	
3.3	Frequency Stability Measurement	
3.4	Field Strength of Fundamental Emissions and Mask Measurement	
3.5	Radiated Emissions Measurement	
3.6	Antenna Requirements	
4. List d	of Measuring Equipment	
5. Unce	ertainty of Evaluation	
	line A Track Deputite of Complexited Environment	

Appendix A. Test Results of Conducted Emission Test

Appendix B. Test Results of Conducted Test Items

- B1. Test Result of 20dB Spectrum Bandwidth
- B2. Test Result of Frequency Stability

Appendix C. Test Results of Radiated Test Items

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR050617-01C	01	Initial issue of report	Aug. 17, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.207	AC Power Line Conducted Emissions	Pass	Under limit 6.88 dB at 0.536MHz
2.2	15.215(c)	20dB Spectrum Bandwidth	Pass	-
3.2 2.1049		99% OBW Spectrum Bandwidth	Reporting only	-
3.3	15.225(e)	Frequency Stability	Pass	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Pass	Max level 8.69 dBµV/m at 13.56 MHz
3.5	15.225(d) 15.209	Radiated Spurious Emissions	Pass	Under limit 8.53 dB at 41.610MHz
3.6	15.203	Antenna Requirements	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Ruby Zou

1. General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment	HC Cradle		
Brand Name	Zebra		
Model Name	CR6080-PC		
FCC ID	UZ7CR6080PC		
FUT supports Dadies application	NFC/WPC/WPT		
EUT supports Radios application	Bluetooth BR/EDR/LE		
HW Version	EV2		
SW Version	N14		
MFD	29APR20		
EUT Stage	Engineering sample		

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories				
Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V6W0WW
USB type C cable 1	Brand Name	Zebra	Part Number	CB-000722-01
USB type C cable 2	Brand Name	Zebra	Part Number	CB-000723-01

Supported Unit Used in Test Configuration and System				
Scanner Brand Name Zebra Model Number CS6080				

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	13.553 ~ 13.567MHz		
Channel Number	1		
20dBW	2.64 KHz		
99%OBW	2.24 KHz		
Antenna Type	Loop Antenna		
Type of Modulation	ASK		

Remark: The above EUT's information was declared by manufacturer.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory				
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978				
Test Site No.	Sporton Site No.				
Test Site No.	TH03-HY	CO05-HY	03CH07-HY		
Test Engineer	Louis Chung Howard Huang Jesse Wang, Ken Wu				
Temperature	22~24℃ 21~24℃ 23~25℃				
Relative Humidity	53~55%	53~55% 42~50% 56~62%			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the

following standards:

- FCC Part 15 Subpart C §15.225
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

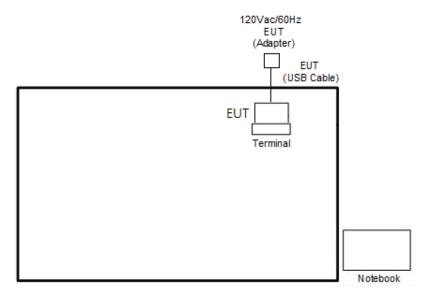
2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

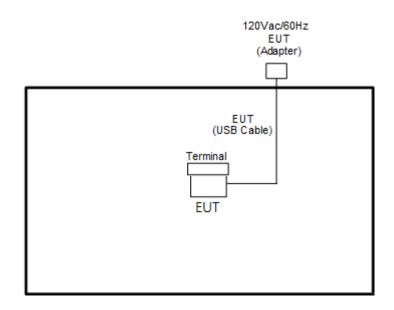
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items			
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions		
20dB Spectrum Bandwidth	Frequency Stability		
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz		


The EUT pre-scanned in three NFC type, A, B, F. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

Test Cases			
AC Conducted Emission	Mode 1: Scanner (CS6080) + Bluetooth Idle + NFC Link + Wireless Charging + USB Cable (Charging from AC adapter)		
Remark: For Radiated Test Cases, the tests were performed with USB Cable 1			



2.2 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Radiated Emission Mode>

TEL : 886-3-327-3456	Page Number	: 8 of 21
FAX : 886-3-328-4978	Issued Date	: Aug. 17, 2020
Report Template No.: BU5-FR15CNFC Version 2.4	Report Version	: 01

2.3 Table for Supporting Units

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P : Unshielded, 1.2m DC O/P : Shielded, 1.8m

2.4 EUT Operation Test Setup

The RF test items, utility "ScannerSDK_SampleAPP" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

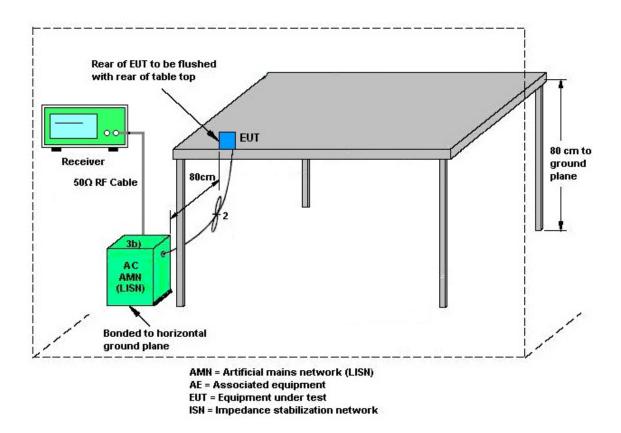
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted I	Limit (dBµV)
(MHz)	Quasi-Peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

TEL : 886-3-327-3456	Page Number	: 11 of 21
FAX : 886-3-328-4978	Issued Date	: Aug. 17, 2020
Report Template No.: BU5-FR15CNFC Version 2.4	Report Version	: 01

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

Spectrum Analyzer

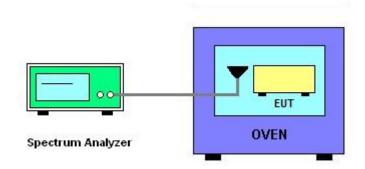
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications		FCC CFR 47 Part	15 section 15.225	
Description	Compliance with th	e spectrum mask is t	ested with RBW set t	o 9kHz.
Frequet Emission (MHz)	Field Strength	Field Strength	Field Strength	Field Strength
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m
1.705~13.110	30	29.5	48.58	69.5
13.110~13.410	106	40.5	59.58	80.5
13.410~13.553	334	50.5	69.58	90.5
13.553~13.567	15848	84.0	103.08	124.0
13.567~13.710	334	50.5	69.58	90.5
13.710~14.010	106	40.5	59.58	80.5
14.010~30.000	30	29.5	48.58	69.5

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(µV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

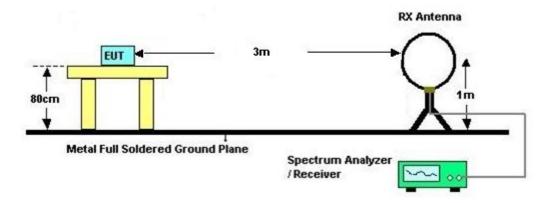
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

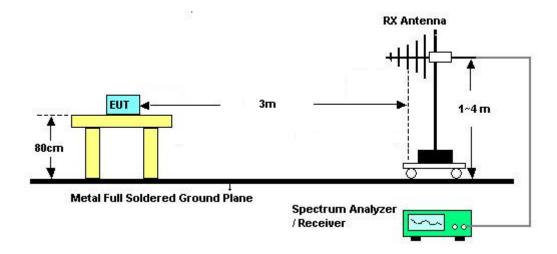
The following table is the setting of receiver:

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	AC POWER	AFC-500W	F10407001 1	50Hz~60Hz	Apr. 09, 2020	Jun. 30, 2020~ Jul. 07, 2020	Apr. 08, 2021	Conducted (TH03-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 26, 2020	Jun. 30, 2020~ Jul. 07, 2020	Mar. 25, 2021	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101329	9kHz~30GHz	Sep. 04, 2019	Jun. 30, 2020~ Jul. 07, 2020	Sep. 03, 2020	Conducted (TH03-HY)
Temperature Chamber	ESPEC	SU-641	92013721	-30°C ~70°C	Nov. 26, 2019	Jun. 30, 2020~ Jul. 07, 2020	Nov. 25, 2020	Conducted (TH03-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 27, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	May 27, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 07, 2019	May 27, 2020	Nov. 06, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	May 27, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 27, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	May 27, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	May 27, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	35419 & 03	30MHz~1GHz	Apr. 29, 2020	Jul. 11, 2020~ Jul. 15, 2020	Apr. 28, 2021	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Dec. 26, 2019	Jul. 11, 2020~ Jul. 15, 2020	Dec. 25, 2020	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 19, 2020	Jul. 11, 2020~ Jul. 15, 2020	May 18, 2021	Radiation (03CH07-HY)
Filter	Wainwright	WHK20/1000 C7/40SS	SN3	20MHz High Pass Filter	Aug. 22, 2019	Jul. 11, 2020~ Jul. 15, 2020	Aug. 21, 2020	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/ 4, MY28655/ 4	9kHz~30MHz	Feb. 25, 2020	Jul. 11, 2020~ Jul. 15, 2020	Feb. 24, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/ 4, MY24971/ 4, MY15682/ 4	30MHz~1GHz	Feb. 25, 2020	Jul. 11, 2020~ Jul. 15, 2020	Feb. 24, 2021	Radiation (03CH07-HY)
Controller	ChainTek	Chaintek 3000	N/A	Control Turn table	N/A	Jul. 11, 2020~ Jul. 15, 2020	N/A	Radiation (03CH07-HY)
Controller	Max-Full	MF7802	MF780208 368	Control Ant Mast	N/A	Jul. 11, 2020~ Jul. 15, 2020	N/A	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Jul. 11, 2020~ Jul. 15, 2020	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Jul. 11, 2020~ Jul. 15, 2020	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB24 95	N/A	N/A	Jul. 11, 2020~ Jul. 15, 2020	N/A	Radiation (03CH07-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY532900 53	20Hz~26.5GHz	May 21, 2020	Jul. 11, 2020~ Jul. 15, 2020	May 20, 2021	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	805040046 56H	N/A	N/A	Jul. 11, 2020~ Jul. 15, 2020	N/A	Radiation (03CH07-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

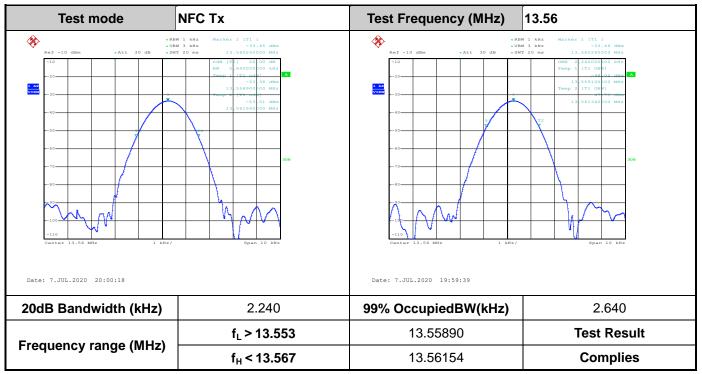
Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	26
of 95% (U = 2Uc(y))	2.0

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.6
of 95% (U = 2Uc(y))	4.6

Appendix A. Test Results of Conducted Emission Test


et Engineer		~		Те	mperatu	ire :	21~	∙ 24 °C
st Engineer :	Howard Huang			Re	elative H	umidity	y : 42~	·50%
st Voltage :	120Vac / 60Hz	2		Pł	nase :		Line	Э
			Full Spectrum		CISPR-OP Li ISPR-Ave Li altration		Ports	
	10 0 150k 300	400500 8001	M 2M 3	H 4M 5M 6	8 10M	20M 3	Щ. Зом	
1	Final Result : Frequency	QuasiPeak	Frequency i	n Hz Limit	Margin	20M 3		Corr.
	Final Result : Frequency (MHz)		Frequency i CAverage (dBuV)	n Hz Limit (dBuV)	Margin (dB)	Line	Filter	(dB)
- - -	Final Result : Frequency (MHz) 0.476250	QuasiPeak (dBuV) 	Frequency i	n Hz Limit (dBuV) 46.40	Margin (dB) 16.36	Line L1	Filter	(dB) 19.6
1	Final Result : Frequency (MHz) 0.476250 0.476250	QuasiPeak	Frequency i CAverage (dBuV) 30.04 	n Hz Limit (dBuV)	Margin (dB) 16.36 16.63	Line L1 L1	Filter OFF OFF	(dB) 19.6 19.6
	Final Result : Frequency (MHz) 0.476250	QuasiPeak (dBuV) 39.77	Frequency i CAverage (dBuV) 30.04	Limit (dBuV) 46.40 56.40	Margin (dB) 16.36	Line L1	Filter	(dB) 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.536010	QuasiPeak (dBuV) 39.77	Frequency i CAverage (dBuV) 30.04 38.91	Limit (dBuV) 46.40 56.40 46.00	Margin (dB) 16.36 16.63 7.09	Line L1 L1 L1	Filter OFF OFF OFF	(dB) 19.6 19.6 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.536010 0.536010	QuasiPeak (dBuV) 39.77 47.29	Frequency i CAverage (dBuV) 30.04 38.91 	Limit (dBuV) 46.40 56.40 46.00 56.00	Margin (dB) 16.36 16.63 7.09 8.71	Line L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.536010 0.536010 0.575250	QuasiPeak (dBuV) 39.77 47.29 39.78 	Frequency i CAverage (dBuV) 30.04 38.91 32.17	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00	Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.536010 0.536010 0.575250 0.575250 0.645000 0.645000	QuasiPeak (dBuV) 39.77 47.29 39.78 36.47	Frequency i CAverage (dBuV) 30.04 38.91 32.17 28.87 	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.536010 0.536010 0.575250 0.575250 0.645000 0.899430	QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 	Frequency i CAverage (dBuV) 30.04 38.91 32.17 28.87 26.48	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.536010 0.536010 0.575250 0.575250 0.645000 0.899430 0.899430	QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 32.92	Frequency i CAverage (dBuV) 30.04 38.91 32.17 28.87 26.48 	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.536010 0.536010 0.575250 0.575250 0.645000 0.645000 0.899430 0.899430 1.178520	QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 32.92 	Frequency i CAverage (dBuV) 30.04 38.91 32.17 28.87 26.48 28.71	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08 17.29	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.476250 0.536010 0.536010 0.575250 0.645000 0.645000 0.645000 0.899430 1.178520 1.178520	QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 32.92	Frequency i (dBuV) 30.04 38.91 32.17 28.87 28.87 28.71 28.71	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08 17.29 19.44	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.536010 0.575250 0.575250 0.645000 0.645000 0.899430 0.899430 1.178520 1.178520 12.714000	QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 32.92 36.56 	Frequency i (dBuV) 30.04 38.91 32.17 28.87 26.48 28.71 28.71 26.30	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08 17.29 19.44 23.70	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
	Final Result : Frequency (MHz) 0.476250 0.476250 0.476250 0.536010 0.536010 0.575250 0.645000 0.645000 0.645000 0.899430 1.178520 1.178520	QuasiPeak (dBuV) 39.77 47.29 39.78 36.47 32.92 	Frequency i (dBuV) 30.04 38.91 32.17 28.87 28.87 28.71 28.71	Limit (dBuV) 46.40 56.40 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.36 16.63 7.09 8.71 13.83 16.22 17.13 19.53 19.52 23.08 17.29 19.44	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6

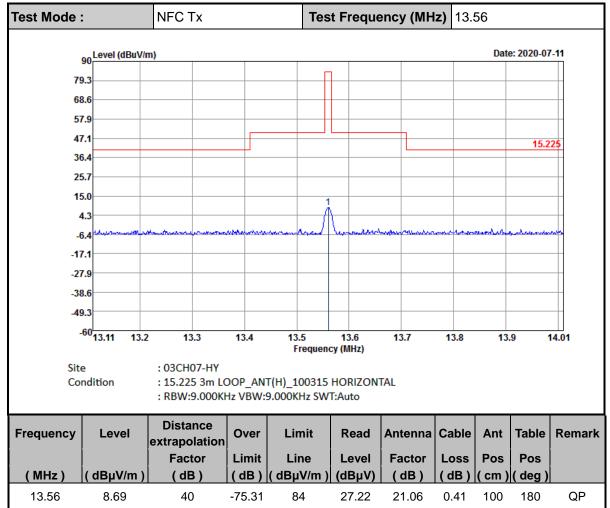
est Engineer :	Howard Hua	na		ין	Tempera	luie.	2	1~24 ℃
est Engineer .	nowaru nua	ng		F	Relative	Humid	ity: 42	2~50%
est Voltage :	120Vac / 60H	·Ιz		F	Phase :		N	eutral
			Full Spectru	m	CISPR-Q P	Limit at Mi	<u>ain P</u> orts	
					CISPR-Ave	Limit at M		
F	10	800 400500 801	D1M 2M Frequenc	3M 4M 5M y in Hz	16 8 10M	20M	30M	
F	0 150k 3	000 400500 800 QuasiPeak	Frequenc CAverage	y in Hz Limit	6 8 10M	20M	30M Filter	Corr.
F	Final Result : Frequency (MHz)	QuasiPeak (dBuV)	Frequenc CAverage (dBuV)	y in Hz Limit (dBuV)	Margin (dB)	Line	Filter	(dB)
F	Final Result : Frequency (MHz) 0.474000	QuasiPeak	Frequenc CAverage (dBuV)	v in Hz Limit (dBuV) 56.44	Margin (dB) 16.78	Line	Filter	(dB) 19.6
F	Final Result : Frequency (MHz) 0.474000 0.474000	QuasiPeak (dBuV) 39.66 	Frequenc CAverage (dBuV) 28.71	v in Hz Limit (dBuV) 56.44 46.44	Margin (dB) 16.78 17.73	Line N N	Filter OFF OFF	(dB) 19.6 19.6
F 	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190	QuasiPeak (dBuV)	Frequenc CAverage (dBuV) 28.71 	v in Hz Limit (dBuV) 56.44 46.44 56.00	Margin (dB) 16.78 17.73 8.82	Line N N N	Filter OFF OFF OFF	(dB) 19.6 19.6 19.6
F	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.536190	QuasiPeak (dBuV) 39.66 47.18 	Frequenc CAverage (dBuV) 28.71	Limit (dBuV) 56.44 46.44 56.00 46.00	Margin (dB) 16.78 17.73 8.82 6.88	Line N N N N	Filter OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6
F	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190	QuasiPeak (dBuV) 39.66 	Frequenc CAverage (dBuV) 28.71 39.12 	Limit (dBuV) 56.44 46.44 56.00 46.00 56.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61	Line N N N	Filter OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6
F	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.567690 0.567690	QuasiPeak (dBuV) 39.66 47.18 31.39	Frequenc CAverage (dBuV) 28.71 39.12	Limit (dBuV) 56.44 46.44 56.00 46.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61 17.71	Line N N N N	Filter OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6
F 	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.536190 0.567690	QuasiPeak (dBuV) 39.66 47.18 31.39 	Frequenc CAverage (dBuV) 28.71 39.12 	Limit (dBuV) 56.44 46.44 56.00 46.00 56.00 46.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61	Line N N N N N	Filter OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6
F 	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.536190 0.567690 0.567690 0.939660	QuasiPeak (dBuV) 39.66 47.18 31.39 33.07	Frequence (dBuV) 28.71 39.12 28.29 	Limit (dBuV) 56.44 46.44 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61 17.71 22.93	Line N N N N N N N	Filter OFF OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
F 	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.536190 0.567690 0.567690 0.939660 0.939660	QuasiPeak (dBuV) 39.66 47.18 31.39 33.07 	Frequenc CAverage (dBuV) 28.71 39.12 28.29 28.29 28.21	Limit (dBuV) 56.44 46.44 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61 17.71 22.93 19.29	Line N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
F 	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.536190 0.567690 0.567690 0.939660 0.939660 1.189500	QuasiPeak (dBuV) 39.66 47.18 31.39 33.07 31.13	Frequenc CAverage (dBuV) 28.71 39.12 28.29 28.29 28.21 28.71 	Limit (dBuV) 56.44 46.44 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61 17.71 22.93 19.29 24.87	Line N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
F 	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.536190 0.567690 0.567690 0.939660 0.939660 1.189500 1.189500	QuasiPeak (dBuV) 39.66 47.18 31.39 33.07 31.13 	Frequence (dBuV) 28.71 39.12 28.29 26.71 24.86	Limit (dBuV) 56.44 46.44 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61 17.71 22.93 19.29 24.87 21.14	Line N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
F 	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.536190 0.567690 0.567690 0.939660 0.939660 1.189500 1.189500 1.532580	QuasiPeak (dBuV) 39.66 47.18 31.39 33.07 31.13 32.47	Frequence (dBuV) 28.71 39.12 28.29 26.71 24.86 	Limit (dBuV) 56.44 46.44 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61 17.71 22.93 19.29 24.87 21.14 23.53	Line N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
F 	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.536190 0.567690 0.567690 0.939660 0.939660 0.939660 1.189500 1.189500 1.532580 1.532580	QuasiPeak (dBuV) 39.66 47.18 31.39 33.07 31.13 32.47 	Frequence (dBuV) 28.71 39.12 28.29 26.71 24.86 26.09	Limit (dBuV) 56.44 46.44 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61 17.71 22.93 19.29 24.87 21.14 23.53 19.91	Line N N N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
F 	Final Result : Frequency (MHz) 0.474000 0.474000 0.536190 0.536190 0.567690 0.567690 0.939660 0.939660 0.939660 1.189500 1.189500 1.532580 1.532580 12.705000	QuasiPeak (dBuV) 39.66 47.18 31.39 33.07 31.13 32.47 33.41	Frequence (dBuV) 28.71 39.12 28.29 26.71 24.86 26.09 	Limit (dBuV) 56.44 46.44 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 16.78 17.73 8.82 6.88 24.61 17.71 22.93 19.29 24.87 21.14 23.53 19.91 26.59	Line N N N N N N N N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	(dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6

Appendix B. Test Results of Conducted Test Items

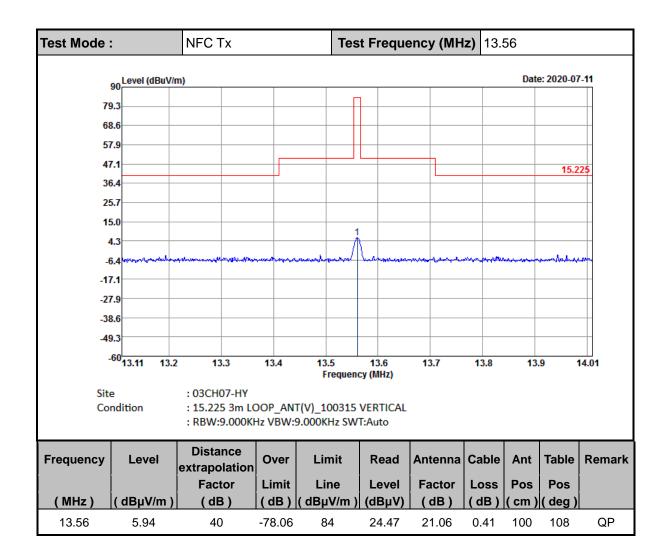
B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

B2. Test Result of Frequency Stability

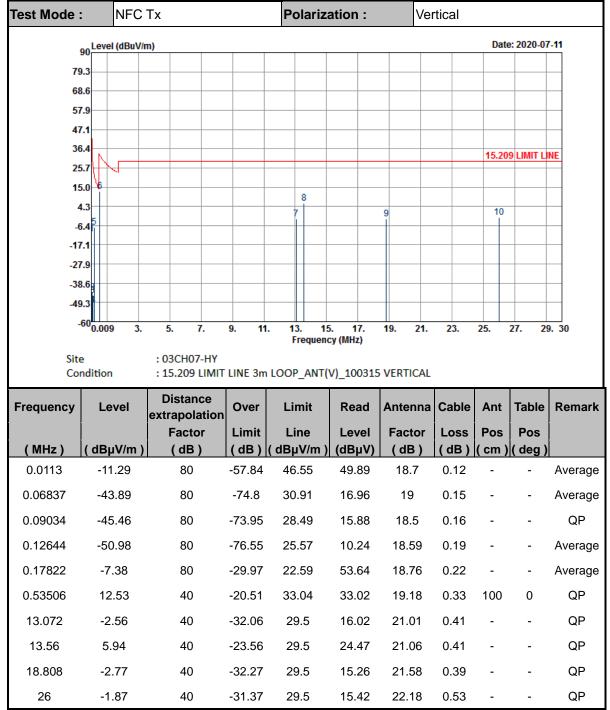

Voltage vs. Frequ	ency Stability	Temperature vs. Frequency Stability						
Voltage (Vac)	Measurement Frequency (MHz)	Temperature (℃)	Time	Measurement Frequency (MHz)				
120	13.560220	-20	0	13.560260				
102	13.560220		2	13.560260				
138	13.560220		5	13.560260				
			10	13.560280				
		-10	0	13.560270				
			2	13.560270				
			5	13.560280				
			10	13.560280				
		0	0	13.560260				
			2	13.560280				
			5	13.560270				
			10	13.560270				
		10	0	13.560260				
			2	13.560260				
			5	13.560260				
			10	13.560260				
		20	0	13.560240				
			2	13.560240				
			5	13.560240				
			10	13.560240				
		30	0	13.560180				
			2	13.560180				
			5	13.560180				
			10	13.560180				
		40	0	13.560180				
			2	13.560180				
			5	13.560180				
			10	13.560180				

Voltage vs. Frequ	ency Stability	Temperature vs. Frequency Stability					
Voltage (Vac)	Measurement	Temperature (℃)	Time	Measurement			
	Frequency (MHz)	remperature (C)	Time	Frequency (MHz)			
		50	0	13.560180			
			2	13.560180			
			5	13.560190			
			10	13.560190			
Max.Deviation (MHz)	0.000220	Max.Deviati	0.000280				
Max.Deviation (ppm)	16.2242	Max.Deviati	20.6490				
Limit	FS < ±100 ppm	Limi	it	FS < ±100 ppm			
Test Result	PASS	Test Re	esult	PASS			



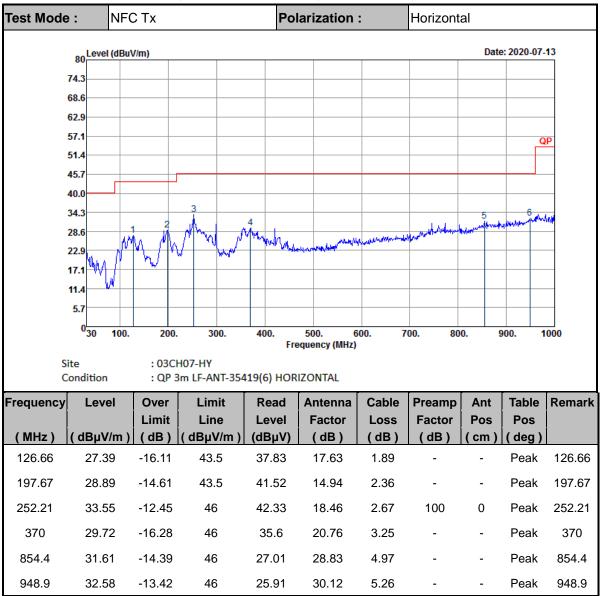
Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions



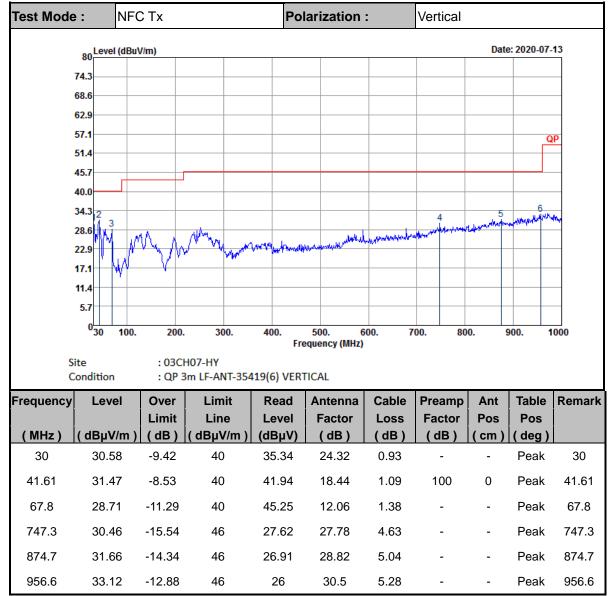
Test Mode :	: 1	NFC	Тх				Ρ	olariz	zatio	า :		Ho	orizoi	ntal			
	90 Level (dBuV/r	n)												Date	e: 2020-0	7-11
	90																
	3.6																
57	7.9																
47	7.1																
	5.4	_													15.20	9 LIMIT L	NE
	5.7																
	4.3							7				9					10
-6	5.4							8	}								Ť.
-17	7.1																
-27																_	
	9.3																
	600.009	3.	5.	7.		9. 1	1. 1	3. 1	5. 1	17.	19.	21.	23	. :	25.	27. 2	9. 30
-	60 <mark>0.009</mark>	3.	5.	7.		9. 1			15. ncy (MH	17. z)	19.	21.	23	. :	25.	27. 2	9. 30
Site		3.	: 030	CH07-	нү	9. 1 [,] LINE 3n		Frequei	псу (МН	Z)				. :	25.	27. 2	9.30
Site	e		: 030 : 15.	CH07-1 209 LI	HY IMIT I		1 LOO	Frequei	ncy (MH (H)_1(Z)		ZON	TAL		25. Ant	27. 2 Table	Remar
Site Cor Frequency	e ndition Lev	el	: 030 : 15. Dis extra Fa	cH07-1 209 LI stanc polat	HY IMIT ie tion	LINE 3n Over Limit	LOO	Frequei P_ANT imit ine	(H)_1 (H)_1 Re Le	z) 00315 ead vel	Ante Fac	ZON nna tor	TAL Cal	ole ss	Ant Pos	Table Pos	Remar
Site Con Frequency (MHz)	e ndition Lev (dBµ\	el //m)	: 030 : 15. Dis extra Fa	cH07- 209 Ll stanc polat actor dB)	HY IMIT Se tion	LINE 3n Over Limit (dB)	LOO Li L (dB	Frequer P_ANT imit ine µV/m	(H)_1((H)_1(Re Le) (dB	z) 00315 ead vel 5µV)	Ante Fac (dl	ZON nna tor 3)	Cal Lo: (dl	ole ss 3)	Ant Pos	Table	Remar
Site Con Frequency (MHz) 0.00971	e ndition Lev (dBµ\ -22.	el //m) 27	: 030 : 15. Dis extra Fa	tanc polat actor dB)	HY IMIT ie tion	UNE 3n Over Limit (dB) -70.13	LOO Li (dB 47	Frequer P_ANT imit ine µV/m 7.86	(H)_1((H)_1(Re Le) (dB 38	2) 00315 ead vel 6µV) .92	Ante Fac (dl	ZON nna tor 3)	Cal Lo (dl	ble ss 3)(Ant Pos	Table Pos	Remar
Site Con Frequency (MHz) 0.00971 0.06006	e ndition Lev (dBµ\ -22.: -39	el //m) 27 .2	: 030 : 15. Dis extra Fa (tanc polat actor dB) 80	HY IMIT tion	UNE 3n Over Limit (dB) -70.13 -71.23	LOO Li (dB 47 32	Frequer P_ANT imit ine <u>µV/m</u> 7.86 2.03	(H)_1((H)_1(Re Le) (dB 38 21	z) 00315 ead vel sµV) .92 .65	Ante Fac (dl 18	zon nna tor 3) .7	Cal Lo (dl 0. ² 0.1	ble ss 3)(11	Ant Pos	Table Pos	Remar Averag Averag
Site Con Frequency (MHz) 0.00971 0.06006 0.09038	e ndition Lev (dBµ\ -22.1 -39 -42.1	el //m) 27 .2 58	: 030 : 15. Dis extra Fa	tanc polat actor dB) 80 80 80	HY IMIT tion	UNE 3n Over Limit (dB) -70.13 -71.23 -71.06	LOO Li (dB 32 28	Frequer P_ANT imit ine µV/m 7.86 2.03 3.48	(H)_1((H)_1(Re) (dB 38 21 18	2) 20315 22 23 24 24 24 24 24 25 25 26 25 26 25 26 26 26 26 26 26 26 27 20 20 20 20 20 20 20 20 20 20 20 20 20	Ante Fac (dl 18 18	ZON nna tor 3) .7	Cal Lo (dl 0.1 0.1	ble ss 3) (11 5	Ant Pos	Table Pos	Remar Averag Averag QP
Site Con Frequency (MHz) 0.00971 0.06006	e ndition Lev (dBµ\ -22.: -39	el //m) 27 .2 58	: 030 : 15. Dis extra Fa	tanc polat actor dB) 80	HY IMIT tion	UNE 3n Over Limit (dB) -70.13 -71.23	LOO Li (dB 32 28	Frequer P_ANT imit ine <u>µV/m</u> 7.86 2.03	(H)_1((H)_1(Re Le) (dB 38 21 18 14	z) 200315 2005 2005 2005 2005 2005 2005 2005 20	HORI Ante Fac (dl 18 18 18 18	zon nna tor 3) .7 .5 .5	Call Lo (dl 0.1 0.1	ble ss (3) (11 5 6 8	Ant Pos	Table Pos	Remar Averag Averag QP Averag
Site Con Frequency (MHz) 0.00971 0.06006 0.09038	e ndition Lev (dBµ\ -22.1 -39 -42.1	el //m) 27 .2 58 55	: 030 : 15. Dis extra Fa	tanc polat actor dB) 80 80 80	HY IMIT tion	UNE 3n Over Limit (dB) -70.13 -71.23 -71.06	LOO Li (dB 47 32 28 20	Frequer P_ANT imit ine µV/m 7.86 2.03 3.48	(H)_1((H)_1(Re Le) (dB 38 21 18 14	2) 20315 22 23 24 24 24 24 24 25 25 26 25 26 25 26 26 26 26 26 26 26 27 20 20 20 20 20 20 20 20 20 20 20 20 20	Ante Fac (dl 18 18 18	zon nna tor 3) .7 .5 .5	Cal Lo (dl 0.1 0.1	ble ss (3) (11 5 6 8	Ant Pos	Table Pos	Remar Averag Averag QP
Frequency (MHz) 0.00971 0.06006 0.09038 0.1184	e ndition Lev (dBµ\ -22.1 -39 -42.1 -46.1	el 227 22 58 555 59	: 030 : 15. Dis extra Fa	CH07-1 209 LI stanc polat actor dB) 80 80 80 80 80 80 80 80 80 80 80	HY IMIT tion	LINE 3n Over Limit (dB) -70.13 -71.23 -71.06 -72.69	LOO LL (dB 47 32 28 26 22	Frequer P_ANT imit ine µV/m 7.86 2.03 3.48 5.14	(H)_1((H)_1(Re) (dB 38 21 18 14 58	z) 200315 2005 2005 2005 2005 2005 2005 2005 20	HORI Ante Fac (dl 18 18 18 18	zon nna tor 3) .7 .5 59 76	Call Lo (dl 0.1 0.1	ble ss 3) 11 5 6 8 22	Ant Pos	Table Pos	Remar Averag Averag QP Averag
Site Con Frequency (MHz) 0.00971 0.06006 0.09038 0.1184 0.17822	e ndition Lev (dBµ\ -22. -39 -42. -46. -2.6	el 227 22 558 555 59 297	: 030 : 15. Dis extra Fa	CH07-1 209 LI stanc polat actor dB) 80 80 80 80 80 80	HY IMIT I tion	LINE 3n Over Limit (dB) -70.13 -71.23 -71.06 -72.69 -25.28	LOO LL (dB 4; 32 28 26 22 33	Frequer P_ANT imit ine µV/m 7.86 2.03 3.48 5.14 2.59	(H)_1((H)_1(Re) (dB 38 21 18 14 58 37	z) 200315 200315 200315 2003 2003 2003 2003 2003 2003 2003 200	HORI Ante Fac (dl 18 18 18 18.	zon nna tor 3) .7 .7 .5 59 76 18	TAL Cal Lo: (dl 0.1 0.1 0.1 0.2	ble sss 3) 11 5 6 8 22 33	Ant Pos (cm) - - - -	Table Pos (deg) - - - -	Remar Averag Averag QP Averag Averag
Site Con Frequency (MHz) 0.00971 0.06006 0.09038 0.1184 0.17822 0.53506	e ndition Lev (dBµ\ -22 -39 -42 -46 -2.6 16.s	el 227 22 555 555 59 97 9	: 030 : 15. Dis extra F: (CH071 209 LI stanc polat actor dB) 80 80 80 80 80 80 40	HY iMIT tion	LINE 3n Over Limit (dB) -70.13 -71.23 -71.06 -72.69 -25.28 -16.07	LOO LL (dB 4) 20 20 22 33 22 22 33 22	Frequei P_ANT imit ine <u>µV/m</u> 7.86 2.03 3.48 5.14 2.59 3.04	(H)_1((H)_1(Re) (dB 38 21 18 14 58 37 27	2) 200315 200315 200315 2003 200315 2003 200315 2005 2005 2005 2005 2005 2005 2005 20	HORI Ante Fac (dl 18 18 18 18. 18. 18.	zon nna tor 3) .7 .7 .5 59 76 18 06	TAL Cal Lo (dl 0.1 0.1 0.1 0.1 0.2 0.3	ble ss 3) 11 5 6 8 22 33 11	Ant Pos (cm) - - - -	Table Pos (deg) - - - -	Remar Averag Averag QP Averag Averag QP
Site Con Frequency (MHz) 0.00971 0.06006 0.09038 0.1184 0.17822 0.53506 13.56	e ndition Lev (dBµ\ -22.1 -39 -42.1 -46.1 -2.6 16.5 8.6	el //m) 227 22 558 555 559 97 9 9 33	: 030 : 15. Dis extra F: (CH07-1 209 Ll stanc polat actor dB) 80 80 80 80 80 40 40	HY MIT tion	UNE 3n Over Limit (dB) -70.13 -71.23 -71.26 -72.69 -25.28 -16.07 -20.81	LOO LL (dB 4) 32 26 22 33 22 33 22 22 22 22 22 22 22	Frequei P_ANT imit ine µV/m 7.86 2.03 3.48 5.14 2.59 3.04 9.5	(H)_1((H)_1(Re Le) (dB 38 21 18 14 58 37 27 14	z) 200315 200315 200315 200315 2003 200 200	Ante Fac (dl 18 18 18. 18. 18. 18. 19. 21.	zon nna tor 3) .7 .7 .5 59 76 18 06 18	TAL Cal Lo (dl 0.1 0.1 0.1 0.2 0.2 0.2 0.2	ble ss 3) 11 5 6 8 22 33 11 12 12	Ant Pos (cm) - - - - 100 -	Table Pos (deg) - - - - - 0	Remar Averag Averag Averag Averag QP Averag QP QP

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)


Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)


3. Limit line = specific limits (dBµV) + distance extrapolation factor

4. 13.56 MHz is fundamental signal which can be ignored

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor= Level.