FCC EMI TEST REPORT

REPORT NO.	:	FD592302-09
MODEL NO.	:	AP-8432I
RECEIVED DATE	:	Feb. 01, 2016
FINAL TESTED DATE	:	Feb. 15, 2016
ISSUED DATE	:	Mar. 15, 2016
TEST STANDARD	:	47 CFR FCC Rules and Regulations Part 15 Subpart B, Class B Digital Device
		Canada Standard ICES-003, Issue 6, Class B
Filing Type	:	Declaration of Conformity
APPLICANT	:	Zebra Technologies, Corp.
ADDRESS	:	1 Zebra Plaza Holtsville, NY 11742 USA
Manufacturer	:	Wistron NeWeb Corporation
ADDRESS	:	20 Park Avenue II, Hsinchu Science Park, Hsinchu 308 Taiwan
ISSUED BY	:	SPORTON International Inc.
LAB ADDRESS	:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

- The test result refers exclusively to the test presented test model / sample.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- This test report is only applicable to U.S.A. / Canada.

Table of Contents

VERIFICATION OF COMPLIANCE	1
1. Summary of Test Results	2
2. General Description of Equipment under Test	3
3. Test Configuration of Equipment under Test	4
4. General Information of Test	13
5. Test of Conducted Emission	14
6. Test of Radiated Emission	22
7. List of Measuring Equipment Used	36
8. Uncertainty of Test Site	37
Appendix A. TEST PHOTOS	A1 ~ A4

History of This Test Report

REPORT NO.	VERSION	ISSUED DATE	Description
FD592302-09	Rev. 01	Mar. 15, 2016	Initial issue of report

Report No.: FD592302-09

FC EMI TEST REPORT

Project No: CB10502102

VERIFICATION OF COMPLIANCE

EQUIPMENT NAME	:	802.11AC MU-MIMO, dual Radio, INT ANT
BRAND NAME	:	ZEBRA
MODEL NO.	:	AP-8432I
APPLICANT	:	Zebra Technologies, Corp.
ADDRESS	:	1 Zebra Plaza Holtsville, NY 11742 USA
FINAL TESTED DATE	8 8	Feb. 15, 2016
TEST STANDARD	:	47 CFR FCC Rules and Regulations Part 15 Subpart B, Class B Digital Device Canada Standard ICES-003, Issue 6, Class B

I HEREBY DECLARE THAT:

The measurements shown in this test report were made in accordance with the procedures given in **ANSI** C63.4 – 2014.

The above equipment has been tested by **SPORTON International Inc.** LAB., and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMI characteristics under the conditions specified in this report.

bork W.A

Beck Wu SPORTON INTERNATIONAL INC.

SPORTON International Inc. TEL: 886-3-327-3456 FAX: 886-3-327-0973

1. Summary of Test Results

After estimating all the combination of every test mode, the result shown as below is the worst case.

The EUT has been tested according to the following specifications.

EMISSION							
Test Standard	Test Type	Result	Remarks				
	AC Power Port Conducted		Meet minimum passing				
47 CFR FCC Rules and	AC Power Port Conducted emission test 150 kHz – 30 MHz	PASS	margin is -10.50dB at				
Regulations Part 15 Subpart B,			0.1582MHz.				
Class B Digital Device and	Radiated emission test	PASS	Meet minimum needing				
Canada Standard ICES-003,	30 MHz – 1,000 MHz @ 3 m		Meet minimum passing				
Issue 6, Class B	1,000 MHz – 18,000 MHz @ 3 m	PA33	margin is -3.13dB at 55.22MHz.				
	18,000 MHz – 30,000 MHz @ 1 m		55.22IVI⊟Z.				

2. General Description of Equipment under Test

Product Detail				
Equipment Name 802.11AC MU-MIMO, dual Radio, INT ANT				
Model No.	AP-8432I			
Brand Name	ZEBRA			
Power Supply	From Power Adapter or PoE			
Accessories	N/A			

2.1. Feature of Equipment under Test

- 1. The EUT supports 2.4GHz/5GHz wireless function.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.2. Table for Filed Antenna

Set	Brand	Model Name (Part Number)	Antenna Type	Connector	Indoor/ Outdoor	Rmark	EUT/ R(Radio)
1	ZEBRA	CEDAR-INT-ANT	Monopole	U.FL	Indoor	WLAN/BT	R1~R3
Note	1:						

		Antenna	Gain (dBi)				
Set	Radio 1 / 5G						
	Chain 1	Chain 2	Chain 3	Chain 4			
1	6.8						

	Antenna Gain (dBi)						
Set		Radio 2 / 2.4G		Radio 2 / 5G			
	Chain 1	Chain 2	Chain 3	Chain 1	Chain 2	Chain 3	
1	4.1	4.4	4.4	5.9	5.4	5.9	

Set	Antenna Gain (dBi)
	Radio 3 / BT
1	7.7
	4

Note 2:

The EUT has three radios, Radio 1 supports WLAN 5GHz, Radio 2 supports WLAN 2.4GHz + 5GHz and Radio 3 supports Bluetooth functions.

2.3. Modification of EUT

Please refer to the Photographs of EUT.

3. Test Configuration of Equipment under Test

3.1. Test Mode

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

	Conducted Emission test								
	The EUT was performed at Y axis and Z axis position for Radiated emission below 1GHz test, and the worst case was found at Y axis. So the measurement will follow this same test configuration.								
Mode	Y axis	Z axis	Set 1	Adapter	PoE				
1	•	-	● Radio1/5G Radio2/2.4G Radio3/BT	•	-				
2	•	-	Radio1/5G Radio2/5G Radio3/BT	•	-				
3 Note1	•	-	● Radio1/5G Radio2/2.4G Radio3/BT	-	•				
3 v	Note1: Mode 1 has been evaluated to be the worst case between Mode 1~2, thus measurement for Mode 3 will follow this same test mode. All test results were recorded in the report.								

	Radiated Emissions								
Mode	Y axis	Z axis	Set 1	Adapter	PoE				
1	•	-	Radio1/5G Radio2/2.4G Radio3/BT	•	-				
2	-	•	Radio1/5G Radio2/2.4G Radio3/BT	•	-				
3 Note1	•	-	Radio1/5G Radio2/5G Radio3/BT	•	-				
4 Note2	•	-	Radio1/5G Radio2/5G Radio3/BT	-	•				

Note1: Mode 1 has been evaluated to be the worst case between Mode 1~2, thus measurement for Mode 3 will follow this same test mode.

Note2: Mode 3 has been evaluated to be the worst case among Mode 1~3, thus measurement for Mode 4 will follow this same test mode.

For Radiated Emission test below 1GHz:

All test results were recorded in the report.

For Radiated Emission test above1GHz:

Mode 3 generated the worst test result for Radiated emission below 1GHz test,

thus the measurement for Radiated emission above 1GHz test will follow this same test configuration.

Note1: The PoE and Adapter information as below:

Support Unit	Brand	Model
PoE	Symbol	PD-9001GR/AT/AC
Adapter	PHIHONG	PSAC45W-480

Note2: All the specification of test configurations and test modes were based on customer's request Note3:The USB port can not be used by end user. It is generally used for updating FW by professional installer. FC EMI TEST REPORT

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

For Conducted Emissions Test:

For Adapter mode:

Support Unit	Brand	Model	FCC ID
NB*4	DELL	E6430	DoC
Bluetooth tester	Anritsu	MT8852B	DoC
Flash disk	Silicon	I-Series	DoC
PoE PD Simulator (PD load)	WNC	PDS-16	DoC
Adapter	PHIHONG	PSAC45W-480	N/A

For PoE mode:

Support Unit	Brand	Model	FCC ID
NB*4	DELL	E6430	DoC
Bluetooth tester	Anritsu	MT8852B	DoC
Flash disk	Silicon	I-Series	DoC
PoE PD Simulator (PD load)	WNC	PDS-16	DoC
PoE	Symbol	PD-9001GR/AT/AC	DoC

For Radiated Emissions Test:

For Adapter mode:

Support Unit	ort Unit Brand Model		FCC ID
NB*4	DELL	E4300	DoC
Bluetooth tester	Anritsu	MT8852B	DoC
Flash disk	Transcend	JF700	DoC
PoE PD Simulator (PD load)	WNC	PDS-16	DoC
Adapter	PHIHONG	PSAC45W-480	N/A

For PoE mode:

Support Unit	Brand	Model	FCC ID
NB*4	DELL	E4300	DoC
Bluetooth tester	Anritsu	MT8852B	DoC
Flash disk	Transcend	JF700	DoC
PoE PD Simulator (PD load)	WNC	PDS-16	DoC
PoE	Symbol	PD-9001GR/AT/AC	DoC

3.3. EUT Operation Condition

For Conducted Emissions Test:

During the test, the following programs under Win 7 were executed:

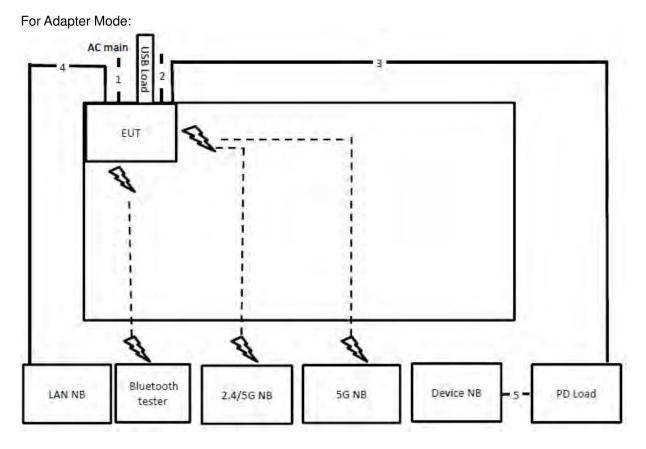
The remote notebook executed "Telnet" to make the function of Bluetooth enabled and wifi Radio 2.4 & 5G to switch.

The remote notebook executed "ping.exe" to link with the EUT to maintain the connection by LAN and WLAN.

EUT enables Bluetooth function to connect with the bluetooth tester.

For Radiated Emissions Test:

During the test, the following programs under Win XP were executed:


The remote notebook executed "Telnet" to make the function of Bluetooth enabled and wifi Radio 2.4 & 5G to switch.

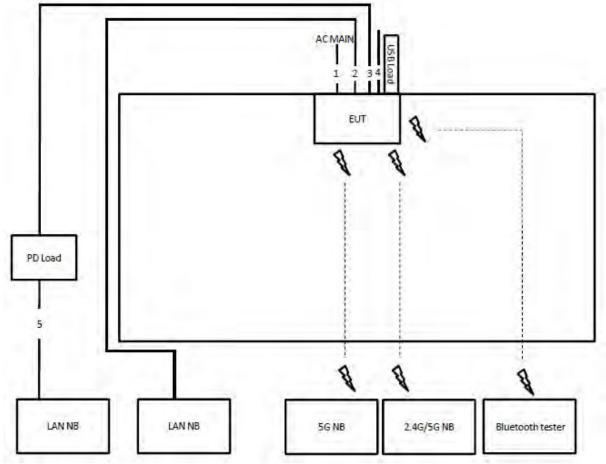
The remote notebook executed "ping.exe" to link with the EUT to maintain the connection by LAN and WLAN.

EUT enables Bluetooth function to connect with the bluetooth tester.

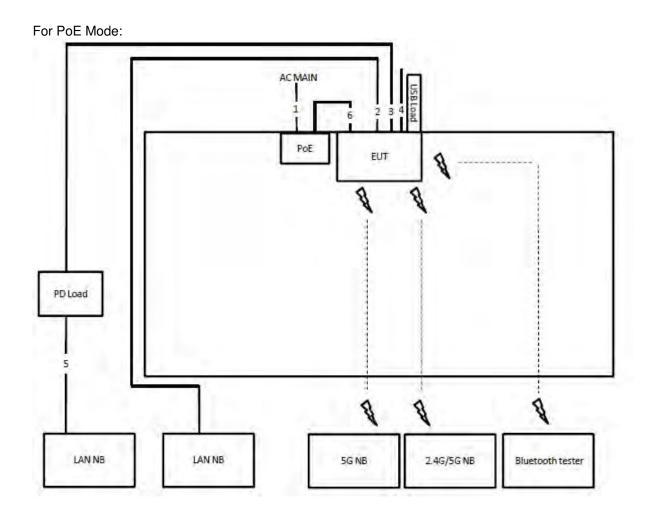
3.4. Connection Diagram of Test System

3.4.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	4.3m
2	Console cable	No	1.5m
3	RJ-45 cable	No	10m
4	RJ-45 cable	No	10m
5	RJ-45 cable	No	1.5m


For PoE Mode: AC main BSG I 3 1 Loa 2 POE EUT 2 1 1 I 1 ହ Bluetooth LAN NB PD Load 2.4G/5G NB 5G NB Device NB б tester

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	Console cable	No	1.5m
3	RJ-45 cable	No	10m
4	RJ-45 cable	No	10m
5	RJ-45 cable	No	1.5m
6	RJ-45 cable	No	1.5m


3.4.2. Radiation Emissions Test Configuration

For Adapter Mode:

Item	Connection	Shielded	Length
1	Power cable	No	4.3m
2	RJ-45 cable	No	10m
3	RJ-45 cable	No	10m
4	Console cable	No	1.5m
5	RJ-45 cable	No	1m

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m
3	RJ-45 cable	No	10m
4	Console cable	No	1.5m
5	RJ-45 cable	No	1m
6	RJ-45 cable	No	1.5m

4. General Information of Test

4.1. Test Facility

Test Site Location	:	No.8, Lane 724, Bo-ai St., Jhubei City,
		Hsinchu County 302, Taiwan, R.O.C.
TEL	:	886-3-656-9065
FAX	:	886-3-656-9085
Test Site No.	:	Conduction: CO01-CB
		Radiation: 03CH01-CB

4.2. Test Voltage

Power Type	Test Voltage
AC Power Supply	120 V / 60 Hz

4.3. Standard for Methods of Measurement

ANSI C63.4-2014

4.4. Frequency Range Investigated

Test Items	Frequency Range
Conducted emission test	150 kHz to 30 MHz
Radiated emission test	30 MHz to 30,000 MHz

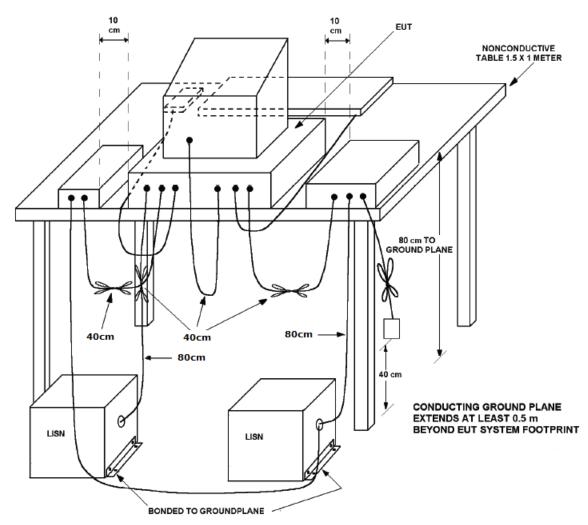
4.5. Test Distance

Test Items	Test Distance
Radiated emission test below 1 GHz (30 MHz to 1,000 MHz)	3 m
Radiated emission test above 1 GHz (1,000 MHz to 18,000 MHz)	3 m
Radiated emission test above 1 GHz (18,000 MHz to 30,000 MHz)	1 m

5. Test of Conducted Emission

5.1. Limit

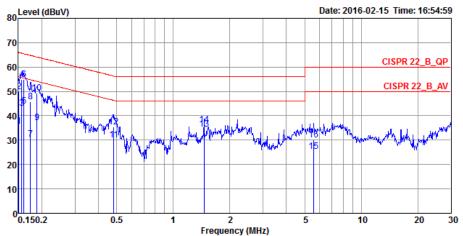
Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)		
0.15~0.5	66~56	56~46		
0.5~5	56	46		
5~30	60	50		


5.2. Description of Major Test Instruments

Test Receiver	R&S ESCS 30				
Start Frequency	0.15 MHz				
Stop Frequency	30 MHz				
IF Bandwidth	9 kHz				

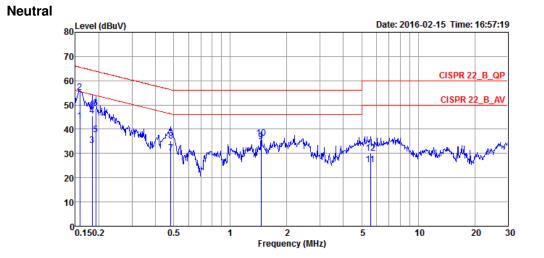
5.3. Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connect to the other LISN.
- d. The LISN provides 50 Ω coupling impedance for the measuring instrument.
- e. The FCC states that a 50 Ω , 50 uH LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.


FC EMI TEST REPORT

5.4. Typical Test Setup Layout of Conducted Emission

5.5. Test Result of AC Power Ports


Temperature	20°C Humidity 50%							
Test Engineer	Deven Huang Frequency Range 0.15 MHz to 30 MHz							
Test Mode	Mode 1							
 Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level 								
	+ (Read Level + LISN Factor							
 All emissions no 	t reported here are more than	10 dB below the prescr	ibed limit.					
 The test was passed at the minimum margin that marked by a frame in the following table 								
Line								

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1508	35.69	-20.27	55.96	25.74	9.93	0.02	LINE	Average
2	0.1508	49.83	-16.13	65.96	39.88	9.93	0.02	LINE	QP
3	0.1565	42.98	-12.67	55.65	33.03	9.93	0.02	LINE	Average
4	0.1565	54.99	-10.66	65.65	45.04	9.93	0.02	LINE	QP
5	0.1607	43.92	-11.51	55.43	33.97	9.93	0.02	LINE	Average
6	0.1607	54.87	-10.56	65.43	44.92	9.93	0.02	LINE	QP
7	0.1740	30.46	-24.31	54.77	20.51	9.93	0.02	LINE	Average
8	0.1740	45.88	-18.89	64.77	35.93	9.93	0.02	LINE	QP
9	0.1884	37.32	-16.79	54.11	27.37	9.93	0.02	LINE	Average
10	0.1884	49.31	-14.80	64.11	39.36	9.93	0.02	LINE	QP
11	0.4837	29.97	-16.30	46.27	19.99	9.94	0.04	LINE	Average
12	0.4837	35.32	-20.95	56.27	25.34	9.94	0.04	LINE	QP
13	1.4562	34.55	-11.45	46.00	24.51	9.98	0.06	LINE	Average
14	1.4562	36.38	-19.62	56.00	26.34	9.98	0.06	LINE	QP
15	5.5936	25.49	-24.51	50.00	15.30	10.08	0.11	LINE	Average
16	5.5936	30.18	-29.82	60.00	19.99	10.08	0.11	LINE	QP

SPORTON International Inc. TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page Number: 16 of 37Issued Date: Mar. 15, 2016Version: Rev. 01

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1582	43.40	-12.16	55.56	33.60	9.78	0.02	NEUTRAL	Average
2	0.1582	55.06	-10.50	65.56	45.26	9.78	0.02	NEUTRAL	QP
3	0.1844	33.27	-21.01	54.28	23.46	9.79	0.02	NEUTRAL	Average
4	0.1844	45.55	-18.73	64.28	35.74	9.79	0.02	NEUTRAL	QP
5	0.1924	37.90	-16.03	53.93	28.09	9.79	0.02	NEUTRAL	Average
6	0.1924	48.76	-15.17	63.93	38.95	9.79	0.02	NEUTRAL	QP
7	0.4837	30.13	-16.14	46.27	20.30	9.79	0.04	NEUTRAL	Average
8	0.4837	35.23	-21.04	56.27	25.40	9.79	0.04	NEUTRAL	QP
9	1.4562	34.75	-11.25	46.00	24.86	9.83	0.06	NEUTRAL	Average
10	1.4562	36.44	-19.56	56.00	26.55	9.83	0.06	NEUTRAL	QP
11	5.5641	25.25	-24.75	50.00	15.22	9.92	0.11	NEUTRAL	Äverage
12	5.5641	30.19	-29.81	60.00	20.16	9.92	0.11	NEUTRAL	QP

CISPR 22_B_AV

20

30

50

40

30 20 10

0.150.2

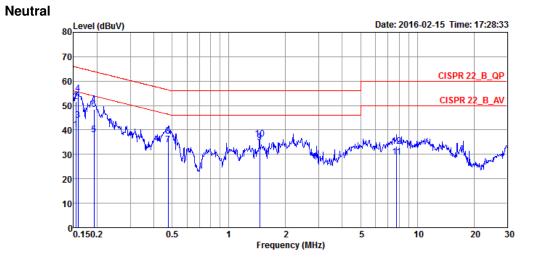
Y YM HUND

0.5

1

Temperature	20 ℃	Humidity	50%							
Test Engineer	Deven Huang	n Huang Frequency Range 0.15 MHz to 30 MHz								
Test Mode	Mode 2									
 Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level 										
 Margin = - Limit + (Read Level + LISN Factor + Cable Loss) 										
	t reported here are more than		ibed limit.							
	ssed at the minimum margin t									
Line	Ť									
80 Level (dBuV	0	Date: 2016-02-	15 Time: 17:25:34							
80										
70	70									
60	<u></u>		CISPR 22_B_QP							

. In M. ADar


2 Frequency (MHz)

5

10

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1516	35.44	-20.47	55.91	25.49	9.93	0.02	LINE	Average
2	0.1516	49.87	-16.04	65.91	39.92	9.93	0.02	LINE	QP
3	0.1616	41.41	-13.97	55.38	31.46	9.93	0.02	LINE	Average
4	0.1616	51.93	-13.45	65.38	41.98	9.93	0.02	LINE	QP
5	0.4812	31.57	-14.75	46.32	21.59	9.94	0.04	LINE	Average
6	0.4812	36.43	-19.89	56.32	26.45	9.94	0.04	LINE	QP
7	1.4562	34.83	-11.17	46.00	24.79	9.98	0.06	LINE	Average
8	1.4562	36.63	-19.37	56.00	26.59	9.98	0.06	LINE	QP
9	2.1898	28.36	-17.64	46.00	18.31	9.99	0.06	LINE	Average
10	2.1898	33.12	-22.88	56.00	23.07	9.99	0.06	LINE	QP
11	7.7689	29.22	-20.78	50.00	18.93	10.13	0.16	LINE	Average
12	7.7689	33.25	-26.75	60.00	22.96	10.13	0.16	LINE	QP

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		·
1	0.1540	40.07	-15.71	55.78	30.27	9.78	0.02	NEUTRAL	Average
2	0.1540	51.64	-14.14	65.78	41.84	9.78	0.02	NEUTRAL	QP
3	0.1582	44.10	-11.46	55.56	34.30	9.78	0.02	NEUTRAL	Average
4	0.1582	54.86	-10.70	65.56	45.06	9.78	0.02	NEUTRAL	QP
5	0.1924	38.04	-15.89	53.93	28.23	9.79	0.02	NEUTRAL	Average
6	0.1924	48.44	-15.49	63.93	38.63	9.79	0.02	NEUTRAL	QP
7	0.4761	34.02	-12.39	46.41	24.19	9.79	0.04	NEUTRAL	Average
8	0.4761	37.54	-18.87	56.41	27.71	9.79	0.04	NEUTRAL	QP
9	1.4562	34.75	-11.25	46.00	24.86	9.83	0.06	NEUTRAL	Average
10	1.4562	36.44	-19.56	56.00	26.55	9.83	0.06	NEUTRAL	QP
11	7.7689	28.92	-21.08	50.00	18.79	9.97	0.16	NEUTRAL	Average
12	7.7689	33.45	-26.55	60.00	23.32	9.97	0.16	NEUTRAL	QP

CISPR 22

B AV

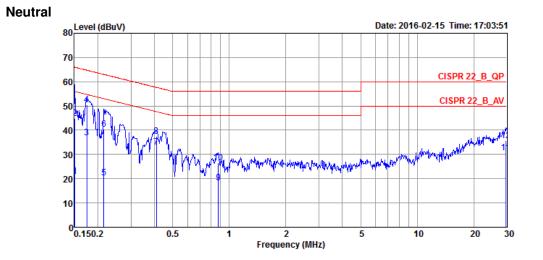
20

30

0.150.2

0.5

1


Temperature	20 °C	Humidity	50%								
Test Engineer	Deven Huang	0.15 MHz to 30 MHz									
Test Mode	Mode 3										
 Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level 											
 Margin = - Limit 	+ (Read Level + LISN Factor	+ Cable Loss)									
	t reported here are more than		ibed limit.								
	ssed at the minimum margin t										
•			in the following table								
Line											
80 Level (dBuV	0	Date: 2016-02-	15 Time: 17:06:43								
70	70										
			CISPR 22_B_QP								
60											

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1516	21.77	-34.14	55.91	11.82	9.93	0.02	LINE	Average
2	0.1516	42.55	-23.36	65.91	32.60	9.93	0.02	LINE	QP
3	0.1722	33.08	-21.78	54.86	23.13	9.93	0.02	LINE	Average
4	0.1722	47.34	-17.52	64.86	37.39	9.93	0.02	LINE	QP
5	0.2220	34.11	-18.63	52.74	24.15	9.93	0.03	LINE	Average
6	0.2220	44.53	-18.21	62.74	34.57	9.93	0.03	LINE	QP
7	0.4019	34.47	-13.34	47.81	24.50	9.93	0.04	LINE	Average
8	0.4019	39.75	-18.06	57.81	29.78	9.93	0.04	LINE	QP
9	0.8664	24.53	-21.47	46.00	14.53	9.96	0.04	LINE	Average
10	0.8664	31.21	-24.79	56.00	21.21	9.96	0.04	LINE	QP
11	30.0000	32.28	-17.72	50.00	21.32	10.68	0.28	LINE	Average
12	30.0000	37.13	-22.87	60.00	26.17	10.68	0.28	LINE	QP

2 Frequency (MHz) 5

10

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1508	20.88	-35.08	55.96	11.08	9.78	0.02	NEUTRAL	Average
2	0.1508	45.01	-20.95	65.96	35.21	9.78	0.02	NEUTRAL	QP
3	0.1749	36.99	-17.73	54.72	27.18	9.79	0.02	NEUTRAL	Average
4	0.1749	50.50	-14.22	64.72	40.69	9.79	0.02	NEUTRAL	QP
5	0.2151	20.36	-32.65	53.01	10.55	9.79	0.02	NEUTRAL	Average
6	0.2151	40.58	-22.43	63.01	30.77	9.79	0.02	NEUTRAL	QP
7	0.4105	33.03	-14.61	47.64	23.20	9.79	0.04	NEUTRAL	Average
8	0.4105	37.45	-20.19	57.64	27.62	9.79	0.04	NEUTRAL	QP
9	0.8757	18.32	-27.68	46.00	8.46	9.81	0.05	NEUTRAL	Average
10	0.8757	26.71	-29.29	56.00	16.85	9.81	0.05	NEUTRAL	QP
11	29.5269	30.80	-19.20	50.00	20.18	10.34	0.28	NEUTRAL	Average
12	29.5269	35.62	-24.38	60.00	25.00	10.34	0.28	NEUTRAL	QP

6. Test of Radiated Emission

6.1. Limit

Radiated Emission below 1 GHz test at 3 m:

Frequency (MHz)	QP (dBuV/m)
30~88	40
88~216	43.5
216~960	46
Above 960	54

Radiated Emission 1~18 GHz test at 3 m:

Frequency (MHz)	PK (dBuV/m)	AV (dBuV/m)
1,000 to 18,000	74	54

Radiated Emission 18~30 GHz test at 1 m:

Frequency (MHz)	PK (dBuV/m)	AV (dBuV/m)
18,000 to 30,000	83.54	63.54

6.2. Description of Major Test Instruments

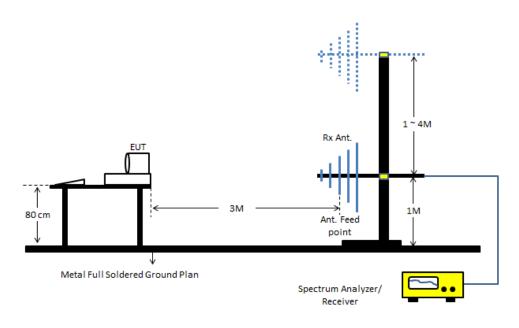
6.2.1. 30 MHz ~ 1,000 MHz

Receiver Parameter	Setting
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

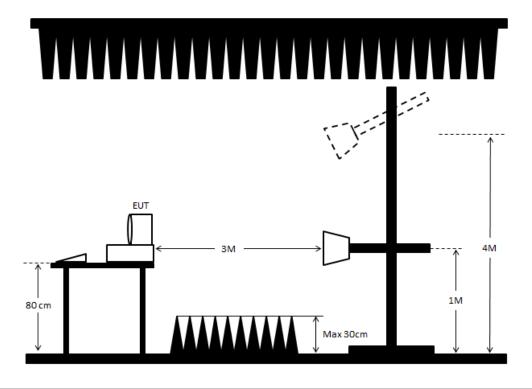
6.2.2. Above 1 GHz

Spectrum Parameter	Setting
Start Frequency	1000 MHz
Stop Frequency	5th harmonic of highest frequency
RBW / VBW	1 MHz / 3MHz for Peak ; 1 MHz / 1Hz for Average

FC EMI TEST REPORT

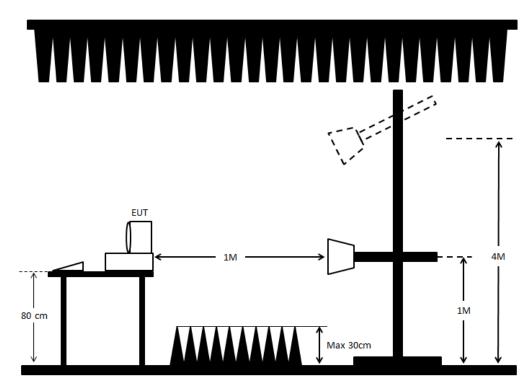

6.3. Test Procedures

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3m (below 1GHz) / 3m (1GHz-18GHz) / 1m (18GHz-30GHz) meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


6.4. Typical Test Setup Layout of Radiated Emission

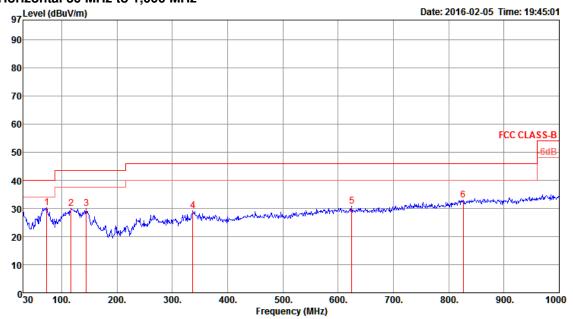
<Below 1 GHz>:

<Above 1 GHz>:


1,000~18,000 MHz

SPORTON International Inc. TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page Number: 24 of 37Issued Date: Mar. 15, 2016Version: Rev. 01

18,000~30,000 MHz

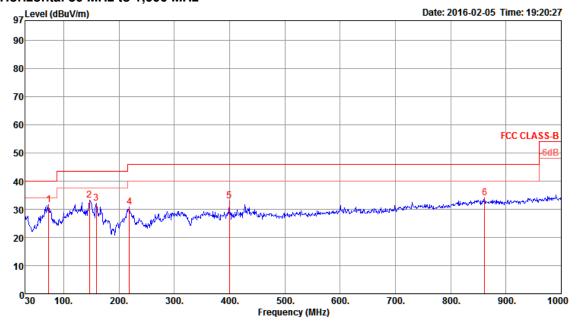


6.5. Test Result of Radiated Emission below 1 GHz

Temperature	24 ℃	55%								
Test Engineer	Lucke Hsieh	Frequency Range	30 MHz to 1,000 MHz							
Test Mode	Mode 1	Aode 1								
 Margin = - Limit 	+ (Read Level + Anter	Cable Loss + Read Level - Preanna Factor + Cable Loss - Preamargin that marked by the fram	amp Factor)							
ertical 30 MHz to 97 ^{Level (dBuV/m)}	1,000 MHz		Date: 2016-02-05 Time: 19:37:59							
90										
80										
70										
60										
50			FCC CLASS-B							
40 4			6							
anthe and the h	5	address and a providence and the stand day where any day work	en martin and an and a second and and and and and and and and and a							
	apply a star the second of the and the	address add for the second and the s								
20										
10										
0 <mark>30 100. 2</mark> 0	00. 300. 400.	500. 600. 700. Frequency (MHz)	800. 900. 1000							

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBu∛	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	33.88 53.28 68.80 141.55 399.57 904.94	36.82 34.94 39.43 32.86	40.00 40.00 43.50	-3.18 -5.06 -4.07 -13.14	51.62 50.11 37.76	0.41 0.48 0.89 1.79	23.11 13.74 12.21 17.48 22.36 27.54	29.37 29.05 29.05	212 178 155 122 132 119		QP QP	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Horizontal 30 MHz to 1,000 MHz

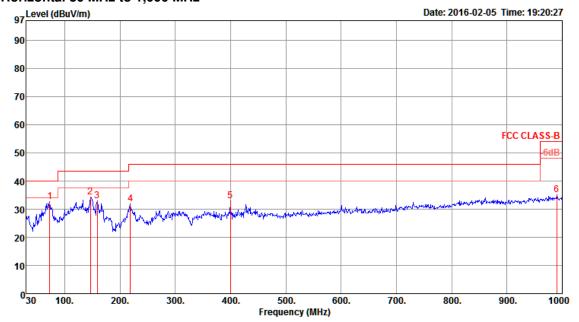

	Freq	Level	Limit Line	O v er Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	72.68 117.30 144.46 337.49 624.61 826.37	30.19 30.07 29.94 29.15 30.81 32.95	43.50 46.00 46.00	-9.81 -13.43 -13.56 -16.85 -15.19 -13.05	46.59 40.23 40.83 35.50 32.36 31.54	0.52 0.79 0.90 1.62 2.35 2.85	12.44 18.22 17.24 20.65 25.21 26.98	29.36 29.17 29.03 28.62 29.11 28.42	137 188 237 258 151 234	125 100 100 150	Peak Peak Peak Peak Peak Peak	HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL

FC EMI TEST REPORT

Temperature	24 ℃	Humidity	55%									
Test Engineer	Lucke Hsieh	Frequency Range	30 MHz to 1,000 MHz									
Test Mode	Mode 2											
• Margin = - Limit	ng: Antenna Factor + Cable L + (Read Level + Antenna Fac ssed at the minimum margin t	tor + Cable Loss - Prea	mp Factor)									
ertical 30 MHz to 97 ^{Level (dBuV/m)}	ertical 30 MHz to 1,000 MHz 97 Level (dBuV/m) Date: 2016-02-05 Time: 19:11:29											
90												
80												
70												
60												
50			FCC CLASS-B 6dB									
40 3 A		5	6									
30 W M	when any harden we are a second darander	and the second										
10												
0 30 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000 Frequency (MHz)												

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	$\overline{dBuV/\mathfrak{m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	54.25 67.83 118.27 143.49 568.35 874.87	35.23 35.78 35.71 38.19 30.04 33.47	40.00 40.00 43.50 43.50 46.00 46.00	-4.77 -4.22 -7.79 -5.31 -15.96 -12.53	45.83 49.01 32.32	0.41 0.48 0.79 0.90 2.21 2.93	18.25 17.32 24.75	29.38 29.16 29.04 29.24	136 102 156 77 247 308	100 100	QP Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Horizontal 30 MHz to 1,000 MHz


	Freq	Level	Limit Line	Over Limit	Read Level		ntenna Factor	Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	72.68 146.40 159.01 219.15 399.57 861.29	31.61 33.30 32.07 30.75 32.85 34.06	43.50 46.00 46.00	-8.39 -10.20 -11.43 -15.25 -13.15 -11.94	48.01 44.34 43.68 42.05 37.75 32.12	0.52 0.91 0.95 1.21 1.79 2.90	12.44 17.08 16.42 16.21 22.36 27.26	29.36 29.03 28.98 28.72 29.05 28.22	251 137 189 178 231 331	120 150 100 100	Peak Peak Peak Peak Peak Peak	HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL

FC EMI TEST REPORT

Temperature	24 °C	Humidity	55%										
Test Engineer	Lucke Hsieh Frequency Range 30 MHz to 1,000 MHz												
Test Mode	Mode 3												
 Margin = - Limit 	ng: Antenna Factor + Cable + (Read Level + Antenna Fa ssed at the minimum margir	actor + Cable Loss - Prea											
ertical 30 MHz to 97 ^{Level (dBuV/m)}	rtical 30 MHz to 1,000 MHz 7 ^{Level} (dBuV/m) Date: 2016-02-05 Time: 20:20:38												
90													
80													
70													
60													
50			FCC CLASS-B										
40 30	3 4	5	6 Conversion of the second second second										
20	Whend the man which a more shared	aldere of the second of the											
10													
030 100. 2		500. 600. 700. uency (MHz)	800. 900. 1000										

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos		Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1	55.22	36.87	40.00	-3.13	52.56	0.42	13.32	29.43	0	400	Peak	VERTICAL
2	140.58	40.28	43.50	-3.22	50.88	0.89	17.56	29.05	0		Peak	VERTICAL
3	269.59	30.91	46.00	-15.09	38.55	1.40	19.42	28.46	0		Peak	VERTICAL
4	399.57	31.29	46.00	-14.71	36.19	1.79	22.36	29.05	0	400	Peak	VERTICAL
5	735.19	32.85	46.00	-13.15	32.92	2.64	26.09	28.80	0	400	Peak	VERTICAL
6	963.14	35.01	54.00	-18.99	31.67	3.00	27.85	27.51	0	400	Peak	VERTICAL

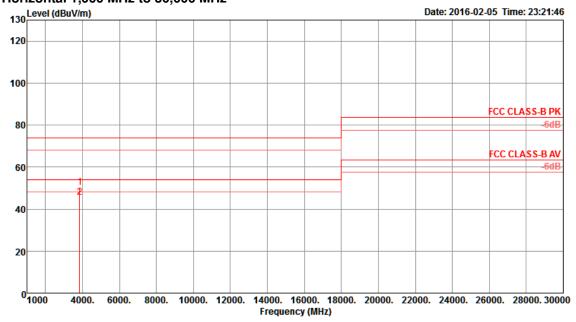
Horizontal 30 MHz to 1,000 MHz


	Freq	Level	Limit Line	Over Limit		CableA Loss			T/Pos	A/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	72.68 146.40 159.01 219.15 399.57 990.30	32.61 34.30 33.07 31.75 32.85 35.19	43.50 46.00 46.00	-7.39 -9.20 -10.43 -14.25 -13.15 -18.81	49.01 45.34 44.68 43.05 37.75 31.53	0.52 0.91 0.95 1.21 1.79 3.01	12.44 17.08 16.42 16.21 22.36 27.96	29.36 29.03 28.98 28.72 29.05 27.31	0 0 0 0 0	100 100 100 100	Peak Peak Peak Peak Peak Peak	HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL

Temperature	24 °C	Humidity	55%											
Test Engineer	Lucke Hsieh Frequency Range 30 MHz to 1,000 MHz													
Test Mode	Mode 4													
 Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Margin = - Limit + (Read Level + Antenna Factor + Cable Loss - Preamp Factor) The test was passed at the minimum margin that marked by the frame in the following test record 														
ertical 30 MHz to 1,000 MHz 97 Date: 2016-02-05 Time: 20:20:38														
90														
80														
70														
60														
50			FCC CLASS-B 66B											
40 1/RA1 30	5	with the second state and the	an in the section and the section of											
20	Whendor the south when a month had													
10														
0 <mark>30 100. 2</mark>	00. 300. 400. 50 Freque	0. 600. 700. ency (MHz)	800. 900. 1000											

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/\mathfrak{m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	33.88 55.22 66.86 140.58 399.57 735.19		40.00 43.50 46.00	-4.73 -3.37 -5.00 -5.08 -14.71 -13.15	51.68 49.02 36.19	0.22 0.42 0.47 0.89 1.79 2.64	23.11 13.32 12.23 17.56 22.36 26.09	29.49 29.43 29.38 29.05 29.05 28.80	178 157 167 258 211 151		QP QP	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Horizontal 30 MHz to 1,000 MHz


	Freq	Level	Limit Line	Over Limit	Read Le v el		ntenna Factor	Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	$\overline{dBuV/\mathfrak{m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	70.74 143.49 265.71 443.22 612.00 843.83	30.29 33.13 28.04 29.18 30.32 33.63	46.00 46.00 46.00	-9.71 -10.37 -17.96 -16.82 -15.68 -12.37	46.89 43.95 35.65 33.47 32.05 31.93	0.49 0.90 1.38 1.90 2.32 2.88	12.27 17.32 19.49 23.02 25.10 27.14	29.36 29.04 28.48 29.21 29.15 28.32	158 132 115 254 152 92	100 100 200 150	Peak Peak Peak Peak Peak Peak	HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL

Temperature	24 ℃	Humidity	55%						
Test Engineer	Lucke Hsieh	Frequency Range	1,000 MHz to 30,000 MHz						
Test Mode	Mode 3								
 Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Margin = - Limit + (Read Level + Antenna Factor + Cable Loss - Preamp Factor) The test was passed at the minimum margin that marked by the frame in the following test record 									
ertical 1,000 MH	z to 30,000 MHz	C	ate: 2016-02-05 Time: 23:21:22						
120									
100									
80			FCC CLASS-B PK						
60			FCC CLASS-B AV						
40									
20									
0		. 16000. 18000. 20000. 22000. uency (MHz)	. 24000. 26000. 28000. 30000						

6.6. Test Result of Radiated Emission above 1 GHz

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	$\overline{dBuV/\mathfrak{m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	3851.94 3852.07								82 82		Average Peak	VERTICAL VERTICAL

Horizontal 1,000 MHz to 30,000 MHz

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/\mathfrak{m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	3851.84 3851.91								240 240		Peak Average	HORIZONTAL HORIZONTAL

FC EMI TEST REPORT

Report No.: FD592302-09

7. List of Measuring Equipment Used

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 22, 2015	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50- 16-2	04083	150kHz ~ 100MHz	Dec. 08, 2015	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 23, 2015	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 25, 2015	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	37880	20MHz ~ 2GHz	Sep. 03, 2015	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA917025 2	15GHz ~ 40GHz	Jul. 21, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Feb. 24, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Feb.10, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
EMI Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8.4GHz	Jan. 27, 2016	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation (03CH01-CB)

* Calibration Interval of instruments listed above is one year.

※ N.C.R. means Non-Calibration required.

8. Uncertainty of Test Site

Test Items	Uncertainty	Remark
Conducted Emissions	3.2 dB	Confidence levels of 95%
Radiated Emissions below 1GHz	3.6 dB	Confidence levels of 95%
Radiated Emissions 1GHz ~ 18GHz	3.7 dB	Confidence levels of 95%
Radiated Emissions 18GHz ~ 40GHz	3.5 dB	Confidence levels of 95%