

DFS PORTION of FCC 47 CFR PART 15 SUBPART E DFS PORTION of INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11a/b/g/n/ac WIRELESS ACCESS POINT

MODEL NUMBER: AP-7532

FCC ID: UZ7AP7532 IC: 109AN-AP7532

REPORT NUMBER: 14U18922-1

ISSUE DATE: DECEMBER 8, 2014

Prepared for MOTOROLA SOLUTIONS, INC. 6480 VIA DEL ORO DRIVE SAN JOSE, CA 95119, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By	
	10/09/14	Initial Issue	T. Lee	
A	12/8/14	Update Product Model Number	C. Cheung	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 112

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	5
2	4.1. MEASURING INSTRUMENT CALIBRATION	5
2	4.2. SAMPLE CALCULATION	5
4	4.3. MEASUREMENT UNCERTAINTY	5
5.	DYNAMIC FREQUENCY SELECTION	6
Ę	5.1. OVERVIEW	6
	5.1.1. LIMITS	
	5.1.2. TEST AND MEASUREMENT SYSTEM	
	5.1.3. SETUP OF EUT 5.1.4. DESCRIPTION OF EUT	
_		
Ę	5.2. RESULTS FOR 20 MHz BANDWIDTH 5.2.1. TEST CHANNEL	
	5.2.2. RADAR WAVEFORMS AND TRAFFIC	.10
	5.2.3. CHANNEL AVAILABILITY CHECK TIME	.23
	5.2.4. OVERLAPPING CHANNEL TESTS	
	5.2.5. MOVE AND CLOSING TIME	
	5.2.6. DETECTION BANDWIDTH	
	5.2.7. IN-SERVICE MONITORING	
Ę	5.3. RESULTS FOR 40 MHz BANDWIDTH	
	5.3.1. TEST CHANNEL5.3.2. RADAR WAVEFORMS AND TRAFFIC	.46
	5.3.3. CHANNEL AVAILABILITY CHECK TIME	.40
	5.3.1. OVERLAPPING CHANNEL TESTS	.63
	5.3.2. MOVE AND CLOSING TIME	.63
	5.3.3. NON-OCCUPANCY PERIOD	
	5.3.4. DETECTION BANDWIDTH 5.3.5. IN-SERVICE MONITORING	
5	5.4. RESULTS FOR 80 MHz BANDWIDTH	
	5.4.1. TEST CHANNEL 5.4.2. RADAR WAVEFORMS AND TRAFFIC	.78
	5.4.3. CHANNEL AVAILABILITY CHECK TIME	
	5.4.4. OVERLAPPING CHANNEL TESTS	
	5.4.5. MOVE AND CLOSING TIME	.95
	5.4.6. NON-OCCUPANCY PERIOD1	
	5.4.7. DETECTION BANDWIDTH1 5.4.8. IN-SERVICE MONITORING1	
		03
6.	SETUP PHOTOS1	11

Pass

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-GEN Issue 8

COMPANY NAME:	MOTOROLA SOLUTIONS, INC. 6480 VIA DEL ORO DRIVE SAN JOSE, CA. 95119, U.S.A.		
EUT DESCRIPTION:	802.11a/b/g/n/ac WIRELESS ACCESS	POINT	
MODEL:	AP-7532		
SERIAL NUMBER:	14106522200877		
DATE TESTED:	OCTOBER 02, 2014		
	APPLICABLE STANDARDS		
STA	ANDARD	TEST RESULTS	
DFS Portion of CF	R 47 Part 15 Subpart E	Pass	

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

TIM LEE PROGRAM MANAGER UL Verification Services Inc.

Tested By:

Douglas Comelisen

DOUG ANDERSON EMC ENGINEER UL Verification Services Inc.

Page 4 of 112

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the DFS portion of FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, KDB 905462 D02 and D03, ANSI C63.10-2009, RSS-GEN Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services, Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 112

5. DYNAMIC FREQUENCY SELECTION

5.1. OVERVIEW

5.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 8 A9.3

Note: For the band 5600–5650 MHz, no operation is permitted.

Until further notice, devices subject to this annex shall not be capable of transmitting in the band 5600–5650 MHz. This restriction is for the protection of Environment Canada weather radars operating in this band.

<u>FCC</u>

§15.407 (h), FCC KDB 905462 D02 "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION" and KDB 905462 D03 "U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY".

Page 6 of 112

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode			
	Master	Client (without radar detection)	Client (with radar detection)	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode			
	Master	Client (without DFS)	Client (with DFS)	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Additional requirements for	Master Device or Client with	Client				
devices with multiple bandwidth	Radar DFS	(without DFS)				
modes						
U-NII Detection Bandwidth and	All BW modes must be	Not required				
Statistical Performance Check	tested					
Channel Move Time and Channel	Test using widest BW mode	Test using the				
Closing Transmission Time	available	widest BW mode				
		available for the link				
All other tests	Any single BW mode	Not required				
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include						
several frequencies within the radar detection bandwidth and frequencies near the edge of the						
radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20						
MHz channel blocks and a null freque	encies between the bonded 20 MH	z channel blocks.				

Page 7 of 112

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value				
	(see notes)				
E.I.R.P. ≥ 200 milliwatt	-64 dBm				
E.I.R.P. < 200 milliwatt and	-62 dBm				
power spectral density < 10 dBm/MHz					
E.I.R.P. < 200 milliwatt that do not meet power spectral	-64 dBm				
density requirement					
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.					
Note 3: E.I.R.P. is based on the highest antenna gain. For MIMO devices refer to KDB					

publication 662911 D01.

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period. (See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. (See Note 3)

Note 1: *Channel Move Time* and the *Channel Closing Transmission Time* should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

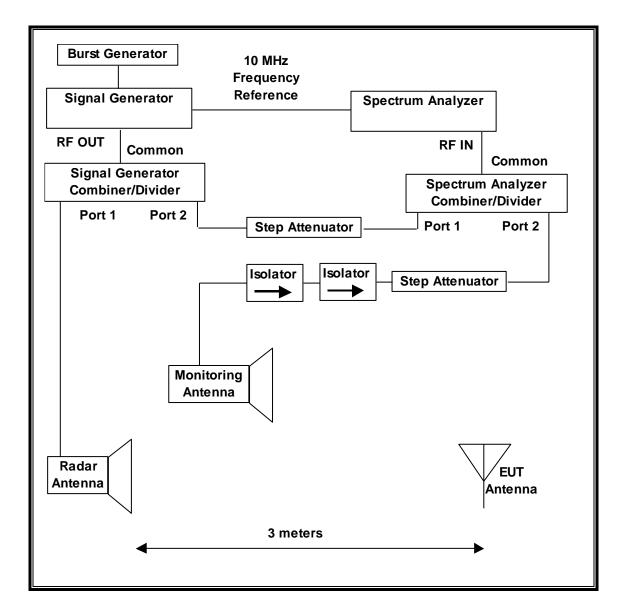
Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Pulses	Minimum	Minimum			
Туре	Width	(usec)		Percentage	Trials			
	(usec)			of Successful				
0	4	4.400	10	Detection	Cas Nata			
0	1	1428	18	See Note 1	See Note			
1	1	Test A: 15 unique		60%	30			
	I	PRI values randomly		0078	30			
		selected from the list	Roundup:					
		of 23 PRI values in	$\{(1/360) \times (19 \times 10^6 \text{ PRI}_{\text{usec}})\}$					
		table 5a						
		Test B: 15 unique						
		PRI values randomly						
		selected within the						
		range of 518-3066						
		usec. With a minimum increment						
		of 1 usec, excluding						
		PRI values selected						
		in Test A						
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
	Aggregate (Radar Types 1-4) 80% 120							
	Note 1: Short Pulse Radar Type 0 should be used for the <i>Detection Bandwidth</i> test, <i>Channel</i>							
Move 7	Move Time, and Channel Closing Time tests.							

Table 6 – Long Pulse Radar Test Signal

Radar	Pulse	Chirp	PRI	Pulses	Number	Minimum	Minimum
Waveform	Width	Width	(µsec)	per	of	Percentage	Trials
Туре	(µsec)	(MHz)		Burst	Bursts	of Successful	
						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				


Table 7 – Frequency Hopping Radar Test Signal

Radar Waveform	Pulse Width	PRI (µsec)	Pulses per	Hopping Rate	Hopping Sequence	Minimum Percentage of	Minimum Trials
Туре	(µsec)		Нор	(kHz)	Length (msec)	Successful Detection	
6	1	333	9	0.333	300	70%	30

Page 9 of 112

5.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 10 of 112

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain - coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is -64 dBm.

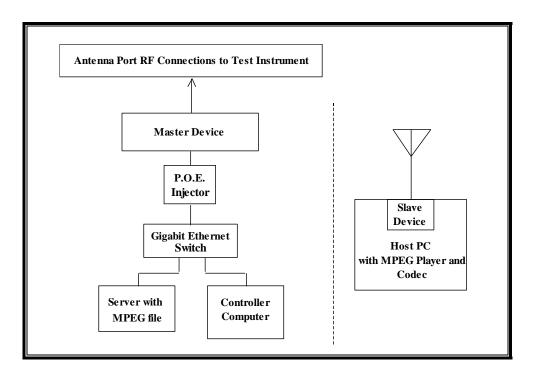
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device

Page 11 of 112 **UL VERIFICATION SERVICES INC.**

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset Number	Cal Due		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	09/05/15		
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	09/03/15		
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	04/03/15		

Page 12 of 112

5.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PEF	RIPHERAL SUPP	PORT EQUIPM	MENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
AC Adapter (EUT)	PowerDsine	9001G	D094565000006C7A00	DoC
Notebook PC (Controller/Server)	HP	8470P	CNU25193B6	DoC
AC Adapter (Controller/Server PC)	HP	PPP009L-E	WCNXA0C3U3SEGF	DoC
Notebook PC (Console)	HP	8460P	CNU2032CKJ	DoC
AC Adapter (Console)	HP	PPP009L-E	WCNXA0C3U3SEGF	DoC
Notebook PC (Slave Radio Host)	HP	8470P	CNU25193C2	DoC
AC Adapter (Slave Host PC)	HP	PPP09L-E	WCNXA0C1R3R8DW	DoC
802.11a/b/g/n/ac USB Converter (Slave Radio Device)	Cisco	AE600	12R10602307395	QB7-AE6000
Gigabit Ethernet Switch	Netgear	GS108	1DR1773V01EE3	DoC
P.O.E. Injector	Netgear	DV-1280-3	No Serial Number	DoC

5.1.4. DESCRIPTION OF EUT

For IC, the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges excluding the 5600-5650 MHz range.

For FCC, the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT supports both Master and Client DFS modes of operation, Client Mode DFS was tested by Sporton see report (FR44180 4-06).

The highest power level within these bands is 27.31 dBm EIRP in the 5250-5350 MHz band and 28.61 dBm EIRP in the 5470-5725 MHz band.

The highest gain antenna assembly utilized with the EUT has a gain of 6 dBi in the 5250-5350 MHz band and 6 dBi in the 5470-5725 MHz band. The lowest gain antenna assembly utilized with the EUT has a gain of 1.7 dBi in the 5250-5350 MHz band and 1.7 dBi in the 5470-5725 MHz band.

The antenna used during testing was the ML-2452-APAG2A1-01 (1.7 dBi Dipole).

Three identical antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses three transmitter/receiver chains, each connected to an antenna to perform radiated tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

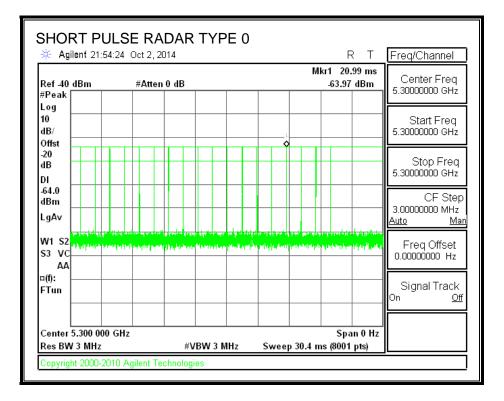
The EUT utilizes the 802.11ac architecture. Three nominal channel bandwidths are implemented: 20 MHz, 40 MHz and 80 MHz.

The software installed in the EUT is version 5.7.0.0-203475X.

UNIFORM CHANNEL SPREADING

See Manufacturer's Attestation.

Page 14 of 112


5.2. RESULTS FOR 20 MHz BANDWIDTH

5.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5300 MHz.

5.2.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 15 of 112

🔆 Agilent 22:0	2:50 Oct 2, 20	014			RT	Freq/Channel
Ref -40 dBm #Peak	#Atten	0 dB		M	kr1 59.04 ms -64.05 dBm	Center Freq 5.3000000 GHz
Log 10 dB/ Offst						Start Freq 5.3000000 GHz
-20 dB DI						Stop Freq 5.3000000 GHz
-64.0 dBm LgA∨						CF Step 3.00000000 MHz <u>Auto Man</u>
W1 S2 S3 VS AA						Freq Offset 0.00000000 Hz
¤(f): FTun						Signal Track On <u>Off</u>
Center 5.300 000 Res BW 3 MHz	GHz	#VBW 3	MHz S	weep 80 n	Span 0 Hz ns (8001 pts)	

Page 16 of 112

🔆 Agilent 22	:U7:19 C)ct 2, 20	J14				F		Freq/Channel
Ref -40 dBm #Peak		#Atten	0 dB			MI	GT 2.4 -63.98		Center Freq 5.30000000 GHz
Log 10 dB/ Offst		1							Start Freq 5.3000000 GHz
-20 dB DI									Stop Freq 5.3000000 GHz
-64.0 dBm LgAv									CF Step 3.00000000 MHz <u>Auto Ma</u>
W1 S2 S3 VS AA	गणपुर ही सार । . 1811 (सं. 26.9)								Eroa Offect
¤(f): FTun									Signal Track On <u>Off</u>
Center 5.300 0 Res BW 3 MHz			#1	/BW 3 N	 Sween	10.13 m		n 0 Hz	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 17 of 112

₩ Agilent 22 Ref -40 dBm	 #Atten			М	kr1 7.211 -63.96 d	 Freq/Channel
#Peak Log						5.30000000 GHz
10 dB/			11			Start Freq 5.3000000 GHz
Offst -20 dB						 Stop Freq 5.3000000 GHz
DI -64.0 dBm LgAv						 CF Step 3.0000000 MHz
~			a na bai na bai na ma Na shini na bai na bai			Auto Ma Freq Offset 0.00000000 Hz
¤(f): FTun						 Signal Track On <u>Of</u>
Center 5.300 0 Res BW 3 MHz		#11	BW 3 MHz	 . 15 17	Span s (8001 pt	

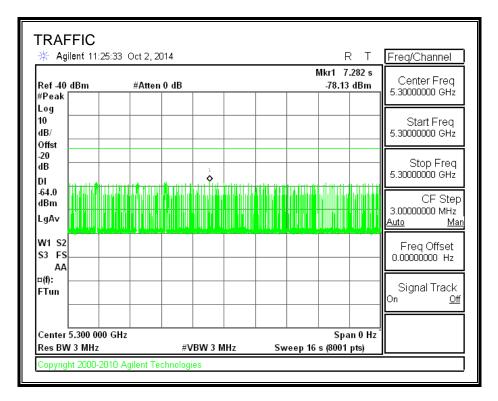
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 18 of 112

🔆 Agilent 2	2:23:50	Oct 2, 2	J14					F		Freq/Channel
Ref -40 dBm_ #Peak		#Atten	0 dB				M	kr1 3.3 -64.08		Center Freq 5.3000000 GHz
Log 10 dB/ Offst			1							Start Freq 5.30000000 GHz
-20 dB DI										Stop Freq 5.30000000 GHz
-64.0 dBm LgA∨										CF Step 3.00000000 MHz <u>Auto Ma</u> i
W1 S2 S3 VS AA	0 700 1000 0 .04.14.14.14.	n i charann i An tha an tha	an capter <u>at a sta d</u> i		an han ber An gaint	arnen geber a <u>fski</u> ster	reservente Antrippi er er	an in constantin An Anna in Anna Inn	nisen n Dar Nisen n Dar	Freq Offset 0.00000000 Hz
¤(f): FTun										Signal Track On <u>Off</u>
Center 5.300 Res BW 3 MH		:	#1	/BW 3 N	147	Sween	10.13 m	•	in 0 Hz	

Page 19 of 112

🔆 Agilent 22:30:0	04 Oct 2, 20		ST OF R		RΤ	Freq/Channel
Ref -40 dBm #Peak	#Atten () dB		Mk	r1 1.009 ms -63.96 dBm	Center Freq 5.3000000 GHz
Log 10 dB/						Start Freq 5.3000000 GHz
-20 dB DI						Stop Freq 5.3000000 GHz
-64.0 dBm LgAv						CF Step 3.00000000 MHz <u>Auto Mar</u>
W1 S2 S3 VS476						Freq Offset 0.00000000 Hz
¤(f): FTun						Signal Track On <u>Off</u>
Center 5.300 000 G Res BW 3 MHz	GHz	#VBW 3	MHz	Sweep 8 m	Span 0 Hz s (8001 pts)	


Page 20 of 112

🔆 Agilent 22:36:	11 Oct 2, 2014			R T Freq/Channel
Ref 40 dBm #Peak	#Atten 0 dB		Mkr1 2.3 _63.99	333 ms 0 dBm 5.30000000 GH
Log 10 dB/ Offst		1		Start Free 5.30000000 GH
-20 dB DI				Stop Fre 5.30000000 GH
-64.0 dBm				CF Sta 3.00000000 MH
W1 S2 S3 VS	a interferin d'Arrennender National d'Arrenne fin dèch	ur (re ji pina i s., brazia n re petre antenetra i anteni	ur a fan man fan fan fan de male Ar finis liter oar fan fan de male	Freq Offse
¤(f): FTun				Signal Trac
Center 5.300 000 Res BW 3 MHz		VBW 3 MHz	Spa Sweep 5 ms (8001	an 0 Hz

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 21 of 112

TRAFFIC

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 22 of 112

5.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A sweep was started on the spectrum analyzer when a software command was issued to the EUT to change to 5300 MHz and commence a CAC period. The time to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer when a software command was issued to the EUT to change to 5300 MHz and commence a CAC period. A radar signal was triggered within 0 to 6 seconds after the beginning of the CAC period and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. A sweep was started on the spectrum analyzer when a software command was issued to the EUT to change to 5300 MHz and commence a CAC period. A radar signal was triggered within 54 to 60 seconds after the beginning of the CAC period and transmissions on the channel were monitored on the spectrum analyzer.

Page 23 of 112

QUANTITATIVE RESULTS BASED UPON SPECTRUM ANALYZER PLOTS

No Radar Triggered

Beginning	Timing of	CAC Period		
of CAC	Start of Traffic	Time		
(sec)	(sec)	(sec)		
0	60.75	60.75		

Radar Near Beginning of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	2.550	2.550

Radar Near End of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	59.67	59.67

Page 24 of 112

QUANTITATIVE RESULTS BASED ON LOG FILE TIME STAMPS

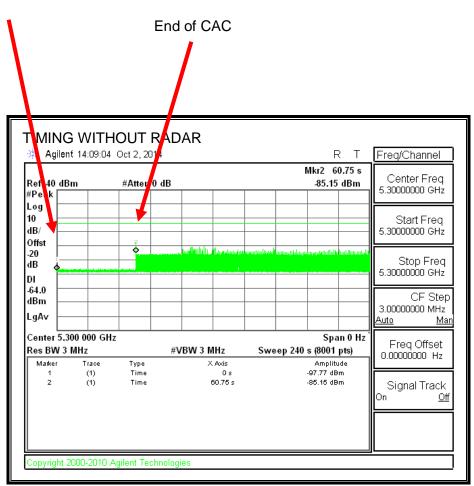
No Radar Triggered

Beginning of	End of CAC	
CAC		CAC Time
(hh:mm:ss)	(hh:mm:ss)	(hh:mm:ss)
22:28:09	22:29:09	0:01:00

Radar Near Beginning of CAC

Beginning of	Radar Detected	Radar Relative
CAC		to Start of CAC
(hh:mm:ss)	(hh:mm:ss)	(hh:mm:ss)
22:36:45	22:36:47	0:00:02

Radar Near End of CAC


Beginning of	Radar Detected	Radar Relative
CAC		to Start of CAC
(hh:mm:ss)	(hh:mm:ss)	(hh:mm:ss)
22:51:20	22:52:19	0:00:59

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

TIMING WITHOUT RADAR DURING CAC

Command to Switch Channels Start of CAC

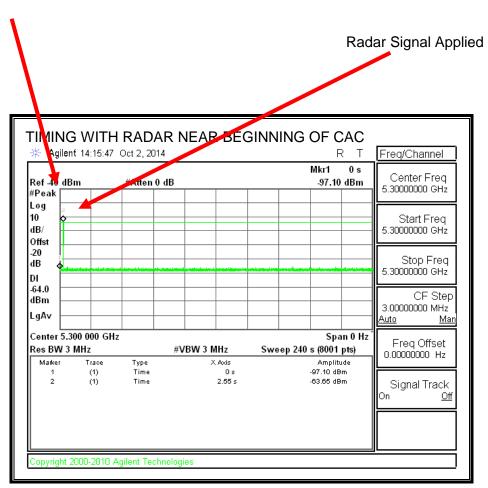
Transmissions begin on channel after completion of the CAC period.

Page 26 of 112

Log File of CAC Timing Without Radar

Jan 06 22:28:09 2014: %KERN-4-WARNING: DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check. radio->info.current_channel is 60 sys_idx: 0 (cfg.c:584)

Jan 06 22:28:10 2014: ap7532-15E794 : %DOT11-6-CLIENT_ASSOCIATED: Client '00-23-14-04-9B-34' associated to wlan '1' ssid '7532' on radio 'ap7532-15E794:R2'


Total number of radios displayed: 2 ap7532-15E794(config-device-84-24-8D-15-E7-94-if-radio2)#DLS DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM)

Jan 06 22:29:09 2014: %KERN-4-WARNING: DLS DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM).

Page 27 of 112

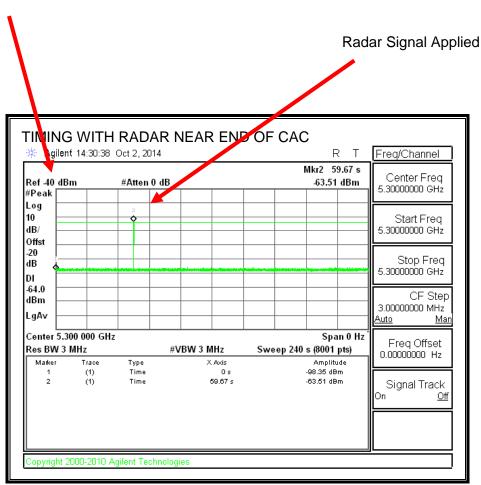
TIMING WITH RADAR NEAR BEGINNING OF CAC

Command to Switch Channels Start of CAC

No EUT transmissions were observed after the radar signal.

Page 28 of 112

Log File of Radar at the Beginning of CAC


Jan 06 22:36:45 2014: %KERN-4-WARNING: DLS DFS State IDLE -> PRE-ISM Channel Availability Check. radio->info.current_channel is 60 sys_idx: 0 (cfg.c:584)

Jan 06 22:36:47 2014: ap7532-15E794 : %RADIO-4-RADAR_DETECTED: Radar found on channel 60 freq 5300 MHz

Page 29 of 112

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

No EUT transmissions were observed after the radar signal.

Page 30 of 112

Log File of Radar at the End of CAC

Jan 06 22:51:20 2014: %KERN-4-WARNING: DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check. radio->info.current_channel is 60 sys_idx: 0 (cfg.c:584)

Jan 06 22:52:19 2014: ap7532-15E794 : %RADIO-4-RADAR_DETECTED: Radar found on channel 60 freq 5300 MHz

Page 31 of 112

5.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

5.2.5. MOVE AND CLOSING TIME

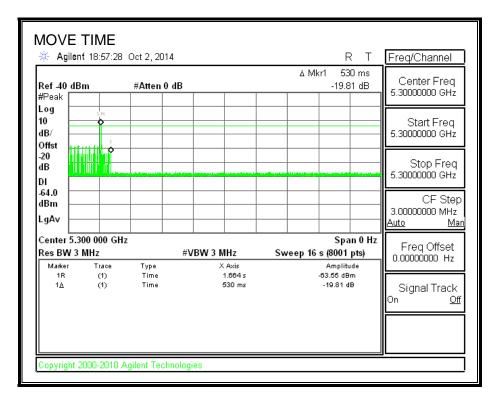
REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

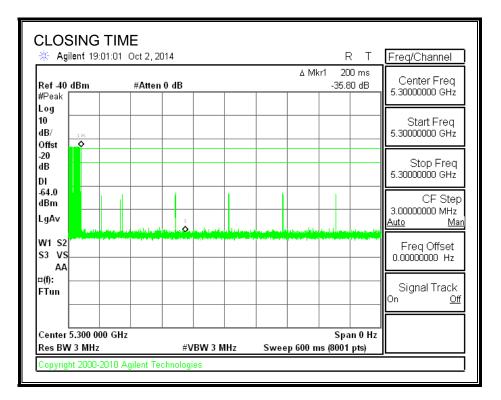
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)


The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

<u>RESULTS</u>

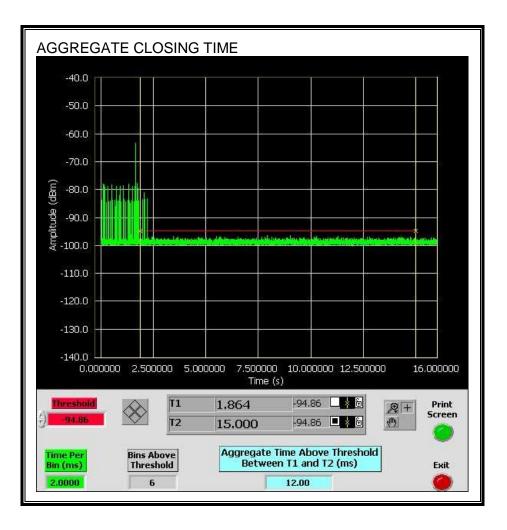
Channel Move Time	Limit
(sec)	(sec)
0.530	10


Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
12.0	60

MOVE TIME

Page 33 of 112

CHANNEL CLOSING TIME

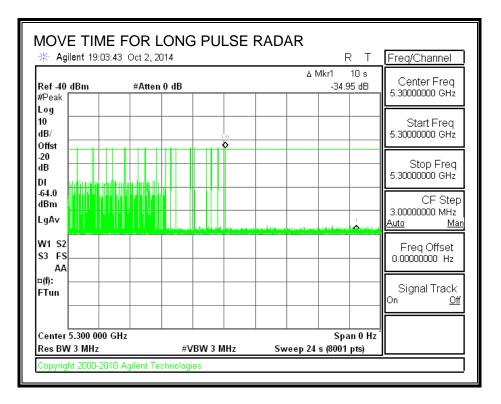


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 34 of 112

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

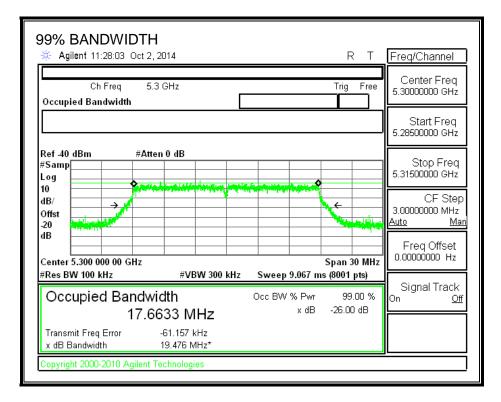
Only intermittent transmissions are observed during the aggregate monitoring period.



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 35 of 112

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 36 of 112

5.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5291	5309	18	17.663	101.9	100

DETECTION BANDWIDTH PROBABILITY

	width Test Results			
FCC Type 0 Wa	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per l	Burst
Frequency	Detection	Mark		
(MHz)			(%)	
5291	10	10	100	FL
5292	10	10	100	
5293	10	10	100	
5294	10	10	100	
5295	10	10	100	
5300	10	10	100	
5305	10	10	100	
5306	10	10	100	
5307	10	10	100	
5308	10	10	100	
5309	10	10	100	FH

Page 38 of 112

5.2.7. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	ary					
Signal Type	Number of Trials	Detection	Limit	Pass/Fail		
		(%)	(%)			
FCC Short Pulse Type 1	30	96.67	60	Pass		
FCC Short Pulse Type 2	30	100.00	60	Pass		
FCC Short Pulse Type 3	30	100.00	60	Pass		
FCC Short Pulse Type 4	30	93.33	60	Pass		
Aggregate		97.50	80	Pass		
FCC Long Pulse Type 5	30	100.00	80	Pass		
FCC Hopping Type 6	38	100.00	70	Pass		

Page 39 of 112

TYPE 1 DETECTION PROBABILITY

us Pulse Width		e Radar Type 1				
Waveform	PRI	Pulses Per Burst	Test	Successful Detection		
	(us)		(A/B)	(Yes/No)		
1001	3066	18	A	No		
1002	858	62	Α	Yes		
1003	798	67	Α	Yes		
1004	578	92	Α	Yes		
1005	898	59	Α	Yes		
1006	758	70	Α	Yes		
1007	538	99	Α	Yes		
1008	618	86	86 A			
1009	598	89	Α	Yes		
1010	658	81	Α	Yes		
1011	818	65	Α	Yes		
1012	518	102	Α	Yes		
1013	878	61	Α	Yes		
1014	938	57	Α	Yes		
1015	778	68	Α	Yes		
1016	678	78	В	Yes		
1017	2994	18	В	Yes		
1018	2392	23	В	Yes		
1019	1657	32	В	Yes		
1020	1180	45	В	Yes		
1021	610	87	В	Yes		
1022	2876	19	В	Yes		
1023	724	73	В	Yes		
1024	2465	22	В	Yes		
1025	552	96	В	Yes		
1026	887	60	В	Yes		
1027	2021	27	В	Yes		
1028	557	95	В	Yes		
1029	652	81	В	Yes		
1030	2452	22	В	Yes		

Page 40 of 112

TYPE 2 DETECTION PROBABILITY

Pulse Width	PRI	Pulses Per Burst	urst Successful Detection				
(us)	(us)		(Yes/No)				
4.9	161.00	23	Yes				
3.9	178.00	24	Yes				
1.4	230.00	29	Yes				
4.5	219.00	25	Yes				
2.1	172.00	24	Yes				
2.5	210.00	29	Yes				
1.5	172.00	28	Yes				
3.5	152.00	28	Yes				
1.5	160.00	25	Yes				
4.3	177.00	28	Yes				
4.7	159.00	25	Yes				
4.1	229.00	28	Yes				
4.5	189.00	28	Yes				
1.9	213.00	24	Yes				
2	230.00	27	Yes				
4.1	152.00	23	Yes				
4	174.00	24	Yes				
1.1	224.00	27	Yes				
4.3	184.00	23	Yes				
1	216.00	28	Yes				
4.6	214.00	24	Yes				
2.9	188.00	27	Yes				
2	175.00	29	Yes				
3.7	187.00	27	Yes				
1.5	193.00	23	Yes				
4.9	200.00	29	Yes				
2.6	230.00	28	Yes				
2.1	229.00	28	Yes				
1.4	222.00	28	Yes				
	3.9 1.4 4.5 2.1 2.5 1.5 3.5 1.5 4.3 4.7 4.1 4.5 1.9 2 4.1 4 1.1 4.3 1 4.6 2.9 2 3.7 1.5 4.9 2 3.7 1.5 4.9 2.6 2.1	3.9 178.00 1.4 230.00 4.5 219.00 2.1 172.00 2.5 210.00 1.5 172.00 3.5 152.00 1.5 160.00 4.3 177.00 4.7 159.00 4.1 229.00 4.5 189.00 1.9 213.00 2 230.00 4.1 152.00 1.5 189.00 1.9 213.00 2 230.00 4.1 152.00 4.1 152.00 4.1 152.00 1.1 224.00 4.3 184.00 1 216.00 4.6 214.00 2.9 188.00 2 175.00 3.7 187.00 1.5 193.00 4.9 200.00 2.6 230.00 2.1 229.00	3.9 178.00 24 1.4 230.00 29 4.5 219.00 25 2.1 172.00 24 2.5 210.00 29 1.5 172.00 28 3.5 152.00 28 1.5 160.00 25 4.3 177.00 28 4.7 159.00 25 4.1 229.00 28 4.5 189.00 28 4.5 189.00 28 1.9 213.00 24 2 230.00 27 4.1 152.00 23 4 174.00 24 2 230.00 27 4.1 152.00 23 1 216.00 28 4.5 188.00 27 4.3 184.00 23 1 216.00 28 4.6 214.00 27 2 <t< td=""></t<>				

Page 41 of 112

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	8.2	414.00	16	Yes
3002	7.6	398.00	17	Yes
3003	6	433.00	18	Yes
3004	5.2	356.00	16	Yes
3005	7.8	411.00	16	Yes
3006	6.8	428.00	17	Yes
3007	10	475.00	18	Yes
3008	8.9	344.00	18	Yes
3009	9.7	325.00	18	Yes
3010	7.5	311.00	18	Yes
3011	5.4	271.00	16	Yes
3012	8.5	426.00	16	Yes
3013	8	296.00	16	Yes
3014	9.3	390.00	17	Yes
3015	9.7	357.00	16	Yes
3016	9.2	303.00	16	Yes
3017	9.6	454.00	16	Yes
3018	9.2	271.00	16	Yes
3019	5	286.00	16	Yes
3020	7.6	279.00	16	Yes
3021	5.3	405.00	16	Yes
3022	9.6	404.00	16	Yes
3023	6.5	420.00	18	Yes
3024	5.4	416.00	17	Yes
3025	6.4	425.00	17	Yes
3026	6.1	296.00	18	Yes
3027	9.9	333.00	17	Yes
3028	5.5	422.00	18	Yes
3029	7.7	487	17	Yes
3030	5.2	309	18	Yes

Page 42 of 112

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	18	390.00	13	No
4002	16.1	457.00	12	Yes
4003	17.9	428.00	16	Yes
4004	19.5	375.00	12	Yes
4005	15	328.00	13	Yes
4006	10.9	369.00	15	Yes
4007	14.2	372.00	12	Yes
4008	12.1	497.00	13	Yes
4009	14.6	371.00	16	Yes
4010	14.9	452.00	13	Yes
4011	18.1	497.00	16	Yes
4012	16.2	389.00	15	Yes
4013	18.6	393.00	15	Yes
4014	10.1	354.00	12	Yes
4015	18.1	273.00	13	Yes
4016	12	360.00	14	Yes
4017	14.6	290.00	13	Yes
4018	19	302.00	13	Yes
4019	11.3	293.00	15	Yes
4020	18.7	400.00	16	Yes
4021	16.2	327.00	15	Yes
4022	18.6	343.00	14	Yes
4023	10.9	403.00	14	Yes
4024	17.2	482.00	14	Yes
4025	17.2	298.00	12	Yes
4026	13.1	300.00	16	Yes
4027	15.7	411.00	12	Yes
4028	16.7	328.00	15	Yes
4029	10.4	347.00	13	Yes
4030	19.6	378.00	12	No

Page 43 of 112

TYPE 5 DETECTION PROBABILITY

Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

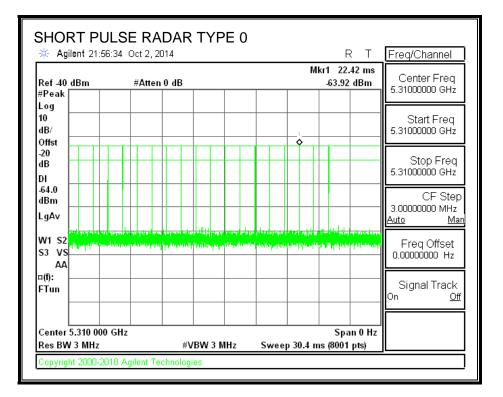
Note: The Type 5 randomized parameters are shown in a separate document.

Page 44 of 112

TYPE 6 DETECTION PROBABILITY

	e Width, 333 us PRI, 9		1 Burst per Hop	<u>}</u>
TIA Aug	ust 2005 Hopping Se			
Trial	Starting Index	Signal Generator		Successful
	Within Sequence	Frequency	Detection BW	Detection
		(MHz)		(Yes/No)
1	79	5291	3	Yes
2	554	5292	4	Yes
3	1029	5293	3	Yes
4	1504	5294	3	Yes
5	1979	5295	5	Yes
6	2929	5296	5	Yes
7	3404	5297	4	Yes
8	3879	5298	6	Yes
9	4354	5299	3	Yes
10	4829	5300	4	Yes
11	5304	5301	4	Yes
12	5779	5302	2	Yes
13	6254	5303	2	Yes
14	6729	5304	5	Yes
15	7204	5305	4	Yes
16	7679	5306	2	Yes
17	8154	5307	1	Yes
18	8629	5308	5	Yes
19	9104	5309	2	Yes
20	9579	5291	5	Yes
21	10054	5292	2	Yes
22	10529	5293	3	Yes
23	11004	5294	5	Yes
24	11479	5295	4	Yes
25	11954	5296	3	Yes
26	12429	5297	4	Yes
27	12904	5298	5	Yes
28	13379	5299	8	Yes
29	13854	5300	6	Yes
30	14329	5301	4	Yes
31	14804	5302	4	Yes
32	15279	5303	4	Yes
33	15754	5304	4	Yes
34	16229	5305	5	Yes
35	16704	5306	3	Yes
36	17179	5307	2	Yes
37	17654	5308	4	Yes
38	18129	5309	4	Yes

Page 45 of 112


5.3. RESULTS FOR 40 MHz BANDWIDTH

5.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5310 MHz.

5.3.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

Page 46 of 112

SAMPLE C			1	F	≀ T	Freq/Channel
Ref⊶40 dBm #Peak	#Atter	0 dB		Mkr1 28. -64.03		Center Freq 5.31000000 GHz
Log 10 dB/ Offst		1				Start Freq 5.31000000 GHz
-20 dB DI						Stop Freq 5.31000000 GHz
-64.0 dBm LgAv						CF Step 3.0000000 MHz <u>Auto Man</u>
W1 S2 Period						Freq Offset 0.00000000 Hz
¤(f): FTun						Signal Track ^{On <u>Off</u>}
Center 5.310 000 Res BW 3 MHz) GHz	#VBW 3 I	MHz Sw	Spa 2001 Spa	n0Hz pts)	
Copyright 2000-20	010 Agilent Te			1000 En 20 113	1.01	

Page 47 of 112

🔆 Agilent	22.00	J.U		0		2,.	20	14			 				м	cr1 3	R	T	Fre	μCΠ	anne	J
Ref-40 dBm #Peak	•			#	A	tte	n (0 0	IB		 		_			-64.0		 	C 5.31	ente 0000	r Fre 00 G	∋q Hz
Log 10 dB/ Offst										1								_		Star 0000		
-20 dB DI										Ť									5.31	Sto 0000	p Fr 00 G	
-64.0 dBm LgAv																		_	3.00 <u>Auto</u>	0000	CF S 00 M	
W1 S2 S3 VS																en a fina de la La la cala da La La la cala da La cala da				req		
¤(f): FTun													_					 	S On	igna	l Tra	ick <u>Off</u>
Center 5.310 Res BW 3 M		G	Hz								 	 /Hz				S s (800		Hz				

Page 48 of 112

* Agilent 22:		#Atten				М	F 1 2.2 64.07	47 ms	Freq/Channel Center Freq
#Peak		#Atten					-64.07	abm	5.31000000 GHz
Log 10 dB/ Offst	1								Start Freq 5.31000000 GHz
-20 dB DI	Ť								Stop Freq 5.31000000 GHz
-64.0 dBm LgAv									CF Step 3.0000000 MHz <u>Auto Ma</u>
W1 S2 S3 VS AA									Freq Offset 0.00000000 Hz
¤(f): FTun									Signal Track On <u>Of</u> f
Center 5.310 00 Res BW 3 MHz)0 GHz		#1	BW 3 N	 Sweep	45.47	•	in 0 Hz	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

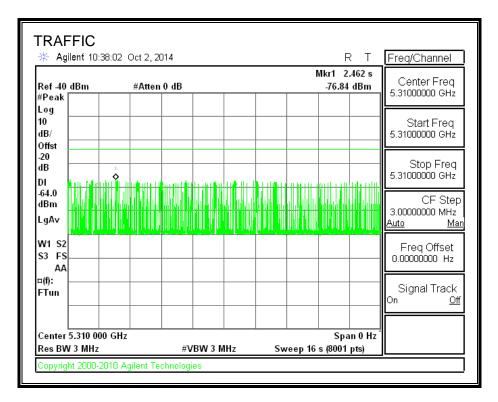
Page 49 of 112

🔆 Agilent	22.20.10	00.2,2	014					F	· ·	Freq/Channel
Ref 40 dBn #Peak ∣	<u>1</u>	#Atten	0 dB					cr1 5.3 _63.93		Center Freq 5.31000000 GHz
Log 10 dB/ Offst					1					Start Freq 5.31000000 GHz
-20 dB DI										Stop Freq 5.31000000 GHz
-64.0 dBm LgAv										CF Step 3.00000000 MHz <u>Auto Ma</u>
VVI 32	ilaya nana nani Layak nda layat									Freq Offset 0.00000000 Hz
¤(f): FTun										Signal Track On <u>Of</u>
Center 5.31 Res BW 3 M		z	404	/BW 3 N		6	10.13 m	•	n 0 Hz	

Page 50 of 112

SAMPLE C						// // /			Freq/Channel
Ref -40 dBm #Peak	#Atte	en0dB				м	Gr1 2.5 _63.87		Center Freq 5.31000000 GHz
Log 10 dB/ Offst		1							Start Freq 5.3100000 GHz
-20 dB DI		Ň							Stop Freq 5.31000000 GHz
-64.0 dBm LgA∨									CF Step 3.0000000 MHz <u>Auto Man</u>
W1 S2 S3 VS <mark>p-telgapolis</mark> AA									Freq Offset 0.00000000 Hz
¤(f): FTun									Signal Track On <u>Off</u>
Center 5.310 000 Res BW 3 MHz) GHz	#V	/BW 3 M	Hz	Sw	veep 8 m	•	n 0 Hz pts)	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .


Page 51 of 112

🔆 Agilent 22:3	4:16 Oct 2, 2014			R T	Freq/Channel
Ref 40 dBm #Peak	#Atten 0 dE	3		kr1 1.666 ms -63.93 dBm	Center Freq 5.31000000 GHz
Log 10 dB/	1				Start Freq 5.31000000 GHz
-20 dB					Stop Freq 5.31000000 GHz
DI -64.0 dBm LgAv					CF Step 3.00000000 MHz
W1 S2 S3 VS AA	land an				
¤(f): FTun					Signal Track On <u>Off</u>
Center 5.310 000 Res BW 3 MHz) GHz	#VBW 3 MHz	Sween 5	Span 0 Hz ns (8001 pts)	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 52 of 112

TRAFFIC

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 53 of 112

5.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A sweep was started on the spectrum analyzer when a software command was issued to the EUT to change to 5310 MHz and commence a CAC period. The time to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer when a software command was issued to the EUT to change to 5310 MHz and commence a CAC period. A radar signal was triggered within 0 to 6 seconds after the beginning of the CAC period and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. A sweep was started on the spectrum analyzer when a software command was issued to the EUT to change to 5310 MHz and commence a CAC period. A radar signal was triggered within 54 to 60 seconds after the beginning of the CAC period and transmissions on the channel were monitored on the spectrum analyzer.

Page 54 of 112

QUANTITATIVE RESULTS BASED UPON SPECTRUM ANALYZER PLOTS

No Radar Triggered

Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	60.78	60.78

Radar Near Beginning of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	4.83	4.83

Radar Near End of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	56.94	56.94

Page 55 of 112

QUANTITATIVE RESULTS BASED ON LOG FILE TIME STAMPS

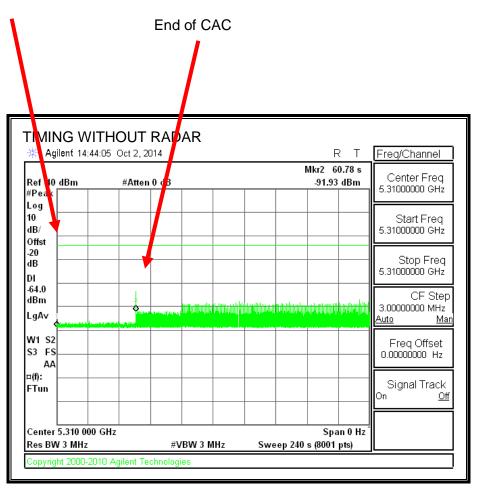
No Radar Triggered

Beginning of	End of CAC	
CAC		CAC Time
(hh:mm:ss)	(hh:mm:ss)	(hh:mm:ss)
23:03:58	23:04:58	0:01:00

Radar Near Beginning of CAC

Beginning of	Radar Detected	Radar Relative
CAC		to Start of CAC
(hh:mm:ss)	(hh:mm:ss)	(hh:mm:ss)
0:08:17	0:08:22	0:00:05

Radar Near End of CAC


Beginning of	Radar Detected	Radar Relative
CAC		to Start of CAC
(hh:mm:ss)	(hh:mm:ss)	(hh:mm:ss)
23:53:56	23:54:53	0:00:57

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

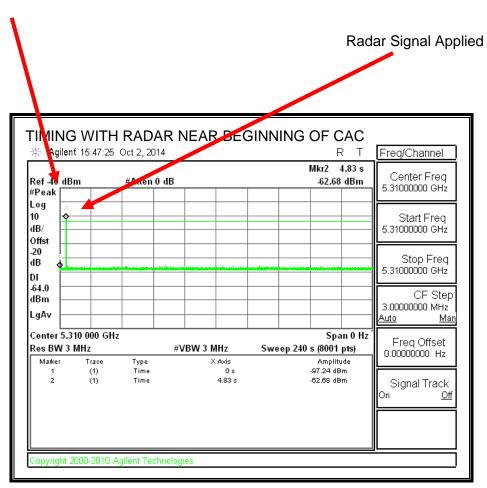
TIMING WITHOUT RADAR DURING CAC

Command to Switch Channels Start of CAC

Transmissions begin on channel after completion of the CAC period.

Page 57 of 112

Log File of CAC Timing Without Radar


Jan 06 23:03:58 2014: %KERN-4-WARNING: DLS DFS State IDLE -> PRE-ISM Channel Availability Check. radio->info.current_channel is 60 sys_idx: 1 (cfg.c:584) Jan 06 23:03:58 2014: ap7532-15E794 : %DOT11-6-CLIENT_ASSOCIATED: Client '00-23-14-04-9B-34' associated to wlan '1' ssid '7532' on radio 'ap7532-15E794:R2' DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check Jan 06 23:03:58 2014: %KERN-4-WARNING: DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check. DLS DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM)

Jan 06 23:04:58 2014: %KERN-4-WARNING: DLS DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM).

Page 58 of 112

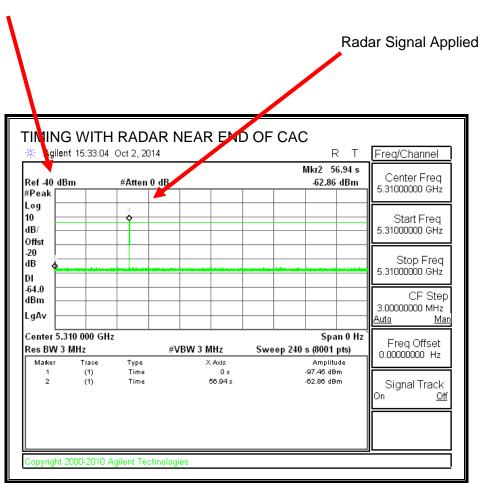
TIMING WITH RADAR NEAR BEGINNING OF CAC

Command to Switch Channels Start of CAC

No EUT transmissions were observed after the radar signal.

Page 59 of 112

Log File of Radar at the Beginning of CAC


DLS DFS State IDLE -> PRE-ISM Channel Availability Check width is 40 (cfg.c:565) Jan 07 00:08:17 2014: %KERN-4-WARNING: DLS DFS State IDLE -> PRE-ISM Channel Availability Check. radio->info.current_channel is 60 sys_idx: 1 (cfg.c:584) DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check Jan 07 00:08:22 2014: ap7532-15E794 : %RADIO-4-RADAR_DETECTED: Radar found on

channel 60 freq 5300 MHz

Page 60 of 112

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

No EUT transmissions were observed after the radar signal.

Page 61 of 112

Log File of Radar at the End of CAC

DLS DFS State IDLE -> PRE-ISM Channel Availability Check width is 40 cfq.c:565)

Jan 06 23:53:56 2014: %KERN-4-WARNING: DLS DFS State IDLE -> PRE-ISM Channel Availability Check.

radio->info.current_channel is 60 sys_idx: 1 cfg.c:584)
DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel
Availability Check

Jan 06 23:53:56 2014: %KERN-4-WARNING: DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check.

ap7532-15E794#Type 7 Radar Detection. Detected pulse index=0 fm_min=0 fm_max=0 nconsecq_pulses=4. Time from last detection = 394, = 6min 34sec DLS - time to delete the timer DLS DFS State PRE-ISM Channel Availability Check -> IDLE

Jan 06 23:54:53 2014: %KERN-4-WARNING: Type 7 Radar Detection. Detected pulse index=0 fm_min=0 fm_max=0 nconsecq_pulses=4. Time from last detection = 394, = 6min 34sec .

Page 62 of 112

5.3.1. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

These tests are not applicable.

5.3.2. MOVE AND CLOSING TIME

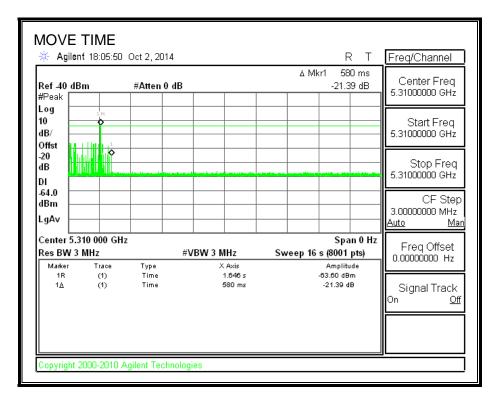
REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

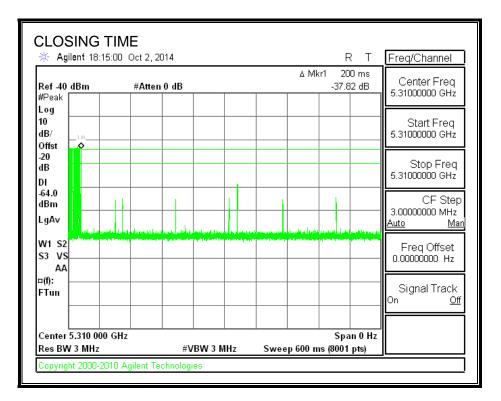
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)


The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

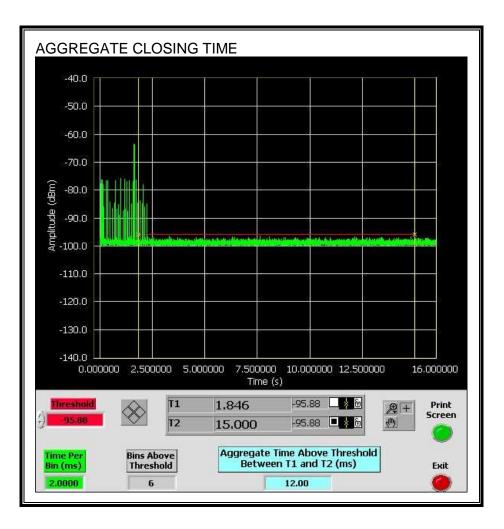
Channel Move Time	Limit
(sec)	(sec)
0.580	10


Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
12.0	60

MOVE TIME

Page 64 of 112

CHANNEL CLOSING TIME

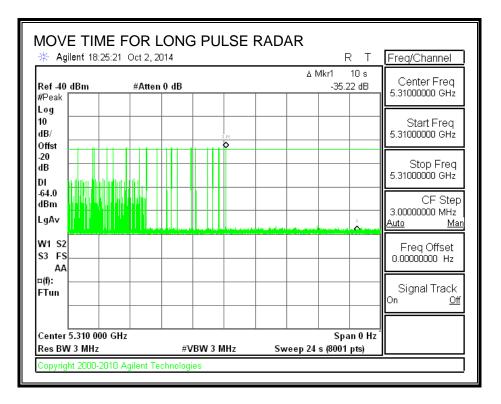


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 65 of 112

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.

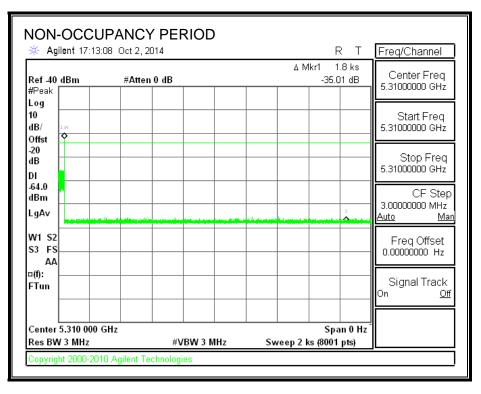


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 66 of 112

LONG PULSE CHANNEL MOVE TIME

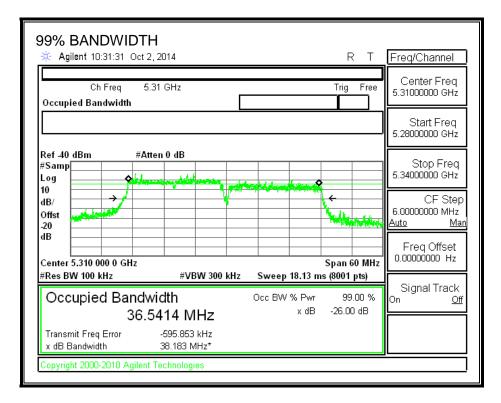
The traffic ceases prior to 10 seconds after the end of the radar waveform.



Page 67 of 112

5.3.3. NON-OCCUPANCY PERIOD

RESULTS


No EUT transmissions were observed on the test channel during the 30-minute observation time.

Page 68 of 112

5.3.4. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5291	5329	38	36.541	104.0	100

DETECTION BANDWIDTH PROBABILITY

TI	ECTION BAN	IDWIDTH PROBAB	ILITY RESULTS		
De	etection Band	width Test Results			
FC	C Type 0 War	veform: 1 us Pulse V	Nidth, 1428 us PRI, 18	8 Pulses per	Burst
	Frequency	Number of Trials	Number Detected	Detection	Mark
	(MHz)			(%)	
	5291	10	10	100	FL
	5292	10	10	100	
	5293	10	10	100	
	5294	10	10	100	
	5295	10	10	100	
	5300	10	10	100	
	5305	10	10	100	
	5310	10	9	90	
	5315	10	10	100	
	5320	10	10	100	
	5325	10	10	100	
	5326	10	10	100	
	5327	10	10	100	
	5328	10	10	100	
	5329	10	10	100	FH

Page 70 of 112

5.3.5. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	ary			
Signal Type	Number of Trials	Detection (%)	Limit (%)	Pass/Fail
FCC Short Pulse Type 1	30	96.67	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		99.17	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	39	100.00	70	Pass

Page 71 of 112

TYPE 1 DETECTION PROBABILITY

us Pulse Width	C Short Puls				
Waveform	PRI	Pulses Per Burst	Test	Successful Detection (Yes/No)	
	(us)		(A/B)		
1001	3066	18	A	No	
1002	858	62	Α	Yes	
1003	798	67	Α	Yes	
1004	578	92	Α	Yes	
1005	898	59	Α	Yes	
1006	758	70	Α	Yes	
1007	538	99	Α	Yes	
1008	618	86	Α	Yes	
1009	598	89	Α	Yes	
1010	658	81	Α	Yes	
1011	818	65	Α	Yes	
1012	518	102	Α	Yes	
1013	878	61	Α	Yes	
1014	938	57	Α	Yes	
1015	778	68	Α	Yes	
1016	678	78	В	Yes	
1017	2994	18	В	Yes	
1018	2392	23	В	Yes	
1019	1657	32	В	Yes	
1020	1180	45	В	Yes	
1021	610	87	В	Yes	
1022	2876	19	В	Yes	
1023	724	73	В	Yes	
1024	2465	22	В	Yes	
1025	552	96	В	Yes	
1026	887	60	В	Yes	
1027	2021	27	В	Yes	
1028	557	95	В	Yes	
1029	652	81	В	Yes	
1030	2452	22	В	Yes	

Page 72 of 112

TYPE 2 DETECTION PROBABILITY

Pulses Per Burst Successful Dete	ection
(Yes/No)	
) 23 Yes	
0 24 Yes	
) 29 Yes	
) 25 Yes	
0 24 Yes	
0 29 Yes	
0 28 Yes	
0 28 Yes	
0 25 Yes	
0 28 Yes	
0 25 Yes	
0 28 Yes	
0 28 Yes	
0 24 Yes	
0 27 Yes	
0 23 Yes	
0 24 Yes	
0 27 Yes	
0 23 Yes	
0 28 Yes	
0 24 Yes	
) 27 Yes	
0 29 Yes	
0 27 Yes	
) 23 Yes	
) 29 Yes	
0 28 Yes	
0 28 Yes	
0 28 Yes	
0 29 Yes 0 28 Yes 0 28 Yes	; ; ;

Page 73 of 112

TYPE 3 DETECTION PROBABILITY

Naveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	8.2	414.00	16	Yes
3002	7.6	398.00	17	Yes
3003	6	433.00	18	Yes
3004	5.2	356.00	16	Yes
3005	7.8	411.00	16	Yes
3006	6.8	428.00	17	Yes
3007	10	475.00	18	Yes
3008	8.9	344.00	18	Yes
3009	9.7	325.00	18	Yes
3010	7.5	311.00	18	Yes
3011	5.4	271.00	16	Yes
3012	8.5	426.00	16	Yes
3013	8	296.00	16	Yes
3014	9.3	390.00	17	Yes
3015	9.7	357.00	16	Yes
3016	9.2	303.00	16	Yes
3017	9.6	454.00	16	Yes
3018	9.2	271.00	16	Yes
3019	5	286.00	16	Yes
3020	7.6	279.00	16	Yes
3021	5.3	405.00	16	Yes
3022	9.6	404.00	16	Yes
3023	6.5	420.00	18	Yes
3024	5.4	416.00	17	Yes
3025	6.4	425.00	17	Yes
3026	6.1	296.00	18	Yes
3027	9.9	333.00	17	Yes
3028	5.5	422.00	18	Yes
3029	7.7	487	17	Yes
3030	5.2	309	18	Yes

Page 74 of 112

TYPE 4 DETECTION PROBABILITY

Waveform ■	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	18	390.00	13	Yes
4002	16.1	457.00	12	Yes
4003	17.9	428.00	16	Yes
4004	19.5	375.00	12	Yes
4005	15	328.00	13	Yes
4006	10.9	369.00	15	Yes
4007	14.2	372.00	12	Yes
4008	12.1	497.00	13	Yes
4009	14.6	371.00	16	Yes
4010	14.9	452.00	13	Yes
4011	18.1	497.00	16	Yes
4012	16.2	389.00	15	Yes
4013	18.6	393.00	15	Yes
4014	10.1	354.00	12	Yes
4015	18.1	273.00	13	Yes
4016	12	360.00	14	Yes
4017	14.6	290.00	13	Yes
4018	19	302.00	13	Yes
4019	11.3	293.00	15	Yes
4020	18.7	400.00	16	Yes
4021	16.2	327.00	15	Yes
4022	18.6	343.00	14	Yes
4023	10.9	403.00	14	Yes
4024	17.2	482.00	14	Yes
4025	17.2	298.00	12	Yes
4026	13.1	300.00	16	Yes
4027	15.7	411.00	12	Yes
4028	16.7	328.00	15	Yes
4029	10.4	347.00	13	Yes

Page 75 of 112

TYPE 5 DETECTION PROBABILITY

Trial	Successful Detection			
	(Yes/No)			
1	Yes			
2	Yes			
3	Yes			
4	Yes			
5	Yes			
6	Yes			
7	Yes			
8	Yes			
9	Yes			
10	Yes			
11	Yes			
12	Yes			
13	Yes			
14	Yes			
15	Yes			
16	Yes			
17	Yes			
18	Yes			
19	Yes			
20	Yes			
21	Yes			
22	Yes			
23	Yes			
24	Yes			
25	Yes			
26	Yes			
27	Yes			
28	Yes			
29	Yes			
30	Yes			

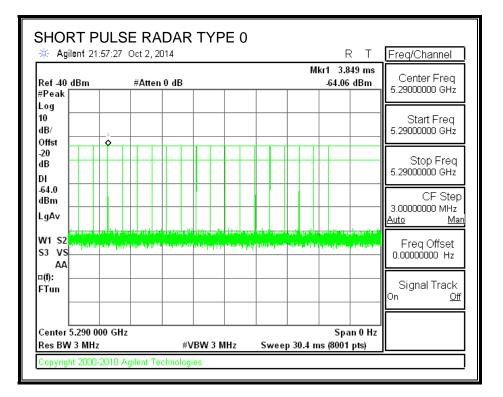
Note: The Type 5 randomized parameters are shown in a separate document.

Page 76 of 112

TYPE 6 DETECTION PROBABILITY

1 us Pulse	for FCC Hopping Rada Width, 333 us PRI, 9	9 Pulses per Burst,	1 Burst per Hop	9
Trial	ust 2005 Hopping Se Starting Index Within Sequence	Guence Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	257	5291	10	Yes
2	732	5292	7	Yes
3	1207	5293	6	Yes
4	1682	5294	7	Yes
5	2157	5295	9	Yes
6	2632	5296	8	Yes
7	3107	5297	7	Yes
8	3582	5298	3	Yes
9	4057	5299	12	Yes
10	4532	5300	9	Yes
11	5007	5301	6	Yes
12	5482	5302	7	Yes
13	5957	5303	9	Yes
14	6432	5304	11	Yes
15	6907	5305	6	Yes
16	7382	5306	11	Yes
17	7857	5307	10	Yes
18	8332	5308	10	Yes
19	8807	5309	8	Yes
20	9282	5310	9	Yes
21	9757	5311	5	Yes
22	10232	5312	9	Yes
23	10707	5313	9	Yes
24	11182	5314	8	Yes
25	11657	5315	10	Yes
26	12132	5316	5	Yes
27	12607	5317	12	Yes
28	13082	5318	7	Yes
29	13557	5319	8	Yes
30	14032	5320	3	Yes
31	14507	5321	9	Yes
32	14982	5322	7	Yes
33	15457	5323	6	Yes
34	15932	5324	7	Yes
35	16407	5325	5	Yes
36	16882	5326	9	Yes
37	17357	5327	10	Yes
38	17832	5328	6	Yes
39	18307	5329	10	Yes

Page 77 of 112


5.4. RESULTS FOR 80 MHz BANDWIDTH

5.4.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5290 MHz.

5.4.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

Page 78 of 112

SAMPLE			YPE [·]	1			R	т	Freq/Channel
Ref -40 dBm #Peak		Atten 0 dB				М	kr1 59.0 -63.94	04 ms	Center Freq 5.29000000 GHz
Log 10 dB/ Offst						1			Start Freq 5.29000000 GHz
-20 dB DI									Stop Freq 5.29000000 GHz
-64.0 dBm LgA∨									CF Step 3.0000000 MHz <u>Auto Man</u>
W1 S2	na na ana ana ana ana ana ana ana ana a								Freq Offset 0.00000000 Hz
¤(f): FTun									Signal Track On <u>Off</u>
Center 5.290 00 Res BW 3 MHz			#VBW 3 M	ЛНz	Swe	ep 80 m	Spa 1s (8001	n 0 Hz pts)	
Copyright 2000-	2010 Agile	ent Technol	ogies						

Page 79 of 112

🔆 Agi	lent 22	2.10			_		2,	20	14						-	Mkı	13.	R .09		⊤ ns	Free			
Ref -40 #Peak ∣	dBm	Τ			; T	#Δ	tte	n	0 (ΙB		 					-63.9	0 (dBı	n	С 5.29	entei 100000	r Fre 00 GH	q Iz
Log 10 dB/									1														t Fre 00 GH	
Offst -20 dB DI						T			Í												5.29		p Fre 00 G⊦	
-64.0 dBm LgAv																					3.00 Auto		CF St 00 MH	
W1 S2	nen pins 							1, s							run ⁰ m karden						II F		Offse 100 H	
¤(f): FTun																					S On	ignal	l Trac	:k <u>Of</u>
Center	5.290 0 / 3 MH;		G	Hz								 	//Hz		10.13					Hz				

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 80 of 112

✤ Agilent 22: Ref -40 dBm		tten 0 dB		М	kr1 6.386 ms -63.96 dBm	Freq/Channel Center Freq
#Peak						5.29000000 GHz
Log 10 dB/			1.			Start Freq 5.29000000 GHz
Offst -20 dB	₩₩		♦			Stop Freq
DI -64.0 dBm						CF Step 3.00000000 MHz
LgAv W1 S2	ण सम्प्रती प्रयोजन्त्रभा	र का हर रह कि जि	na marina da tanàna	p ⁱⁿ and straty seals a seal time search	ere a sector a la sector da una	<u>Auto Ma</u>
S3 VS <mark>tipsterby</mark> AA	estepholyd Allephol	ala da la da da da da da da	ar and haddeding a _b io activity (in	klahyklikingten eintonisten	(Archine place) (1919 provide 1919) (1919)	Freq Offset 0.00000000 Hz
¤(f): FTun						Signal Track On <u>Of</u>
Center 5.290 00 Res BW 3 MHz)0 GHz		VBW 3 MHz	Sweep 15.47 n	Span 0 Hz	

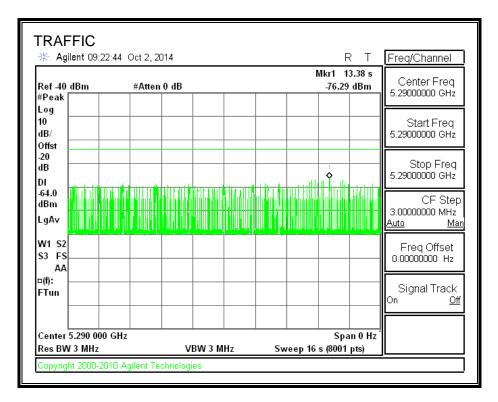
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 81 of 112

🔆 Agilent 22:2	26:37 Oct 2, 2	2014					F		Freq/Channel
Ref -40 dBm #Peak	#Atte	n0dB				M	kr1 3. _63.97	34 ms dBm	Center Freq 5.29000000 GHz
Log 10 dB/ Offst		1							Start Freq 5.29000000 GHz
dB DI									Stop Freq 5.29000000 GHz
-64.0 dBm LgAv									CF Step 3.00000000 MHz <u>Auto Mar</u>
VVI 52	<mark>erijado selje negleta</mark> Kontradije								Freq Offset 0.00000000 Hz
¤(f): FTun									Signal Track On <u>Off</u>
Center 5.290 00 Res BW 3 MHz	0 GHz	#VI	BW 3 M	IHz	Sweep	10.13 m	•	n 0 Hz pts)	

Page 82 of 112

🔆 Agilent 22:2	7:54 Oct 2, 2014			RT	Freq/Channel
Ref -40 dBm #Peak	#Atten 0	1B		2.086 ms 03 dBm	Center Freq 5.29000000 GHz
Log 10 dB/	1				Start Freq 5.2900000 GHz
-20 dB DI					Stop Freq 5.29000000 GHz
-64.0 dBm LgAv					CF Step 3.0000000 MHz <u>Auto Mar</u>
S3 VS			1127127471247147471197471274717474747474747 1127127471474747474747474747474747474747		Freq Offset 0.00000000 Hz
¤(f): FTun					Signal Track On <u>Off</u>
Center 5.290 000 Res BW 3 MHz) GHz	#VBW 3 MHz	S Sweep 8 ms (80	pan 0 Hz 01 pts)	


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 83 of 112

🔆 Agilent 22:	57.50 UCL2,2	014					13		q/Channel
Ref -40 dBm #Peak	#Atten	0 dB				M	kr1 1.333 r -64.00 dBi		enter Freq 000000 GHz
Log 10 dB/ Offst	1								Start Freq 000000 GHz
-20 dB DI								5.29	Stop Freq 000000 GHz
-64.0 dBm									CF Step
LgAv								Auto	<u>Mai</u>
	y a ty sy balande yn Y ddillig y fel fel fel fel yn		nieni in Viennapi	intinen (nren ve	or ^u perseko el ^{tit} opisioig	Nggalihuliri) manandihuliri		req Offset 0000000 Hz
¤(f): FTun								Si On	ignal Track <u>Off</u>
Center 5.290 00 Res BW 3 MHz	0 GHz		3W 3 N				Span 0 ns (8001 pts		

Page 84 of 112

TRAFFIC

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 85 of 112

5.4.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A sweep was started on the spectrum analyzer when a software command was issued to the EUT to change to 5290 MHz and commence a CAC period. The time to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer when a software command was issued to the EUT to change to 5290 MHz and commence a CAC period. A radar signal was triggered within 0 to 6 seconds after the beginning of the CAC period and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. A sweep was started on the spectrum analyzer when a software command was issued to the EUT to change to 5290 MHz and commence a CAC period. A radar signal was triggered within 54 to 60 seconds after the beginning of the CAC period and transmissions on the channel were monitored on the spectrum analyzer.

Page 86 of 112

QUANTITATIVE RESULTS BASED UPON SPECTRUM ANALYZER PLOTS

No Radar Triggered

Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	60.7	60.7

Radar Near Beginning of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	2.73	2.730

Radar Near End of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec) 0	(sec) 56.82	(sec) 56.82
•	00.02	00102

Page 87 of 112

QUANTITATIVE RESULTS BASED ON LOG FILE TIME STAMPS

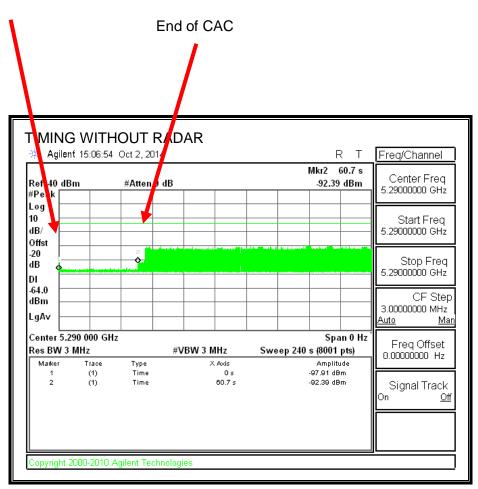
No Radar Triggered

Beginning of	End of CAC	
CAC		CAC Time
(hh:mm:ss)	(hh:mm:ss)	(hh:mm:ss)
23:25:52	23:26:52	0:01:00

Radar Near Beginning of CAC

Beginning of	Radar Detected	Radar Relative
CAC		to Start of CAC
(hh:mm:ss)	(hh:mm:ss)	(hh:mm:ss)
23:34:32	23:34:34	0:00:02

Radar Near End of CAC


Beginning of	Radar Detected	Radar Relative
CAC		to Start of CAC
(hh:mm:ss)	(hh:mm:ss)	(hh:mm:ss)
23:43:08	23:44:05	0:00:57

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

TIMING WITHOUT RADAR DURING CAC

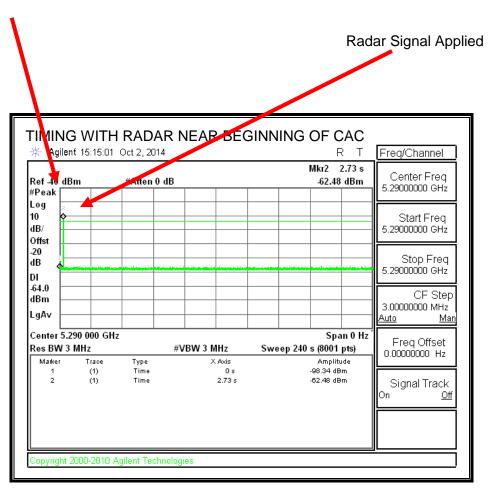
Command to Switch Channels Start of CAC

Transmissions begin on channel after completion of the CAC period.

Page 89 of 112

Log File of CAC Timing Without Radar

Jan 06 23:25:52 2014: %KERN-4-WARNING: DLS DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check. DLS - calling wlu_iovar_setint with wl_set_dfs_test_mode (wl.c:724) DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check


Jan 06 23:25:52 2014: %KERN-4-WARNING: DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check. width is 80

Jan 06 23:26:52 2014: %KERN-4-WARNING: DLS DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM).

Page 90 of 112

TIMING WITH RADAR NEAR BEGINNING OF CAC

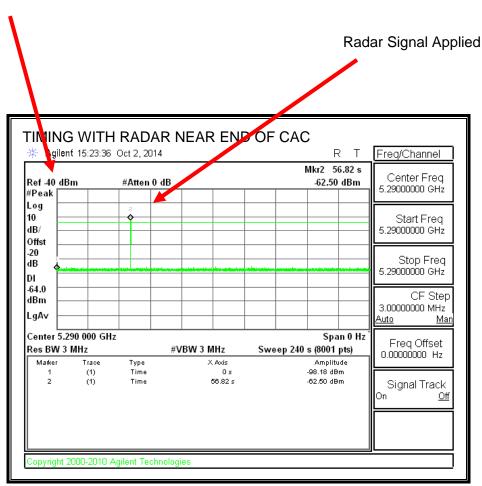
Command to Switch Channels Start of CAC

No EUT transmissions were observed after the radar signal.

Page 91 of 112

Log File of Radar at the Beginning of CAC

DLS - calling wlu_iovar_setint with wl_set_dfs_test_mode (wl.c:724)
DLS DFS State IDLE -> PRE-ISM Channel Availability Check
width is 80
 (cfg.c:572)
Jan 06 23:34:32 2014: %KERN-4-WARNING: DLS DFS State IDLE -> PRE-ISM Channel
Availability Check.
radio->info.current_channel is 60 sys_idx: 2
 (cfg.c:584)
Type 7 Radar Detection. Detected pulse index=0 fm_min=0 fm_max=0
nconsecq_pulses=4. Time from last detection = 874, = 14min 34sec
DLS - time to delete the timer


DLS DFS State PRE-ISM Channel Availability Check -> IDLE

Jan 06 23:34:34 2014: ap7532-15E794 : %RADIO-4-RADAR_DETECTED: Radar found on channel 60 freq 5300 MHz

Page 92 of 112

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

No EUT transmissions were observed after the radar signal.

Page 93 of 112

Log File of Radar at the End of CAC

DLS DFS State IDLE -> PRE-ISM Channel Availability Check width is 80 (cfg.c:572) Jan 06 23:43:08 2014: %KERN-4-WARNING: DLS DFS State IDLE -> PRE-ISM Channel Availability Check. DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check Jan 06 23:43:08 2014: %KERN-4-WARNING: DLS DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check. radio->info.current_channel is 60 sys_idx: 2 (cfg.c:584) ap7532-15E794(config-device-84-24-8D-15-E7-94-if-radio2)#Type 7 Radar Detection. Detected pulse index=0 fm min=0 fm max=0 nconsecq pulses=4. Time from last de DLS - time to delete the timer DLS DFS State PRE-ISM Channel Availability Check -> IDLE Jan 06 23:44:05 2014: ap7532-15E794 : %RADIO-4-RADAR_DETECTED: Radar found on

channel 60 freq 5300 MHz

Page 94 of 112

5.4.4. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

5.4.5. MOVE AND CLOSING TIME

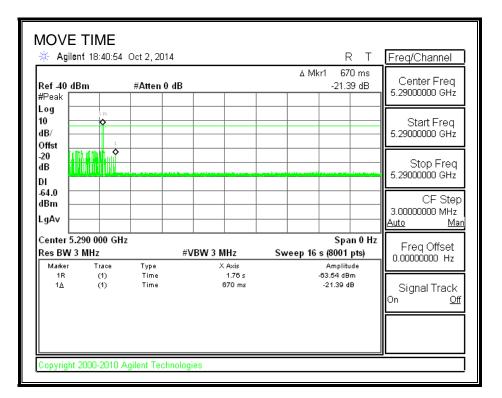
REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

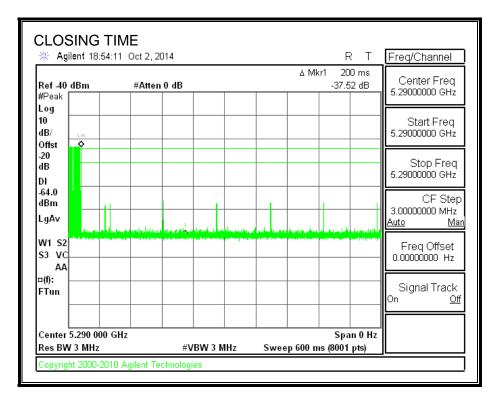
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)


The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

<u>RESULTS</u>

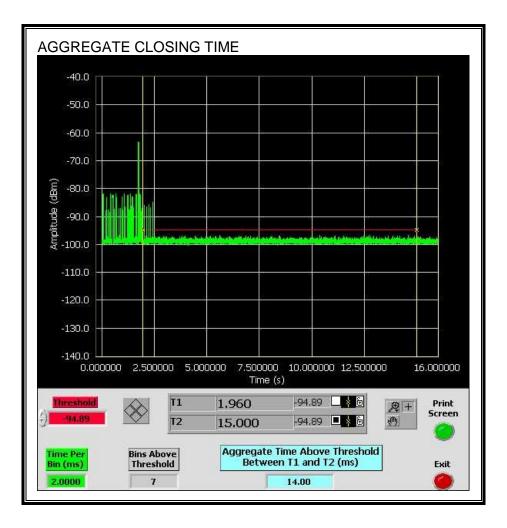
Channel Move Time	Limit
(sec)	(sec)
0.067	10


Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
14.0	60

MOVE TIME

Page 96 of 112

CHANNEL CLOSING TIME

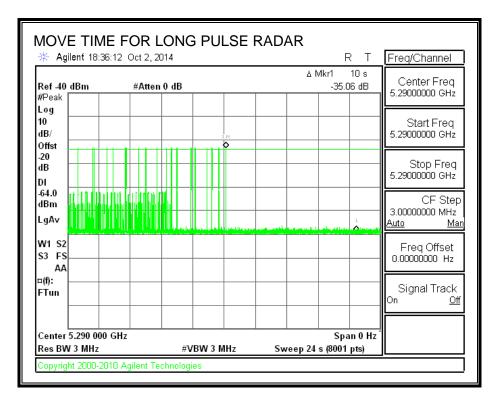


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 97 of 112

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 98 of 112

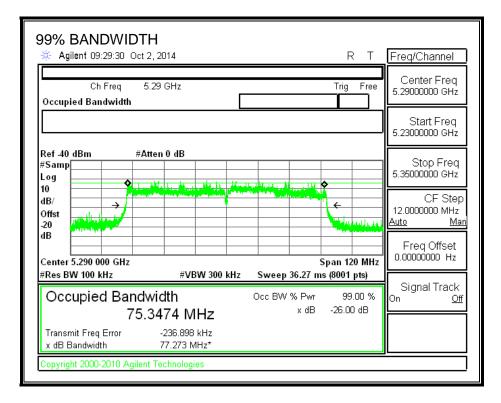
LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 99 of 112

5.4.6. NON-OCCUPANCY PERIOD

RESULTS


No EUT transmissions were observed on the test channel during the 30-minute observation time.

Agilent 17:59:	48 Oct 2, 2014			RT	Freq/Channel
ef 40 dBm Peak	#Atten 0 dB		14	Mkr1 1.8 ks -33.94 dB	Center Freq 5.29000000 GHz
og					
/ B/ <u>⊥</u> ℝ ffst ♦					Start Freq 5.29000000 GHz
0 D					Stop Freq 5.2900000 GHz
4.0 Bm ↓ gAv				1	CF Ste 3.00000000 MHz Auto M:
/1 S2 3 FS AA					Freq Offset 0.00000000 Hz
f): Гип					Signal Track On <u>O</u>
enter 5.290 000 (es BW 3 MHz		3W 3 MHz	Sween 2	Span 0 Hz ks (8001 pts)	

Page 100 of 112

5.4.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5247	5330	83	75.347	110.2	100

Page 101 of 112

DETECTION BANDWIDTH PROBABILITY

DE-	FECTION BAN	DWIDTH PROBABI	ILITY RESULTS		
ſ	Detection Band	width Test Results			
ſ	FCC Type 0 Wav	veform: 1 us Pulse V	Nidth, 1428 us PRI, 14	8 Pulses per	Burst
1	Frequency	Number of Trials		Detection	Mark
	(MHz)			(%)	
	5247	10	10	100	FL
	5248	10	10	100	
	5249	10	10	100	
	5250	10	10	100	
	5255	10	10	100	
	5260	10	10	100	
	5265	10	10	100	
	5270	10	10	100	
	5275	10	10	100	
	5280	10	10	100	
	5285	10	10	100	
	5290	10	10	100	
	5295	10	10	100	
	5300	10	10	100	
	5305	10	10	100	
	5310	10	10	100	
	5315	10	10	100	
	5320	10	10	100	
	5325	10	10	100	
	5330	10	10	100	FH

Page 102 of 112

5.4.8. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	ary			
Signal Type	Number of Trials	Detection (%)	Limit (%)	Pass/Fail
FCC Short Pulse Type 1	30	96.67	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	93.33	60	Pass
Aggregate		97.50	80	Pass
FCC Long Pulse Type 5	30	96.67	80	Pass
FCC Hopping Type 6	84	100.00	70	Pass

Page 103 of 112

TYPE 1 DETECTION PROBABILITY

Data Sheet for FC	C Short Puls	e Radar Type 1		
1 us Pulse Width				
Waveform	PRI	Pulses Per Burst	Test	Successful Detection
	(us)		(A/B)	(Yes/No)
1001	3066	18	A	No
1002	858	62	Α	Yes
1003	798	67	Α	Yes
1004	578	92	Α	Yes
1005	898	59	Α	Yes
1006	758	70	Α	Yes
1007	538	99	Α	Yes
1008	618	86	Α	Yes
1009	598	89	Α	Yes
1010	658	81	Α	Yes
1011	818	65	Α	Yes
1012	518	102	Α	Yes
1013	878	61	Α	Yes
1014	938	57	Α	Yes
1015	778	68	Α	Yes
1016	678	78	В	Yes
1017	2994	18	В	Yes
1018	2392	23	В	Yes
1019	1657	32	В	Yes
1020	1180	45	В	Yes
1021	610	87	В	Yes
1022	2876	19	В	Yes
1023	724	73	В	Yes
1024	2465	22	В	Yes
1025	552	96	В	Yes
1026	887	60	В	Yes
1027	2021	27	В	Yes
1028	557	95	В	Yes
1029	652	81	В	Yes
1030	2452	22	В	Yes

Page 104 of 112

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	4.9	161.00	23	Yes
2002	3.9	178.00	24	Yes
2003	1.4	230.00	29	Yes
2004	4.5	219.00	25	Yes
2005	2.1	172.00	24	Yes
2006	2.5	210.00	29	Yes
2007	1.5	172.00	28	Yes
2008	3.5	152.00	28	Yes
2009	1.5	160.00	25	Yes
2010	4.3	177.00	28	Yes
2011	4.7	159.00	25	Yes
2012	4.1	229.00	28	Yes
2013	4.5	189.00	28	Yes
2014	1.9	213.00	24	Yes
2015	2	230.00	27	Yes
2016	4.1	152.00	23	Yes
2017	4	174.00	24	Yes
2018	1.1	224.00	27	Yes
2019	4.3	184.00	23	Yes
2020	1	216.00	28	Yes
2021	4.6	214.00	24	Yes
2022	2.9	188.00	27	Yes
2023	2	175.00	29	Yes
2024	3.7	187.00	27	Yes
2025	1.5	193.00	23	Yes
2026	4.9	200.00	29	Yes
2027	2.6	230.00	28	Yes
2028	2.1	229.00	28	Yes
2029	1.4	222.00	28	Yes
2030	1.6	157.00	28	Yes

Page 105 of 112

TYPE 3 DETECTION PROBABILITY

Naveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	8.2	414.00	16	Yes
3002	7.6	398.00	17	Yes
3003	6	433.00	18	Yes
3004	5.2	356.00	16	Yes
3005	7.8	411.00	16	Yes
3006	6.8	428.00	17	Yes
3007	10	475.00	18	Yes
3008	8.9	344.00	18	Yes
3009	9.7	325.00	18	Yes
3010	7.5	311.00	18	Yes
3011	5.4	271.00	16	Yes
3012	8.5	426.00	16	Yes
3013	8	296.00	16	Yes
3014	9.3	390.00	17	Yes
3015	9.7	357.00	16	Yes
3016	9.2	303.00	16	Yes
3017	9.6	454.00	16	Yes
3018	9.2	271.00	16	Yes
3019	5	286.00	16	Yes
3020	7.6	279.00	16	Yes
3021	5.3	405.00	16	Yes
3022	9.6	404.00	16	Yes
3023	6.5	420.00	18	Yes
3024	5.4	416.00	17	Yes
3025	6.4	425.00	17	Yes
3026	6.1	296.00	18	Yes
3027	9.9	333.00	17	Yes
3028	5.5	422.00	18	Yes
3029	7.7	487	17	Yes

Page 106 of 112

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	18	390.00	13	Yes
4002	16.1	457.00	12	Yes
4003	17.9	428.00	16	No
4004	19.5	375.00	12	Yes
4005	15	328.00	13	Yes
4006	10.9	369.00	15	Yes
4007	14.2	372.00	12	Yes
4008	12.1	497.00	13	Yes
4009	14.6	371.00	16	Yes
4010	14.9	452.00	13	Yes
4011	18.1	497.00	16	Yes
4012	16.2	389.00	15	Yes
4013	18.6	393.00	15	Yes
4014	10.1	354.00	12	Yes
4015	18.1	273.00	13	Yes
4016	12	360.00	14	Yes
4017	14.6	290.00	13	Yes
4018	19	302.00	13	Yes
4019	11.3	293.00	15	Yes
4020	18.7	400.00	16	Yes
4021	16.2	327.00	15	No
4022	18.6	343.00	14	Yes
4023	10.9	403.00	14	Yes
4024	17.2	482.00	14	Yes
4025	17.2	298.00	12	Yes
4026	13.1	300.00	16	Yes
4027	15.7	411.00	12	Yes
4028	16.7	328.00	15	Yes
4029	10.4	347.00	13	Yes
4030	19.6	378.00	12	Yes

Page 107 of 112

TYPE 5 DETECTION PROBABILITY

Sheet for FCC L Trial	Successful Detection	
	(Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	No	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

Note: The Type 5 randomized parameters are shown in a separate document.

Page 108 of 112

TYPE 6 DETECTION PROBABILITY

	for FCC Hopping Rada Width, 333 us PRI, 9		1 Burst per Hop	9
NTIA Aug	ust 2005 Hopping Se	quence		
Trial	Starting Index	Signal Generator	Hops within	Successful
THAT	Within Sequence	Frequency	Detection BW	Detection
		(MHz)		(Yes/No)
1	186	5247	18	Yes
2	661	5248	15	Yes
3	1136	5249	16	Yes
4	1611	5250	18	Yes
5	2086	5251	14	Yes
6	2561	5252	16	Yes
7	3036	5253	16	Yes
8	3511	5254	12	Yes
9	3986	5255	17	Yes
10	4461	5256	16	Yes
11	4936	5257	13	Yes
12	5411	5258	8	Yes
13	5886	5259	17	Yes
14	6361	5260	18	Yes
15	6836	5261	18	Yes
16	7311	5262	15	Yes
17	7786	5263	16	Yes
18	8261	5264	25	Yes
19	8736	5265	22	Yes
20	9211	5266	13	Yes
21	9686	5267	17	Yes
22	10161	5268	10	Yes
23	10636	5269	24	Yes
24	11111	5270	18	Yes
25	11586	5271	17	Yes
26	12061	5272	19	Yes
27	12536	5273	14	Yes
28	13011	5274	20	Yes
29	13486	5275	17	Yes
30	13961	5276	21	Yes
31	14436	5277	23	Yes
32	14911	5278	17	Yes
33	15386	5279	16	Yes
34	15861	5280	18	Yes
35	16336	5281	13	Yes
36	16811	5282	17	Yes
37	17286	5283	17	Yes
38	17761	5284	9	Yes
39	18236	5285	13	Yes

Page 109 of 112

TYPE 6 DETECTION PROBABILITY (CONTINUED)

40	18711	5286	18	Yes
41	19186	5287	12	Yes
42	19661	5288	16	Yes
43	20136	5289	15	Yes
44	20611	5290	21	Yes
45	21086	5291	19	Yes
46	21561	5292	15	Yes
47	22036	5293	21	Yes
48	22511	5294	16	Yes
40	22986	5295	12	Yes
4 <i>5</i>	23461	5296	15	Yes
51	23936	5297	20	Yes
52	24411	5298	18	Yes
53	24886	5299	24	Yes
55	25361	5300	15	Yes
55	25836	5301	7	Yes
55	26311	5302	11	Yes
57	26786	5303	16	Yes
57	27261	5304	18	Yes
59	27736	5305	16	Yes
60	28211	5306	10	Yes
61	28686	5307	19	Yes
62	20000	5308	20	Yes
63	29636	5309	13	Yes
64	30111	5310	13	Yes
65	30586	5311	14	Yes
66	31061	5312	20	Yes
67	31536	5313	17	Yes
68	32011	5314	16	Yes
69	32486	5315	18	Yes
70	-32575	5316	14	Yes
71	-32100	5317	20	Yes
72	-31625	5318	17	Yes
73	-31150	5319	18	Yes
74	-30675	5320	20	Yes
75	-30200	5321	20	Yes
76	-29725	5322	22	Yes
77	-29725	5323	13	Yes
78	-29250	5323	7	Yes
78		5325	22	Yes
80	-28300 -27825	5325	16	Yes
80	-27350	5320	18	Yes
81	-26875	5328	18	Yes
82		5328	25	Yes
83	-26400 -25925	5330	23	Yes
04	-25925	2220	22	res

Page 110 of 112