

SUPPLEMENTARY RF EXPOSURE REPORT

REPORT NO.: SA140702E01C R1

MODEL NO.: AP-7502

FCC ID: UZ7AP7502

RECEIVED: Sep. 16, 2014

TESTED: Oct. 31, 2014

ISSUED: June 05, 2015

APPLICANT: Zebra Technologies Corporation

ADDRESS: 1 Zebra Plaza, Holtsville, NY 11742

MANUFACTURER: Accton Technology Corporation

ADDRESS: 1, Creation 3rd Rd., Science-based Industrial Park, Hsinchu 300, Taiwan, R.O.C.

- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
- **LAB ADDRESS :** No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.

TEST LOCATION (1): No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.

TEST LOCATION (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

TABLE OF CONTENTS

REF	PORT ISSUE HISTORY RECORD OF EUT (AP-7502)	.3
REL	EASE CONTROL RECORD	.3
1.	CERTIFICATION	. 4
2.	RF EXPOSURE LIMIT	. 5
3.	MPE CALCULATION FORMULA	. 5
4.	CLASSIFICATION	. 5
5.	ANTENNA GAIN	. 6
6.	CALCULATION RESULT OF MAXIMUM CONDUCTED POWER	. 7

REPORT ISSUE HISTORY RECORD OF EUT (AP-7502)

ATTACHMENT NO.	ISSUE DATE	DESCRIPTION
140702E01	Aug. 12, 2014	Original release
140702E01C	June 05, 2015	Add DFS band <5250~5350MHz & 5500~5700MHz>

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
SA140702E01C	Original release	June 04, 2015
SA140702E01C R1	Modified the information of applicant & address	June 05, 2015

1. CERTIFICATION

PRODUCT:	Dual Radio Wallplate AP
BRAND NAME:	Motorola
MODEL NO.:	AP-7502
TEST SAMPLE:	ENGINEERING SAMPLE
APPLICANT:	Zebra Technologies Corporation
TESTED:	Oct. 31, 2014
STANDARDS:	FCC Part 2 (Section 2.1091)
	KDB 447498 D03
	IEEE C95.1

The above equipment (Model: AP-7502) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	(Midoli Peng, Specialist)	Date: June 05, 2015
Approved by :	(May Chen, Manager)	Date: June 05, 2015

2. RF EXPOSURE LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

FREQUENCY RANGE (MHz)	ELECTRIC FIELD STRENGTH (V/m)	POWER DENSITY (mW/cm ²)	AVERAGE TIME (minutes)				
LIMITS FOR GENERAL POPULATION / UNCONTROLLED EXPOSURE							
300-1500			F/1500	30			
1500-100,000			1.0	30			

F = Frequency in MHz

3. MPE CALCULATION FORMULA

 $Pd = (Pout^*G) / (4^*pi^*r^2)$

where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

pi = 3.1416

r = distance between observation point and center of the radiator in cm

4. CLASSIFICATION

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as **Mobile Device**.

5. ANTENNA GAIN

The antennas provided to the EUT, please refer to the following table:

	WLAN (2.4GHz)							
Transmitter Circuit	PCB Chain NO.	Antenna Type	Antenna Gain(dBi) Including cable loss	Connector type	Frequency range (GHz to GHz)			
Chain (0)	ALA140-051025	PCB-Dipole	5.81	I-Pex	2400~2483.5			
Chain (1)	ALA140-051024	PCB-Dipole	4.52	I-Pex	2400~2483.5			
WLAN (5GHz)								
Transmitter Circuit	PCB Chain NO.	Antenna Type	Antenna Gain(dBi) Including cable loss	Connector type	Frequency range (GHz to GHz)			
Chain (0)	ALA140-091020	PCB-Dipole	7.22	I-Pex	5150~5850			
Chain (1)	ALA140-091020	PCB-Dipole	7.3	I-Pex	5150~5850			
BT								
Transmitter Circuit	PCB Chain NO.	Antenna Type	Antenna Gain(dBi) Including cable loss	Connector type	Frequency range (GHz to GHz)			
Chain (0)	ALC140-051020	PCB-Dipole	4.74	I-Pex	2400~2483.5			

6. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER

For 15.247 and 15.407(U-NII-1 & U-NII-3) data was copied from the original test report (Report No.: SA140702E01).

For WLAN: 15.247(2.4GHz)

802.11b

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm ²)	LIMIT (mW/cm²)
2412 - 2462	185.368	8.20	20	0.24365	1.00
NOTE Dise stiens		$G_{1/20}$, $A_{0}G_{2/20}^{2}$			

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 8.20$ dBi.

802.11g

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
2412 - 2462	342.766	8.20	20	0.45053	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 8.20$ dBi.

802.11n (HT20)

	FREQUENCY BAND (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm ²)	LIMIT (mW/cm²)
2412 - 2462 341.779 8.20 20 0.44924 1.00	2412 - 2462	341.779	8.20	20	0.44924	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 8.20$ dBi.

802.11n (HT40)

FREQUENCY BAND (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm ²)	LIMIT (mW/cm²)
2422 - 2452	152.641	8.20	20	0.20063	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 8.20$ dBi.

For WLAN: 15.407(5GHz)

802.11a

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
5180 - 5240, 5745 - 5825	77.907	10.27	20	0.16493	1.00
5260 - 5320, 5500 - 5700	61.255	10.27	20	0.12968	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 10.27$ dBi.

802.11n (HT20)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm ²)	LIMIT (mW/cm²)
5180 – 5240, 5745 - 5825	79.398	10.27	20	0.16809	1.00
5260 - 5320, 5500 - 5700	61.751	10.27	20	0.13073	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 10.27 dBi.$

802.11n (HT40)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm ²)	LIMIT (mW/cm²)
5190 - 5230, 5755 - 5795	56.579	10.27	20	0.11978	1.00
5270 - 5310, 5510 - 5670	52.758	10.27	20	0.11169	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 10.27$ dBi.

802.11ac (VHT20)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm ²)	LIMIT (mW/cm²)
5180 – 5240, 5745 - 5825	80.513	10.27	20	0.17045	1.00
5260 - 5320, 5500 - 5700	63.532	10.27	20	0.13450	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 10.27 dBi.$

802.11ac (VHT40)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm ²)	LIMIT (mW/cm²)
5190 - 5230, 5755 - 5795	57.373	10.27	20	0.12146	1.00
5270 - 5310, 5510 - 5670	53.782	10.27	20	0.11386	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 10.27 dBi.$

802.11ac (VHT80)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm ²)	LIMIT (mW/cm²)
5210 - 5290, 155	6.498	10.27	20	0.01376	1.00
5290, 5530 - 5610	41.169	10.27	20	0.08716	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 10.27$ dBi.

For Bluetooth:

GFSK

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm²)	LIMIT (mW/cm²)
2402-2480	2.118	4.74	20	0.00126	1.00

CONCLUSION:

Both of the Bluetooth and WLAN can transmit simultaneously, the formula of calculated the MPE is:

 $CPD_1 / LPD_1 + CPD_2 / LPD_2 + \dots etc. < 1$

CPD = Calculation power density

LPD = Limit of power density

For WLAN (2.4GHz/ 5GHz) and Bluetooth:

Therefore, the worst-case situation is 0.45053 / 1 + 0.17045 / 1 + 0.00126 / 1 = 0.622, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

-- END ---