

FCC RADIO TEST REPORT

FCC ID	: UZ72119976501
Equipment	: RFID Reader
Brand Name	: ZEBRA
Model Name	: 21-199765-01
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Mar. 07, 2024 and testing was performed from Mar. 16, 2024 to Mar. 27, 2024. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	5
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	EUT Operation Test Setup	9
	2.5	Measurement Results Explanation Example	9
3	Test	Result	10
	3.1	Number of Channel Measurement	10
	3.2	Hopping Channel Separation Measurement	12
	3.3	Dwell Time Measurement	14
	3.4	20dB and 99% Bandwidth Measurement	16
	3.5	Output Power Measurement	19
	3.6	Conducted Band Edges Measurement	21
	3.7	Conducted Spurious Emission Measurement	23
	3.8	Radiated Band Edges and Spurious Emission Measurement	25
	3.9	Antenna Requirements	29
4	List o	of Measuring Equipment	30
5	Meas	urement Uncertainty	31
Арр	oendix	A. Radiated Spurious Emission	
Арр	oendix	B. Radiated Spurious Emission Plots	
Арр	oendix	c C. Duty Cycle Plots	

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR430652	01	Initial issue of report	Apr. 03, 2024
FR430652	02	Revise Section 2.1, Section 3.1.5, and Section 3.5.5 This report is an updated version, replacing the report issued on Apr. 03, 2024.	Apr. 09, 2024
FR430652	03	Revise Section 3.5.1 This report is an updated version, replacing the report issued on Apr. 09, 2024.	Apr. 10, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting Only	-
3.5	15.247(b)(2)	Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	3.03 dB under the limit at 2781.75 MHz
3.9	15.203 15.247(b)	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty". **Disclaimer:**

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Rebecca Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	RFID Reader			
Brand Name	ZEBRA			
Model Name	21-199765-01			
FCC ID	UZ72119976501			
EUT supports Radios application	UHF RFID			
HW Version	REV: A			
SW Version	3.24.52.0			
MFD	16JAN24			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer.

Supported Unit used in test configuration and system					
POE adapter	Brand Name	Zebra	Model Name	PD-9001GR/AT/AC	

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard				
Tx/Rx Frequency Range	902.75 MHz ~ 927.25 MHz			
Number of Channels	50			
Maximum Output Power to Antenna	28.26 dBm (0.6699W)			
20dB Bandwidth	0.202 MHz			
99% Occupied Bandwidth	0.278 MHz			
Antenna Type / Gain	Patch Antenna with gain 7.5 dBi			
Type of Modulation ASK				

Remark: The above EUT's information was declared by manufacturer. Please refer to Disclaimer in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No. 03CH07-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Tast Sita No	Sporton Site No.			
Test Sile No.	TH05-HY (TAF Code: 3786)			
Remark	The Conducted Spurious Emissions test item subcontracted to Sporton International Inc. Wensan Laboratory.			

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	902.75	28	916.25
	2	903.25	29	916.75
	3	903.75	30	917.25
	4	904.25	31	917.75
	5	904.75	32	918.25
	6	905.25	33	918.75
	7	905.75	34	919.25
	8	906.25	35	919.75
	9	906.75	36	920.25
	10	907.25	37	920.75
	11	907.75	38	921.25
	12	908.25	39	921.75
	13	908.75	40	922.25
902.75-927.25 MHz	14	909.25	41	922.75
	15	909.75	42	923.25
	16	910.25	43	923.75
	17	910.75	44	924.25
	18	911.25	45	924.75
	19	911.75	46	925.25
	20	912.25	47	925.75
	21	912.75	48	926.25
	22	913.25	49	926.75
	23	913.75	50	927.25
	24	914.25		
	25	914.75		
	26	915.25		
	27	915.75		

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases			
Test Item	Data Rate / Modulation			
	Bluetooth – LE / GFSK			
Conducted	Mode 1: UHF RFID Tx 902.75 MHz			
Test Cases	Mode 2: UHF RFID Tx 915.75 MHz			
	Mode 3: UHF RFID Tx 927.25 MHz			
Dedicted	Mode 1: UHF RFID Tx 902.75 MHz			
Radiated	Mode 2: UHF RFID Tx 915.75 MHz			
Test Cases	Mode 3: UHF RFID Tx 927.25 MHz			

2.3 Connection Diagram of Test System

<Radiated Spurious Emission Mode>

2.4 EUT Operation Test Setup

The RF test items, utility "Putty 0.70" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Test Mode :	UHF RFID		Temperature :		20~25℃
Test Engineer :	Shiming Liu		Relative Hun	nidity :	50~56%
Number of (Chan	Hopping inel)	Limits (Channe) 21)		Pass/Fail
50)	≧50		Pass	

Number of Hopping Channel Plot on Channel 00 - 49

Date: 27.MAR.2024 00:35:00

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 902 – 928 MHz band shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

Test Mode :		UHF RFID		perature :	20~25℃	
Test Engine	est Engineer : Shiming Liu		Rela	ative Humidity :	50~56%	
Mod.	ΝΤΧ	Freq. (MHz)	Hopping Channel Hoppin Separation Measurement Separation (MHz) Lim		nannel asurement Hz)	Pass/Fail
UHF RFID	1	902.75	0.498	0.195	6	Pass
UHF RFID	1	915.75	0.499	0.1938		Pass
UHF RFID	1	927.25	0.499	0.201	6	Pass

Channel Separation Plot on 902.75 MHz

Channel Separation Plot on 915.75 MHz

Date: 23.MAR.2024 05:51:29

Channel Separation Plot on 927.25 MHz

Date: 23.MAR.2024 05:58:46

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Test Mode :	UHF RF	FID	_	Ten	perature :		20~25℃		
Test Engineer :	Shiming	g Liu		Relative Humidity :			50~56%	6	
Mod. Cha Ra	nnel nber nte	Package Transfer Time (msec)	Hops (Occupa Time (h	Over ancy ops)	Dwell Ti (sec)	me	Limi (seo	its c)	Pass/Fail
Nomal 5	0	310.14	1.00)	0.310		0.4	ļ	Pass
		Pack	age Trans	sfer Tir	ne Plot				
Spectrum Ref Level 40.00 dbm Offset 21.23 •Att 30 db SWT •IP: Max 0 90 dbm •JP: Max 0 90 dbm 20 dbm 0 90 dbm 10 dbm 0 90 dbm -20 dbm 0 -10 dbm -30 dbm -10 dbm -10 dbm -20 dbm 01 -25.000 dbm -20 dbm -50 dbm -20 dbm -20 dbm -50 dbm -20 dbm -20 dbm -50 dbm -20 dbm -20 dbm -20 dbm -20 dbm -20 dbm -20 dbm -20 dbm -20 dbm -50 dbm -20 dbm -20 dbm	dB = RBW 1 MH 1 s = VBW 1 MH	M1[1] ————————————————————————————————————	25.10 (dm) 1.45 ms -0.50 d0 310.14 ms -0.50 d0 -0.50 d0 -0.	Spectrum Ref Level 40 Att SGL 61Pk Max 30 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm	0.00 d8m Offset 21.29 30 d8 • SWT 20	da e Paw 10 5 s vbw 30	00 kHz		

Remark: Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Test Mode :	UH	UHF RFID Temperature : 20~2		20~25°C		
Test Enginee	r: Shi	Shiming Liu		Relative Humidity :	50~56%	
Mod.	NTX	Freq.(MHz)		20db BW (MHz)		Pass/Fail
UHF RFID	1	902.75		0.196		Pass
UHF RFID	1	915.75		0.194		Pass
UHF RFID	1	927.25	0.202		Pass	

20 dB Bandwidth Plot on 902.75 MHz

20 dB Bandwidth Plot on 915.75 MHz

20 dB Bandwidth Plot on 927.25 MHz

Date: 23.MAR.2024 05:23:41

3.4.6 Test Result of 99% Occupied Bandwidth

Test Mode	:	UHF RFID		Temperature :	20~25℃
Test Engine	eer:	Shiming Liu		Relative Humidity :	50~56%
Mod.	ΝΤΧ	Freq. (MHz)	9	9% Bandwidth (MHz)	Pass/Fail
UHF RFID	1	902.75		0.223	Reporting Only
UHF RFID	1	915.75		0.227	Reporting Only
UHF RFID	1	927.25		0.278	Reporting Only

99% Occupied Bandwidth Plot on 902.75 MHz

99% Occupied Bandwidth Plot on 915.75 MHz

99% Occupied Bandwidth Plot on 927.25 MHz

Date: 22.MAR.2024 07:48:06

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

Section 15.247 (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions: (1)(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Conducted output power limit specified in paragraph 15.247 (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b) (1), (b) (2), and (b) (3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Power limit reduction = Ant gain – 6dBi = 7.5dBi – 6dBi Conducted power limit = 28.5dBm

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Output Power

Test Mode :	UHF F	RFID	Temperature :	20~25°C
Test Engineer :	Shimi	ng Liu	Relative Humidity :	50~56%
			RF Power (dBm)	
Frequency (MHz)		UHF	Max. Limits (dBm)	Pass/Fail
902.75		28.23	28.5	Pass
914.75		28.25	28.5	Pass
927.25		28.26	28.5	Pass

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

Spectrum Analyzer

3.6.5 Test Result of Conducted Band Edges

Test Mode :	UHF RFID	Temperature :	20~25℃
Test Engineer :	Shiming Liu	Relative Humidity :	50~56%

Low Band Edge Plot on 902.75 MHz

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Test Mode :	UHF RFID	Temperature :	20~25℃
Test Engineer :	Shiming Liu	Relative Humidity :	50~56%

Hopping Mode Low Band Edge Plot on 902.75 MHz Hopping Mode Low Band Edge Plot on 927.25 MHz

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

3.7.5 Test Result of Conducted Spurious Emission

Test Mode :	UHF RFID	Temperature :	20~25℃
Test Engineer :	Shiming Liu	Relative Humidity :	50~56%

CSE Plot on 902.75 MHz between 30MHz ~ 10 GHz CSE Plot on 915.75 MHz between 30MHz ~ 10 GHz

CSE Plot on 927.25 MHz between 30MHz ~ 10 GHz

Date: 23.MAR.2024 05:47:13

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.8.3 Test Procedures

- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log (Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

3.8.4 Test Setup

For radiated test below 30MHz

Spectrum Analyzer / Receiver

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.8.7 Duty Cycle

Please refer to Appendix C.

3.8.8 Test Result of Radiated Spurious Emission

Please refer to Appendix A and B.

3.9 Antenna Requirements

3.9.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.9.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35419 & 03	30MHz~1GHz	Apr. 23, 2023	Mar. 20, 2024~ Mar. 21, 2024	Apr. 22, 2024	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00075962	1GHz ~ 18GHz	Nov. 27, 2023	Mar. 20, 2024~ Mar. 21, 2024	Nov. 26, 2024	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Feb. 23, 2024	Mar. 20, 2024~ Mar. 21, 2024	Feb. 22, 2025	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 20, 2023	Mar. 20, 2024~ Mar. 21, 2024	Apr. 19, 2024	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	Oct. 02, 2023	Mar. 20, 2024~ Mar. 21, 2024	Oct. 01, 2024	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Mar. 24, 2023	Mar. 20, 2024~ Mar. 21, 2024	Mar. 23, 2024	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Mar. 28, 2023	Mar. 20, 2024~ Mar. 21, 2024	Mar. 27, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4 MY24971/4 MY15682/4	30MHz to 18GHz	Feb. 21, 2024	Mar. 20, 2024~ Mar. 21, 2024	Feb. 20, 2025	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4 MY24971/4	9kHz to 30MHz	Feb. 21, 2024	Mar. 20, 2024~ Mar. 21, 2024	Feb. 20, 2025	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 15, 2023	Mar. 20, 2024~ Mar. 21, 2024	Sep. 14, 2024	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801606/2	9KHz ~ 40GHz	Apr. 20, 2023	Mar. 20, 2024~ Mar. 21, 2024	Apr. 19, 2024	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	N/A	Mar. 20, 2024~ Mar. 21, 2024	N/A	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Mar. 20, 2024~ Mar. 21, 2024	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	N/A	Mar. 20, 2024~ Mar. 21, 2024	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Mar. 20, 2024~ Mar. 21, 2024	N/A	Radiation (03CH07-HY)
Software	Audix	E3	N/A	N/A	N/A	Mar. 20, 2024~ Mar. 21, 2024	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XD1148	N/A	Nov. 02, 2023	Mar. 20, 2024~ Mar. 21, 2024	Nov. 01, 2024	Radiation (03CH07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Mar. 16, 2024~ Mar. 27, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Jul. 27, 2023	Mar. 16, 2024~ Mar. 27, 2024	Jul. 26, 2024	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GHz	Jul. 27, 2023	Mar. 16, 2024~ Mar. 27, 2024	Jul. 26, 2024	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2023	Mar. 16, 2024~ Mar. 27, 2024	Aug. 22, 2024	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.3 dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.6.dP
of 95% (U = 2Uc(y))	4.0 aB

Appendix A. Radiated Spurious Emission

Tost Engineer -	Stan Heich and Kon Wu	Temperature :	20.6~22.3°C
rest Engineer .		Relative Humidity :	40.7~48.8%

UHF RFID

RFID (Band Edge @ 3m)

UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		48.09	31.31	-8.69	40	44.71	15.18	1.34	29.92	-	-	Ρ	Н
		69.42	29.55	-10.45	40	45.67	12.21	1.58	29.91	-	-	Ρ	Н
		174.18	36.51	-6.99	43.5	48.53	15.34	2.47	29.83	-	-	Ρ	Н
		360.2	36.83	-9.17	46	42.57	20.66	3.41	29.81	-	-	Ρ	Н
		411.3	37.42	-8.58	46	41.25	22.36	3.62	29.81	-	-	Ρ	Н
		554.8	38.37	-7.63	46	38.42	25.45	4.22	29.72	-	-	Ρ	Н
	*	902.75	119.96	-	-	114.92	28.59	5.28	28.83	128	0	Ρ	Н
													Н
													Η
													Н
													Н
													Н
902.75MHZ		35.67	35.57	-4.43	40	42.66	21.67	1.16	29.92	100	0	Q	V
		69.69	33.7	-6.3	40	49.78	12.24	1.59	29.91	-	-	Ρ	V
		176.88	35.78	-7.72	43.5	47.94	15.18	2.49	29.83	-	-	Ρ	V
		413.4	39.32	-6.68	46	43.07	22.43	3.63	29.81	-	-	Ρ	V
		563.2	38.73	-7.27	46	38.38	25.84	4.24	29.73	-	-	Ρ	V
		628.3	32.45	-13.55	46	31.71	26	4.46	29.72	-	-	Ρ	V
	*	902.75	118.33	-	-	113.29	28.59	5.28	28.83	200	36	Ρ	V
													V
													V
													V
													V

UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		47.82	32.26	-7.74	40	45.51	15.33	1.34	29.92	-	-	P	H
		70.23	30.69	-9.31	40	46.75	12.26	1.59	29.91	-	-	Р	Н
		173.37	36.7	-6.8	43.5	48.69	15.38	2.46	29.83	-	-	Р	Н
		405.7	39.87	-6.13	46	44.01	22.09	3.59	29.82	-	-	Р	Н
		552	39.14	-6.86	46	39.6	25.04	4.21	29.71	-	-	Р	Н
		620.6	35.58	-10.42	46	35.2	25.68	4.44	29.74	-	-	Р	Н
	*	915.75	120.18	-	-	114.89	28.77	5.31	28.79	127	0	Р	Н
													Н
													Н
													Н
													Н
RFID													Н
915.75MHZ		35.4	35.19	-4.81	40	42.15	21.8	1.16	29.92	100	9	Q	V
		70.5	33.33	-6.67	40	49.38	12.26	1.6	29.91	-	-	Р	V
		177.42	36.8	-6.7	43.5	48.99	15.15	2.49	29.83	-	-	Р	V
		407.1	39.66	-6.34	46	43.72	22.16	3.6	29.82	-	-	Р	V
		547.1	39.07	-6.93	46	40.21	24.39	4.19	29.72	-	-	Р	V
		640.9	31.97	-14.03	46	30.86	26.29	4.5	29.68	-	-	Р	V
	*	915.75	118.34	-	-	113.05	28.77	5.31	28.79	210	31	Р	V
													V
													V
													V
													V
													V

UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level (dBuV)	Factor	Loss (dB)	Factor	Pos	Pos (deg)	Avg. (P/A)	(н/у)
		48.09	33.58	-6.42	40	46.98	15.18	1.34	29.92	-	-	P	н
		70.23	28.92	-11.08	40	44.98	12.26	1.59	29.91	-	-	Р	н
		173.37	36.56	-6.94	43.5	48.55	15.38	2.46	29.83	-	-	Р	н
		356	40	-6	46	45.92	20.49	3.39	29.8	-	-	Р	н
		576.5	38.46	-7.54	46	38.32	25.61	4.29	29.76	-	-	Р	н
		671.7	36	-10	46	34.8	26.23	4.6	29.63	-	-	Р	Н
	*	927.25	120.5	-	-	114.71	29.2	5.34	28.75	141	8	Ρ	Н
													Н
													н
													Н
PEID													Н
927 25MHz													н
527.200012		35.94	35.47	-4.53	40	42.69	21.54	1.16	29.92	100	28	Q	V
		71.04	32.21	-7.79	40	48.26	12.26	1.6	29.91	-	-	Р	V
		173.1	36.97	-6.53	43.5	48.95	15.39	2.46	29.83	-	-	Р	V
		411.3	39.53	-6.47	46	43.36	22.36	3.62	29.81	-	-	Р	V
		559.7	39.41	-6.59	46	39.02	25.89	4.23	29.73	-	-	Р	V
		699.7	33.08	-12.92	46	31.75	26.25	4.68	29.6	-	-	Р	V
	*	927.25	118.41	-	-	112.62	29.2	5.34	28.75	207	341	Р	V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Bomark	2. AI	results are PA	ss against il	mit line.	onav loval de	wn 20dh							
Rellidik	3. NO 4 Тн		sition marked	las "-" m	ency level do	pected en	nission foun	d and em	nission lev	el has at	t least 60	1B mai	rain
	ag	ainst limit or er	nission is no	ise floor	only.							na	3

UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (dea)	Avg. (P/A)	(H/V)
		2708.25	52.25	-21.75	74	69.29	32.33	9.59	58.96	177	344	P	H
		2708.25	50.47	-3.53	54	67.51	32.33	9.59	58.96	177	344	А	Н
		3611	41.31	-32.69	74	57.13	32.77	10.84	59.43	-	-	Ρ	Н
		4513.75	43.02	-30.98	74	56.28	33.98	12.29	59.53	-	-	Ρ	Н
		5416.5	41.29	-32.71	74	50.43	34.73	13.33	57.2	-	-	Ρ	Н
		8124.75	41.2	-32.8	74	46.82	36	15.87	57.49	-	-	Ρ	Н
RFID		9027.5	43.29	-30.71	74	48.94	36.15	16.83	58.63	-	-	Ρ	Н
902.75MHz		2708.25	50.71	-23.29	74	67.75	32.33	9.59	58.96	300	165	Ρ	V
		2708.25	48.64	-5.36	54	65.68	32.33	9.59	58.96	300	165	А	V
		3611	41.82	-32.18	74	57.64	32.77	10.84	59.43	-	-	Ρ	V
		4513.75	44.93	-29.07	74	58.19	33.98	12.29	59.53	-	-	Ρ	V
		5416.5	41.34	-32.66	74	50.48	34.73	13.33	57.2	-	-	Ρ	V
		8124.75	41.03	-32.97	74	46.65	36	15.87	57.49	-	-	Ρ	V
		9027.5	42.97	-31.03	74	48.62	36.15	16.83	58.63	-	-	Ρ	V
		2747.25	50.05	-23.95	74	67.12	32.2	9.68	58.95	306	295	Ρ	Н
		2747.25	47.72	-6.28	54	64.79	32.2	9.68	58.95	306	295	Ρ	Н
		3663	42.63	-31.37	74	58.17	33.03	10.88	59.45	-	-	Ρ	Н
		4578.75	45.45	-28.55	74	58.2	34.26	12.41	59.42	-	-	Ρ	Н
		7326	42.65	-31.35	74	49.09	35.8	15.34	57.58	-	-	Ρ	Н
		8241.75	42.48	-31.52	74	48.24	35.82	15.93	57.51	-	-	Ρ	Н
PEID		9157.5	42.7	-31.3	74	48.11	36.19	17.26	58.86	-	-	Ρ	Н
914 75MHz		2747.25	52.44	-21.56	74	69.51	32.2	9.68	58.95	218	319	Ρ	V
••••••		2747.25	50.68	-3.32	54	67.75	32.2	9.68	58.95	218	319	Ρ	V
		3663	44.97	-29.03	74	60.51	33.03	10.88	59.45	-	-	Ρ	V
		4578.75	44.42	-29.58	74	57.17	34.26	12.41	59.42	-	-	Ρ	V
		7326	42.28	-31.72	74	48.72	35.8	15.34	57.58	-	-	Ρ	V
		8241.75	43.57	-30.43	74	49.33	35.82	15.93	57.51	-	-	Ρ	V
		9157.5	44.16	-29.84	74	49.57	36.19	17.26	58.86	-	-	Ρ	V

UHF RFID RFID (Harmonic @ 3m)

UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	ļ				Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2781.75	50.68	-23.32	74	67.57	32.3	9.75	58.94	200	344	Р	Н
		2781.75	48.96	-5.04	54	65.85	32.3	9.75	58.94	200	344	Α	Н
		3709	41.04	-32.96	74	56.48	33.12	10.91	59.47	-	-	Р	Н
		4636.25	43.85	-30.15	74	56.53	34.15	12.49	59.32	-	-	Р	Н
		7418	42.3	-31.7	74	48.89	35.66	15.42	57.67	-	-	Ρ	Н
		8345.25	42.64	-31.36	74	48.47	35.7	16	57.53	-	-	Р	Н
RFID													
927.25MHz		2781.75	53.01	-20.99	74	69.9	32.3	9.75	58.94	209	324	Р	V
		2781.75	50.97	-3.03	54	67.86	32.3	9.75	58.94	209	324	А	V
		3709	44.2	-29.8	74	59.64	33.12	10.91	59.47	-	-	Р	V
		4636.25	45.36	-28.64	74	58.04	34.15	12.49	59.32	-	-	Р	V
		7418	43.68	-30.32	74	50.27	35.66	15.42	57.67	-	-	Р	V
		8345.25	43.63	-30.37	74	49.46	35.7	16	57.53	-	-	Р	V
	1. No	o other spurious	s found.										
	2. Al	l results are PA	SS against F	eak and	Average lim	it line.							
Remark	3. No	on restricted ba	nd limit is rad	dio frequ	ency level do	own 20db.							
	4. Tł	e emission pos	ition marked	as "-" m	eans no sus	pected em	ission found	d with suff	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Note symbol

A calculation example for radiated spurious emission is shown as below:

UHF RFID	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
UHF RFID		2781.75	50.68	-23.32	74	67.57	32.3	9.75	58.94	200	344	Ρ	н
927.25MHz		2781.75	48.96	-5.04	54	65.85	32.3	9.75	58.94	200	344	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix B. Radiated Spurious Emission Plots

Toot Engineer	Stan Heigh and Kan Wu	Temperature :	20.6~22.3°C
rest Engineer :		Relative Humidity :	40.7~48.8%

RFID RFID RFID 902.75MHz Horizontal Vertical Improve the second of the seco

RFID (Band Edge @ 3m)

RFID (Harmonic @ 3m)

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
UHF RFID	86.26	49400	0.02	30Hz

tent Spectrum Ana	lyzer - Swept SA					
RL RF	50 Q DC		SENSE:INT	ALIGNAUTO	04:52:33 AM Mar 20, 2024	Marker
arker 3∆57	7.2667 ms	DNO: East	, Trig: Free Run	#Avg Type: RMS Avg Hold: 1/1	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Marker
		IFGain:Low	#Atten: 30 dB	_	DET P N N N N	Select Marke
dB/div Ref	126.99 dBµV			L	∆Mkr3 57.27 ms 0.197 dB	
17			<u>∧1463∆4</u>			
07	X	_				Norr
.0	17 504					
.0						
0						De
.0						
.0						
.0						Fixe
.0						
	0000 8411-				0.000	
s BW 8 MHz		#VBV	8.0 MHz	Sweep 2	5pan 0 Hz 200.0 ms (3001 pts)	
R MODE TROUSO	×		Y	UNCTION	FUNCTION WALLE	
Δ2 1 t	(Δ)	49.40 ms (∆)	0.450 dB			
Δ4 1 t	(Δ)	44.53 ms 57.27 ms (Δ)	0.197 dB			Bronortic
4 F 1 t		44.53 ms	107.713 dBµV			Properue
5						
						м
						1
					×	