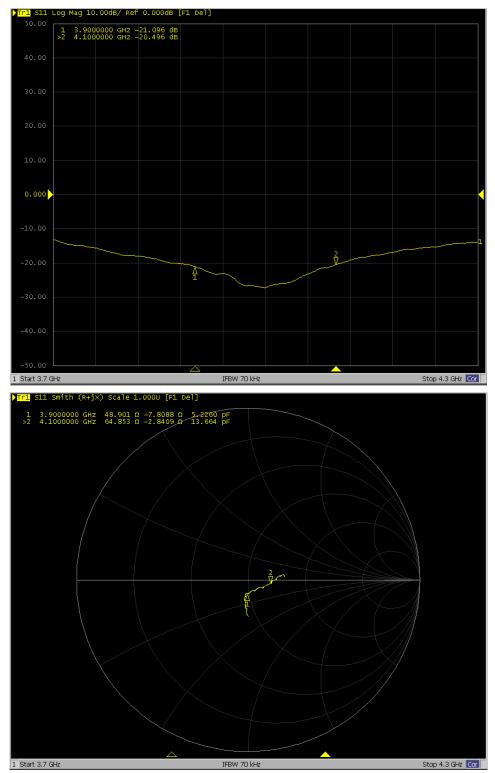

Impedance Measurement Plot for Head TSL

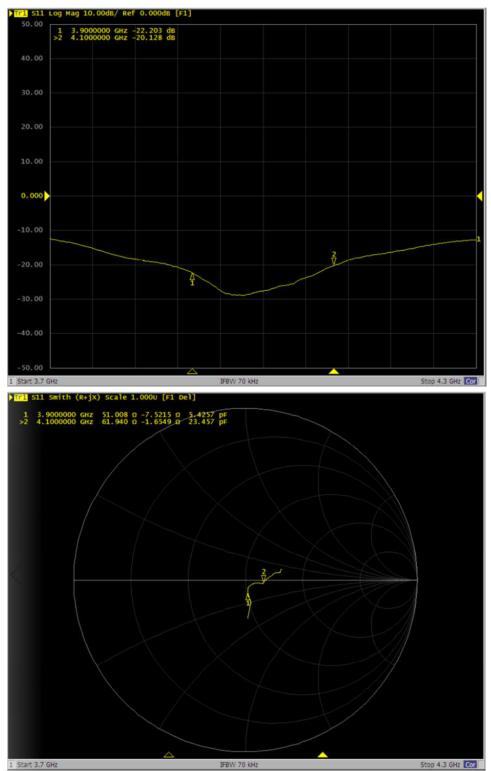
D3900V2, serial no. 1017 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


<Justification of the extended calibration>

D 3900 V2 – serial no. 1017						
			390	0MHZ	-	
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
04.29.2019 (Cal. Report)	-22.038		51.540		-7.9067	
04.28.2020 (extended)	-21.096	-4.274	48.901	2.639	-7.8088	-0.0979
04.27.2021 (extended)	-22.203	0.749	51.008	0.532	-7.5215	-0.3852
		4100MHZ				
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
04.29.2019 (Cal. Report)	-20.346		60.600		-0.77721	
04.28.2020 (extended)	-20.496	0.737	64.853	-4.253	-2.8409	2.06369
04.27.2021 (extended)	-20.128	-1.071	61.940	-1.340	-1.6549	0.87769

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



<Dipole Verification Data> - D3900 V2, serial no. 1017 (Data of Measurement : 04.28.2020) 3900 MHz - Head

<Dipole Verification Data> - D3900 V2, serial no. 1017 (Data of Measurement : 04.27.2021) 3900 MHz - Head

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Sporton

Client

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1128_Dec19

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	128	
Calibration procedure(s)	QA CAL-22.v4 Calibration Proce	edure for SAR Validation Sources	s between 3-6 GHz
Calibration date:	December 16, 20	019	
The measurements and the uncerta	ainties with confidence p	ional standards, which realize the physical ur robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Calibration Equipment used (M&TE			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 3503	25-Mar-19 (No. EX3-3503_Mar19)	Mar-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	+102
Approved by:	Katja Pokovic	Technical Manager	ally
This calibration certificate shall not	he reproduced except in	n full without written approval of the laboratory	Issued: December 17, 2019

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.48 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	47.7 Ω - 6.4 jΩ		
Return Loss	- 23.1 dB		

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.6 Ω - 3.5 jΩ		
Return Loss	- 26.3 dB		

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	51.3 Ω - 3.5 jΩ
Return Loss	- 28.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.208 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

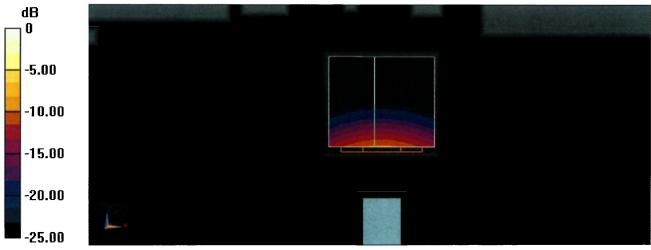
DASY5 Validation Report for Head TSL

Date: 16.12.2019

Test Laboratory: SPEAG, Zurich, Switzerland

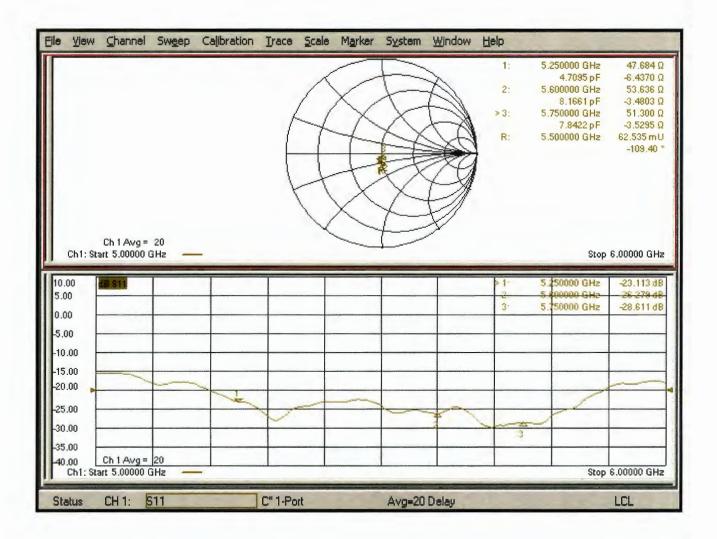
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1128

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.48 S/m; ϵ_r = 34.8; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.83 S/m; ϵ_r = 34.3; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 4.98 S/m; ϵ_r = 34.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.60 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.9% Maximum value of SAR (measured) = 18.2 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.23 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.32 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.23 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.77 dBW/kg

Impedance Measurement Plot for Head TSL

D5000V2, serial no. 1128 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Justification of the extended calibration>

D 5000 V2 – serial no. 1128						
	5250MHZ					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
12.16.2019 (Cal. Report)	-23.113		47.684		-6.437	
12.15.2020 (extended)	-26.397	14.2	49.293	1.609	-5.405	1.032
			560	OMHZ	-	_
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
12.16.2019 (Cal. Report)	-26.278		53.636		-3.4803	
12.15.2020 (extended)	-27.417	4.33	54.448	0.812	-2.3368	1.1435
			575	OMHZ		
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
12.16.2019 (Cal. Report)	-28.611		51.3		-3.5295	
12.15.2020 (extended)	-25.773	-9.91	50.091	-1.209	-3.7769	-0.2474

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

S11 Log Mag 10.00dB/ Ref 0.000dB [F1] 50.00 500000 GHZ -26.397 dB 0000000 GHZ -27.417 dB 500000 GHZ -25.773 dB 127 5. 0.000 1 V IFBW 70 kHz Stop 6 GHz Cor 1 Start 5 GHz 1 S11 Smith (R+jX) Scale 1.000U [F1 Del] 1 5.2500000 2 5.6000000 >3 5.7500000 GHZ GHZ GHZ 49.293 Ω -5.4050 Ω 54.448 Ω -2.3368 Ω 50.091 Ω -3.7769 Ω 5.-6088 pF 12.162 pF 7.3284 pE 1 Start 5 GHz Stop 6 GHz Cor IFBW 70 kHz

<Dipole Verification Data> - D5000 V2, serial no. 1128 (Data of Measurement : 12.15.2020) 5000 MHz - Head

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Sporton

Client

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE3-495_Jul21

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object		DAE3 - SD 000 D	03 AD - SN	N: 495	
Calibra	tion procedure(s)	QA CAL-06.v30			
		Calibration proced	dure for the	e data acquisition electror	nics (DAE)
Calibra	tion date:	July 14, 2021			
				which realize the physical units of	
The m	easurements and the uncerta	linties with confidence pro	obability are giv	ven on the following pages and are	e part of the certificate.
All cali	brations have been conducte	d in the closed laboratory	y facility: enviror	nment temperature (22 \pm 3)°C and	l humidity < 70%.
Calibra	tion Equipment used (M&TE	critical for calibration)			
	y Standards	ID #	Cal Date (Ce	rtificate No.)	Scheduled Calibration
Keithle	y Multimeter Type 2001	SN: 0810278	07-Sep-20 (N	lo:28647)	Sep-21
Secon	dary Standards	ID #	Check Date ((in house)	Scheduled Check
and the second second	AE Calibration Unit	SE UWS 053 AA 1001		house check)	In house check: Jan-22
Calibra	tor Box V2.1	SE UMS 006 AA 1002	07-Jan-21 (in	house check)	In house check: Jan-22
		Name	_	Function	Circature
Calibra	ted by:	Dominique Steffen		aboratory Technician	Signature
Approv	ed by:	Sven Kühn	C	Deputy Manager	1 V BANNE
					1. V. Ba filler
This ca					Issued: July 14, 2021
THIS CE	nibration certificate shall not l	be reproduced except in fu	rull without writte	en approval of the laboratory.	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically • by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of 0 the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on • the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an . input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter • corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of 0 zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset • current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, . during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery • alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating . modes.

DC Voltage Measurement A/D - Converter Resolution nominal

	High Range:	1LSB =	6.1µV ,	full range =	-100+300 mV
	Low Range:	1LSB =	61nV,	full range =	-1+3mV
DA	SY measurement	narameters: Aut	o Zero Time: 3	sec: Measuring	time: 3 see

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	404.383 ± 0.02% (k=2)	405.353 ± 0.02% (k=2)	405.740 ± 0.02% (k=2)
Low Range	3.95362 ± 1.50% (k=2)	3.99240 ± 1.50% (k=2)	3.96607 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system 306.0 ° ± 1

Appendix (Additional assessments outside the scope of SCS0108)

High Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	200041.18	5.13	0.00
Channel X	+ Input	20009.07	2.95	0.01
Channel X	- Input	-20002.86	2.90	-0.01
Channel Y	+ Input	200036.23	0.22	0.00
Channel Y	+ Input	20006.72	0.67	0.00
Channel Y	- Input	-20001.22	4.76	-0.02
Channel Z	+ Input	200036.57	0.64	0.00
Channel Z	+ Input	20008.68	2.73	0.01
Channel Z	- Input	-20002.86	3.20	-0.02

1. DC Voltage Linearity

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.40	-0.10	-0.00
Channel X	+ Input	202.20	0.70	0.35
Channel X	- Input	-198.25	0.22	-0.11
Channel Y	+ Input	2001.72	0.48	0.02
Channel Y	+ Input	200.27	-1.05	-0.52
Channel Y	- Input	-199.56	-0.89	0.45
Channel Z	+ Input	2002.26	0.95	0.05
Channel Z	+ Input	200.80	-0.49	-0.25
Channel Z	- Input	-199.16	-0.49	0.25

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	3.82	2.40
	- 200	-2.07	-3.78
Channel Y	200	1.12	0.52
	- 200	-2.41	-2.56
Channel Z	200	2.89	2.95
	- 200	-4.57	-4.61

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-1.75	-1.91
Channel Y	200	7.27	-	0.07
Channel Z	200	5.34	5.42	50

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15799	15578
Channel Y	15736	14484
Channel Z	15898	16484

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.55	-0.83	1.76	0.50
Channel Y	-0.45	-2.19	0.94	0.62
Channel Z	-0.39	-1.77	0.89	0.61

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE3

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exa ct values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

TN_EH190306BE DAE3.docx

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton Client

Certificate No: DAE4-699_Feb21

Accreditation No.: SCS 0108

	DAE4 - SD 000 D0	1 BO SN: 600	
Object	DAE4 - 50 000 DI	- UU - ON. 033	
Calibration procedure(s)	QA CAL-06.v30 Calibration proced	ure for the data acquisition elec	tronics (DAE)
Calibration date:	February 16, 2021		
		nal standards, which realize the physical uni bability are given on the following pages an	
All calibrations have been condu	cted in the closed laboratory	facility: environment temperature (22 \pm 3)°C	and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	07-Sep-20 (No:28647)	Sep-21
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
		Check Date (in house) 07-Jan-21 (in house check)	Scheduled Check In house check: Jan-22
Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001		
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-21 (in house check)	In house check: Jan-22
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-21 (in house check)	In house check: Jan-22
Auto DAE Calibration Unit	SE UWS 053 AA 1001 SE UMS 006 AA 1002	07-Jan-21 (in house check) 07-Jan-21 (in house check)	In house check: Jan-22 In house check: Jan-22 Signature
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name	07-Jan-21 (in house check) 07-Jan-21 (in house check) Function	In house check: Jan-22 In house check: Jan-22

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst S
 - Service suisse d'étalonnage
- С Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv

DAE data acquisition electronics information used in DASY system to align probe sensor X to the robot Connector angle coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically . by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a • result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.698 ± 0.02% (k=2)	403.331 \pm 0.02% (k=2)	$404.500 \pm 0.02\%$ (k=2)
Low Range	3.93322 ± 1.50% (k=2)	3.94917 ± 1.50% (k=2)	3.97686 ± 1.50% (k=2)

Connector Angle

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	ading (μV) Difference (μV)	
Channel X + Input	199987.98	-2.79	-0.00
Channel X + Input	20000.61	-0.79	-0.00
Channel X - Input	-19997.00	4.51	-0.02
Channel Y + Input	199987.66	-3.18	-0.00
Channel Y + Input	19999.26	-2.15	-0.01
Channel Y - Input	-20000.61	0.98	-0.00
Channel Z + Input	199987.69	-2.80	-0.00
Channel Z + Input	19997.98	-3.40	-0.02
Channel Z - Input	-19999.60	1.99	-0.01

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X + II	nput	2001.02	0.12	0.01
Channel X + II	nput	200.79	-0.50	-0.25
Channel X - In	put	-198.40	0.14	-0.07
Channel Y + I	nput	2001.51	0.67	0.03
Channel Y + I	nput	201.26	0.03	0.02
Channel Y - Ir	put	-198.52	0.03	-0.01
Channel Z + I	nput	2001.27	0.41	0.02
Channel Z + I	nput	200.87	-0.37	-0.18
Channel Z - Ir	put	-199.69	-1.10	0.56

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-2.78	-4.10
	- 200	4.38	2.84
Channel Y	200	22.58	22.65
	- 200	-24.12	-23.77
Channel Z	200	7.20	7.46
	- 200	-9.22	-9.24

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	-1.76	-3.19
Channel Y	200	7.37	-	-1.62
Channel Z	200	4.11	5.36	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16103	15078
Channel Y	16420	14959
Channel Z	16290	15287

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.42	-0.83	1.55	0.48
Channel Y	-0.50	-1.42	0.63	0.44
Channel Z	-0.48	-1.69	0.38	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: DAE4-854_Aug21

Accreditation No.: SCS 0108

S

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D0	04 BM - SN: 854			
Calibration procedure(s)	QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE)				
Calibration date:	August 19, 2021				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration)					
	l				
Primary Standards Keithley Multimeter Type 2001	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Kenniey Multimeter Type 2001	SN: 0810278	07-Sep-20 (No:28647)	Sep-21		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-21 (in house check)	In house check: Jan-22		
Calibrator Box V2.1	A CONTRACTOR OF A CONTRACTOR O	07-Jan-21 (in house check)	In house check: Jan-22		
	Name	Function	Signature		
Calibrated by:	Adrian Gehring	Laboratory Technician	Cignature		
			Alez		
			0		
Approved by:	Sven Kühn	Deputy Manager	i. & filler		
This calibration certificate shall not b	he reproduced except in f	ull without written annroval of the laboratory	Issued: August 19, 2021		

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst
- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a • result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset . current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, . during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range:1LSB =6.1μV ,full range =-100...+300 mVLow Range:1LSB =61nV ,full range =-1.....+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.924 ± 0.02% (k=2)	404.719 ± 0.02% (k=2)	405.792 ± 0.02% (k=2)
Low Range	3.97094 ± 1.50% (k=2)	3.94896 ± 1.50% (k=2)	3.95243 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	38.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199995.86	-0.36	-0.00
Channel X	+ Input	20001.15	-0.92	-0.00
Channel X	- Input	-19998.64	3.05	-0.02
Channel Y	+ Input	199996.87	1.16	0.00
Channel Y	+ Input	20000.19	-1.82	-0.01
Channel Y	- Input	-20002.52	-0.80	0.00
Channel Z	+ Input	199995.58	-0.72	-0.00
Channel Z	+ Input	19999.38	-2.62	-0.01
Channel Z	- Input	-20000.10	1.67	-0.01

1. DC Voltage Linearity

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.24	0.00	0.00
Channel X	+ Input	201.65	0.19	0.10
Channel X	- Input	-198.55	-0.09	0.04
Channel Y	+ Input	2001.09	0.00	0.00
Channel Y	+ Input	201.10	-0.27	-0.13
Channel Y	- Input	-198.97	-0.32	0.16
Channel Z	+ Input	2000.93	-0.00	-0.00
Channel Z	+ Input	200.52	-0.74	-0.37
Channel Z	- Input	-199.63	-0.97	0.49

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-16.13	-17.47
	- 200	18.92	17.38
Channel Y	200	-8.32	-8.43
	- 200	7.13	6.87
Channel Z	200	24.44	23.63
	- 200	-26.65	-26.79

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (µV)
Channel X	200	-	2.64	-1.93
Channel Y	200	6.75	-	4.26
Channel Z	200	8.36	4.54	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Tim	ne: 3 sec; Measuring time: 3 sec
--	----------------------------------

	High Range (LSB)	Low Range (LSB)
Channel X	16140	16106
Channel Y	15974	17194
Channel Z	15813	16335

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M \Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.27	-0.57	1.09	0.36
Channel Y	-0.61	-1.37	0.14	0.33
Channel Z	-0.38	-1.41	0.32	0.30

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. **Power Consumption** (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9