

FCC RADIO TEST REPORT

FCC ID	: UZ7-ET85C
Equipment	: 2 in 1 Tablet PC with Windows OS
Brand Name	: Zebra
Model Name	: ET85C
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	: FCC 47 CFR Part 2, 90(R)

The product was received on Sep. 07, 2021 and testing was performed from Sep. 24, 2021 and completed on Nov. 18, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Su	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	6
	1.4	Maximum ERP Power	6
	1.5	Testing Site	6
	1.6	Applied Standards	7
2	Test (Configuration of Equipment Under Test	8
	2.1	Test Mode	8
	2.2	Connection Diagram of Test System	8
	2.3	Support Unit used in test configuration and system	9
	2.4	Frequency List of Low/Middle/High Channels	9
3	Cond	ucted Test Items	10
	3.1	Measuring Instruments	10
	3.2	Conducted Output Power Measurement and ERP	11
4	Radia	ted Test Items	12
	4.1	Measuring Instruments	12
	4.2	Radiated Spurious Emission	14
5	List o	f Measuring Equipment	15
6	Unce	rtainty of Evaluation	16
Ap	pendix	A. Test Results of Conducted Test	
Ap	pendix	B. Test Results of Radiated Test	
Ap	pendix	c C. Test Setup Photographs	

History of this test report

Report No.	Version	Description	Issued Date
FG162602E	01	Initial issue of report	Dec. 28, 2021

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark	
3.2	§2.1046	Conducted Output Power	Reporting only	-	
3.2	§90.542 (a)(7)	Effective Radiated Power	Pass	-	
-	-	Peak-to-Average Ratio	-	See Note	
-	§2.1049	Occupied Bandwidth	-	See Note	
-	§2.1053 §90.543 (e)(2)	Conducted Band Edge Measurement	-	See Note	
-	§2.1051 §90.210 (n)	Emission Mask	-	See Note	
-	§2.1053 §90.543 (e)(3)	Conducted Spurious Emission	-	See Note	
-	§2.1055 §90.539 (e)	Frequency Stability Temperature & Voltage	-	See Note	
4.2	§2.1053 §90.543 (e)(3) §90.543 (f)	Radiated Spurious Emission	Pass	Under limit 5.99 dB at 1587.000 MHz	
	The module (Mest data from the	lodel: RM505Q-AE) makes no difference after module report.	verifying output pow	ver, this report	

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wei Chen Report Producer: Celery Wei

1 General Description

1.1 Product Feature of Equipment Under Test

Р	roduct Feature
Equipment	2 in 1 Tablet PC with Windows OS
Brand Name	Zebra
Model Name	ET85C
FCC ID	UZ7-ET85C
Sample 1	140mm for the tablet with none passthrough
Sample 2	212mm for the tablet with passthrough
	WCDMA/HSPA/LTE/5G NR/NFC/GNSS
	WLAN 11a/b/g/n HT20/HT40
EUT supports Radios application	WLAN 11ac VHT80/VHT160
	WLAN 11ax HE20/HE40/HE80/HE160
	Bluetooth BR/EDR/LE
HW Version	DV
SW Version	Windows 10 Pro
MFD	2021/Feb.
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories												
Adaptor with CLA cable Brand Name Zebra Model Number ADP-45XE B												
Battery	Battery Brand Name ZEBRA Model Numb											
Power cord												

Supported Unit Used in Test Configuration and System											
CAC Reader Brand Name Zebra Model Number ZBK-ET8X-SMARTCARE											
Keyboard	Brand Name	Zebra	Model Number	KBD-ET8X							

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard								
Tx Frequency	790.5 MHz ~ 795.5 MHz							
Rx Frequency	760.5 MHz ~ 765.5 MHz							
Bandwidth	5MHz / 10MHz							
Maximum Output Power to Antenna	24.21 dBm							
Antenna Type	Fixed Internal Antenna							
Antenna Gain	<main>:</main> 0.50 dBi							
Type of Modulation	QPSK / 16QAM / 64QAM / 256QAM							

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and

Explanations in report summary.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Maximum ERP Power

	LTE Band 14	QPSK	16QAM	64QAM	256QAM		
BW	Frequency Range	Maximum ERP	Maximum ERP	Maximum ERP	Maximum ERP		
(MHz)	(MHz)	(W)	(W)	(W)	(W)		
5	790.5 ~ 795.5	0.1778	0.1538	0.1156	0.0590		
10	793	0.1803	0.1563	0.1167	0.0596		

1.5 Testing Site

Test Offe	Our day later of a stiller FMO 8 With the Our statistic statistics
Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)
Test Site Location	TEL: +886-3-327-3456
	FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
Test Sile No.	TH03-HY
Test Engineer	Bryant Liu
Temperature	22.9~23.2
Relative Humidity	53~56
T (0'()	
Test Site	Sporton International Inc. Wensan Laboratory
	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,
Test Site Location	Taoyuan City 333010, Taiwan (R.O.C.)
Test Sile Location	TEL: +886-3-327-0868
	FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
Test Site No.	03CH12-HY (TAF Code: 3786)
Test Engineer	Jack Cheng, Lance Chiang and Chuan Chu
Temperature	22.3~26.4
Relative Humidity	58~66
Remark	The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW3786

1.6 Applied Standards

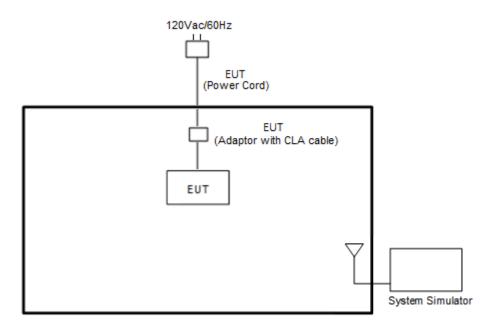
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.26-2015
- FCC 47 CFR Part 2, Part 90(R)
- ANSI / TIA-603-E
- + FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.
- **3.** The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test


2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.26 exploratory test procedures and find X plane with Adapter as worst plane.

Conducted	Dand	Bandwidth (MHz)							Modulation				RB #		Test Channel				
Test Cases	Band	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	256QAM	1	Half	Full	L	Μ	н		
Max. Output Power	14	-	-	v	v	-	-	v	v	v	v	v	v	v	v	v	v		
E.R.P	14	-	-	v	v	-	-	v	v	v	v		Max. Power			Max. Power			
Radiated																			
Spurious	14	-	-	v	v	-	-	v				v			v	v	v		
Emission																			
Remark	2. Th 3. Th un	2. The mark "-" means that this bandwidth is not supported.																	

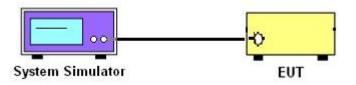
2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

I	tem	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord	
	1.	System Simulator	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m	

2.4 Frequency List of Low/Middle/High Channels

	LTE Band 14 Channel and Frequency List											
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest								
10	Channel	-	23330	-								
10	Frequency	-	793	-								
F	Channel	23305	23330	23355								
5	Frequency	790.5	793	795.5								


3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.

3.1.1 Test Setup

3.1.2 Conducted Output Power

3.1.3 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power Measurement and ERP

3.2.1 Description of the Conducted Output Power Measurement and ERP Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The ERP of mobile transmitters must not exceed 3 Watts for LTE Band 14.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where

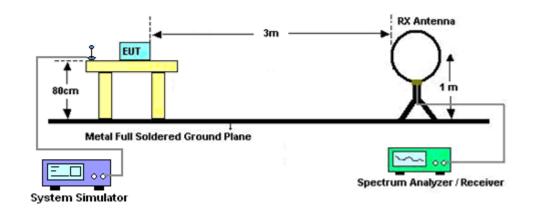
 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

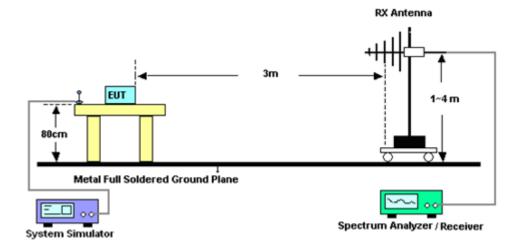
 L_{C} = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Test Procedures

- 1. The transmitter output port was connected to base station.
- 2. Set EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

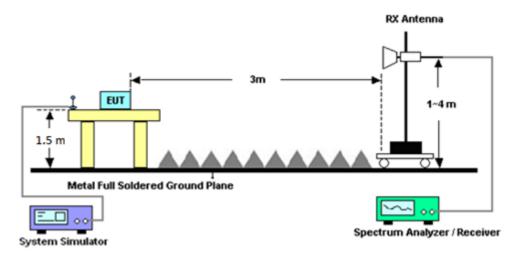

4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.1.1 Test Setup

For radiated test below 30MHz



For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

4.2 Radiated Spurious Emission

4.2.1 Description of Radiated Spurious Emission

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 11. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

5 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Radio Communication Analyzer	Anritsu	MT8821C	620166475 5	2/3/4G/LTE FDD/TDD with44)/LTE-3C C DLCA/2CC ULCA, CatM1/NB1/NB2	Jul. 21, 2021	Nov. 18, 2021	Jul. 20, 2022	Conducted (TH03-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Sep. 24, 2021~ Oct. 26, 2021	Jan. 03, 2022	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	40103 & 07	30MHz~1GHz	Apr. 28, 2021	Sep. 24, 2021~ Oct. 26, 2021	Apr. 27, 2022	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	41912 & 05	30MHz~1GHz	Feb. 08, 2021	Sep. 24, 2021~ Oct. 26, 2021	Feb. 07, 2021	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 8	1GHz~18GHz	Nov. 23, 2020	Sep. 24, 2021~ Oct. 26, 2021	Nov. 22, 2021	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-121 2	1GHz~18GHz	May 18, 2021	Sep. 24, 2021~ Oct. 26, 2021	May 17, 2022	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 24, 2021	Sep. 24, 2021~ Oct. 26, 2021	Mar. 23, 2022	Radiation (03CH12-HY)
Preamplifier	Aglient	8449B	3008A023 75	1GHz~26.5GHz	May 25, 2021	Sep. 24, 2021~ Oct. 26, 2021	May 24, 2022	Radiation (03CH12-HY)
Preamplifier	E-INSTRUME NT TECH LTD.	ERA-100M-18 G-56-01-A70	EC190024 9	1GHz~18GHz	Dec. 05, 2020	Sep. 24, 2021~ Oct. 26, 2021	Dec. 04, 2021	Radiation (03CH12-HY)
Spectrum Analyzer	Agilent	N9010A	MY534701 18	10Hz~44GHz	Jan. 15, 2021	Sep. 24, 2021~ Oct. 26, 2021	Jan. 14, 2022	Radiation (03CH12-HY)
Signal Generator	Rohde & Schwarz	SMB100A	101107	100kHz~40GHz	Dec. 04, 2020	Sep. 24, 2021~ Oct. 26, 2021	Dec. 03, 2021	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30MHz~18GHz	Dec. 11, 2020	Sep. 24, 2021~ Oct. 26, 2021	Dec. 10, 2021	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Feb. 22, 2021	Sep. 24, 2021~ Oct. 26, 2021	Feb. 21, 2022	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz~40GHz	Feb. 22, 2021	Sep. 24, 2021~ Oct. 26, 2021	Feb. 21, 2022	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-1 2SS	SN2	1.2GHz Low Pass Filter	Mar. 17, 2021	Sep. 24, 2021~ Oct. 26, 2021	Mar. 16, 2022	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-108 0-1200-15000 -60SS	SN1	1.2GHz High Pass Filter	Mar. 17, 2021	Sep. 24, 2021~ Oct. 26, 2021	Mar. 16, 2022	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN2	3GHz High Pass Filter	Jul. 12, 2021	Sep. 24, 2021~ Oct. 26, 2021	Jul. 11, 2022	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Sep. 24, 2021~ Oct. 26, 2021	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Sep. 24, 2021~ Oct. 26, 2021	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Sep. 24, 2021~ Oct. 26, 2021	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-00098 9	N/A	N/A	Sep. 24, 2021~ Oct. 26, 2021	N/A	Radiation (03CH12-HY)

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2 10 dB
Confidence of 95% (U = 2Uc(y))	3.10 dB

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	3.39 dB
Confidence of 95% (U = 2Uc(y))	5.59 UB

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power & ERP)

	LTE Band 14 Maximum Average Power [dBm] (GT - LC = 0.5 dB)												
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	ERP (dBm)	ERP (W)					
10	1	0			24.21								
10	1	25			24.09								
10	1	49			23.94								
10	25	0	QPSK		23.27		22.56	0.1803					
10	25	12			23.24								
10	25	25			23.22								
10	50	0			23.15								
10	1	0			23.55								
10	1	25			23.59								
10	1	49			23.50								
10	25	0	16-QAM		22.25		21.94	0.1563					
10	25	12			22.17								
10	25	25			22.10								
10	50	0		_	22.16	_							
10	1	0		_	22.32	_							
10	1	25			21.83								
10	1	49			22.27								
10	25	0	64-QAM		20.99		20.67	0.1167					
10	25	12			20.73								
10	25	25			20.61								
10	50	0			20.73								
10	1	0			19.29								
10	1	25			19.40								
10	1	49			19.28								
10	25	0	256-QAM		19.36		17.75	0.0596					
10	25	12			19.26								
10	25	25			19.30								
10	50	0			19.30								
Limit		ERP < 3W			Result		Pa	ISS					

Report No. : FG162602E

	LTE Band 14 Maximum Average Power [dBm] (GT - LC = 0.5 dB)											
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	ERP (dBm)	ERP (W)				
5	1	0		24.03	24.08	24.15						
5	1	12		24.04	23.89	23.98						
5	1	24		23.80	23.94	23.76						
5	12	0	QPSK	23.08	23.09	23.22	22.50	0.1778				
5	12	7		23.15	23.20	23.07						
5	12	13		23.06	23.08	23.15						
5	25	0		22.99	23.06	23.12						
5	1	0		23.36	23.39	23.43						
5	1	12		23.47	23.52	23.45						
5	1	24		23.50	23.45	23.44		0.1538				
5	12	0	16-QAM	22.05	22.09	22.07	21.87					
5	12	7		22.15	22.08	22.16						
5	12	13		21.92	21.99	21.99						
5	25	0		22.13	22.10	22.05						
5	1	0		22.12	22.19	22.28		0.1156				
5	1	12		21.80	21.80	21.68						
5	1	24		22.16	22.24	22.21						
5	12	0	64-QAM	20.81	20.86	20.92	20.63					
5	12	7		20.73	20.62	20.55						
5	12	13		20.53	20.42	20.53						
5	25	0		20.61	20.67	20.71						
5	1	0		19.23	19.13	19.18						
5	1	12		19.36	19.22	19.27						
5	1	24		19.10	19.10	19.24						
5	12	0	256-QAM	19.18	19.18	19.30	17.71	0.0590				
5	12	7		19.11	19.18	19.21						
5	12	13		19.27	19.12	19.29						
5	25	0		19.22	19.30	19.18						
Limit		ERP < 3W			Result		Pa	ISS				

Appendix B. Test Results of Radiated Test

<Sample 1>

			L	TE Band 14	/ 5MHz / QP	SK			
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	1577	-55.63	-42.15	-13.48	-65.35	-60.98	0.90	8.39	н
	2365	-54.70	-13	-41.70	-68.85	-61.94	1.12	10.51	н
	3153	-55.09	-13	-42.09	-71.21	-63.31	1.30	11.67	н
Louroot									н
Lowest	1576	-55.29	-42.15	-13.14	-64.49	-60.63	0.90	8.39	V
	2365	-55.85	-13	-42.85	-69.75	-63.09	1.12	10.51	V
	3152	-54.92	-13	-41.92	-71.46	-63.14	1.30	11.66	V
									V
	1584	-53.11	-42.15	-10.96	-62.77	-58.48	0.90	8.42	Н
	2373	-56.01	-13	-43.01	-70.10	-63.26	1.12	10.52	Н
	3163	-54.45	-13	-41.45	-70.60	-62.69	1.30	11.69	Н
NA: al all a									Н
Middle	1584	-52.57	-42.15	-10.42	-61.76	-57.94	0.90	8.42	V
	2373	-56.77	-13	-43.77	-70.66	-64.02	1.12	10.52	V
	3163	-54.22	-13	-41.22	-70.81	-62.46	1.30	11.69	V
									V
	1584	-54.16	-42.15	-12.01	-63.82	-59.53	0.90	8.42	Н
	2376	-56.78	-13	-43.78	-70.83	-64.03	1.12	10.53	н
	3173	-54.57	-13	-41.57	-70.75	-62.83	1.30	11.72	н
									Н
Highest	1584	-51.94	-42.15	-9.79	-61.13	-57.31	0.90	8.42	V
	2376	-56.38	-13	-43.38	-70.27	-63.63	1.12	10.53	V
	3173	-54.28	-13	-41.28	-70.91	-62.54	1.30	11.72	V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

	LTE Band 14 / 10MHz / QPSK														
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)						
	1577	-56.76	-42.15	-14.61	-66.48	-62.11	0.90	8.39	Н						
	2366	-56.66	-13	-43.66	-70.81	-63.90	1.12	10.51	Н						
	3154	-55.06	-13	-42.06	-71.18	-63.28	1.30	11.67	Н						
									Н						
Middle	1577	-55.52	-42.15	-13.37	-64.72	-60.87	0.90	8.39	V						
	2366	-55.64	-13	-42.64	-69.54	-62.88	1.12	10.51	V						
	3154	-54.37	-13	-41.37	-70.91	-62.59	1.30	11.67	V						
									V						

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

<Sample 2>

			L	TE Band 14	/ 5MHz / QP	SK			
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	1587	-51.70	-42.15	-9.55	-61.33	-57.08	0.90	8.43	Н
	2380	-50.15	-13	-37.15	-64.20	-57.41	1.12	10.53	Н
	3173	-54.64	-13	-41.64	-70.81	-62.90	1.30	11.72	Н
Linkert									Н
Highest	1587	-48.14	-42.15	-5.99	-57.32	-53.52	0.90	8.43	V
	2380	-50.77	-13	-37.77	-64.67	-58.03	1.12	10.53	V
	3173	-54.07	-13	-41.07	-70.70	-62.33	1.30	11.72	V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.