

FCC Test Report

(Co-Located)

Report No.: RFBCKS-WTW-P22040223A-1

FCC ID: UXX-S5A235A

Test Model: S5A235A

Received Date: Apr. 08, 2022

Test Date: Apr. 21 ~ Aug. 13, 2022

Issued Date: Dec. 02, 2022

Applicant: Cradlepoint, Inc.

Address: 1111 West Jefferson Street ,Boise ,Idaho, United States 83702

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan

FCC Registration/ 788550 / TW0003

Designation Number:

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

R	Release Control Record	3
1	Certificate of Conformity	4
2	Summary of Test Results	5
	Measurement Uncertainty Modification Record	
3	General Information	6
	3.1 General Description of EUT	10 13 14 14
4	Test Types and Results	16
	4.1 Radiated Emission and Bandedge Measurement. 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments. 4.1.3 Test Procedures. 4.1.4 Deviation from Test Standard 4.1.5 Test Setup. 4.1.6 EUT Operating Conditions. 4.1.7 Test Results	
5	Pictures of Test Arrangements	30
Α	Appendix – Information of the Testing Laboratories	31

Release Control Record

Issue No.	Description	Date Issued
RFBCKS-WTW-P22040223A-1	Original release	Dec. 02, 2022

Certificate of Conformity 1

Product: Ruggedized LTE Router

Brand: Cradlepoint, Inc.

Test Model: S5A235A

Sample Status: Engineering sample

Applicant: Cradlepoint, Inc.

Test Date: Apr. 21 ~ Aug. 13, 2022

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart E (Section 15.407)

FCC Part 22, Subpart H FCC Part 24, Subpart E

FCC Part 27, Subpart F, H, L, M, Q

FCC Part 90, Subpart R, S

FCC Part 96

ANSI 63.26-2015 ANSI C63.10-2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by: _______, Date: _______, Dec. 02, 2022

Jeremy Lin , Date: Dec. 02, 2022 Approved by:

Jeremy Lin / Project Engineer

2 Summary of Test Results

Applied Standard	47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407) FCC Part 22, Subpart H FCC Part 24, Subpart E FCC Part 27, Subpart F, H, L, M, Q FCC Part 90, Subpart R, S FCC Part 96 ANSI 63.26-2015 ANSI C63.10-2013				
FCC Clause	Test Item	Result	Remarks		
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/9) 2.1053 22.917 24.238 27.53(a) 27.53(c) 27.53(h) 27.53(m) 90.691 96.41(e)	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -1.50dB at 7311.00MHz.		

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
	9kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.59 dB
	200MHz ~1000MHz	3.60 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
Radiated Effissions above 1 GHZ	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 3.1 **General Information**

General Description of EUT

3.1 General Descrip							
Product	Ruggedized LTE Router						
Brand	Cradlepoint, Inc.						
Test Model	S5A235A						
Sample Status	Engineering samp	· · · · · · · · · · · · · · · · · · ·					
Power Supply Rating	12Vdc from adapt						
	12-24V from DC S		N/ (D000				
		CCK, DQPSK, DBPS					
	WLAN		6QAM, QPSK, BPSK for OFDM				
Madulatian Tons		OFDMA	64QAM, 16QAM, QPSK, BPSK for				
Modulation Type	BT LE	GFSK					
	WCDMA	BPSK, QPSK					
	LTE	QPSK, 16QAM					
Modulation	LIE	QPSK, TOQAW					
Technology	WLAN	DSSS, OFDM, OFDN	ЛA				
Toolilology		802.11b:11/5.5/2/1M	hns				
			•				
	WLAN	802.11g/a: 54/48/36/24/18/12/9/6Mbps 802.11n: up to 300Mbps					
Transfer Rate	VV 27 (1 V	802.11ac: up to 886.7Mbps					
		802.11ax: up to 1201Mbps					
	BT LE	Bluetooth LE 1M: 1Mbps					
		Bluetooth LE 2M: 2M	•				
	WLAN	2.4GHz: 2412~2462MHz					
		5.0GHz: 5260 ~ 5320MHz, 5500 ~ 5720MHz					
	BTLE	2402~2480MHz					
		WCDMA Band 2	1850 ~ 1910 MHz				
	WCDMA	WCDMA Band 4	1710 ~ 1755 MHz				
		WCDMA Band 5	824 ~ 849 MHz				
		LTE Band 2	1850 ~ 1910 MHz				
		LTE Band 4	1710 ~ 1755 MHz				
		LTE Band 5	824 ~ 849 MHz				
		LTE Band 7	2500 ~ 2570 MHz				
Operating Frequency		LTE Band 12	699 ~ 716 MHz				
		LTE Band 13	777 ~ 787 MHz				
		LTE Band 14	788 ~ 798 MHz				
	LTE	LTE Band 25	1850 ~ 1915 MHz				
		LTE Band 26	814 ~ 849 MHz				
		LTE Band 41	2496 ~ 2690 MHz				
		LTE Band 42	3400 ~ 3600 MHz				
		LTE Band 43	3600 ~ 3800 MHz				
		LTE Band 48	3550 ~ 3700 MHz				
		LTE Band 66	1710 ~ 1780 MHz				
		LTE Band 71	663 ~ 698 MHz				

	WLAN/BT	Refer to note
Antenna Type	WCDMA	Refer to note
	LTE	Refer to note
	WLAN/BT	Refer to Note
Antenna Connector	WCDMA	Refer to note
	LTE	Refer to note
Accessory Device	Refer to note	
Cable Supplied	Refer to Note	
Contains FCC ID	NIZNIEMZ4D	
(WWAN module)	N7NEM74B	
N I - 4 -		

Note:

- 1. This report is prepared for FCC class III permissive change. The differences compared with the original report (BV CPS report no.: RFBCKS-WTW-P22040223-3) are adding 5.26GHz to 5.32GHz and 5.50GHz to 5.72GHz, straddle channels (CH144, CH142, CH138) by software and DC source. Therefore, the test item had been re-tested.
- 2. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers.

Band	Modulation Mode	Beamforming Mode	TX Function
	802.11b	Not Support	2TX
	802.11g	Not Support	2TX
	802.11n (HT20)	Support	2TX
0.4011.5	802.11n (HT40)	Support	2TX
2.4GHz Band	VHT20	Support	2TX
	VHT40	Support	2TX
	802.11ax (HE20)	Support	2TX
	802.11ax (HE40)	Support	2TX
	802.11a	Not Support	2TX
	802.11n (HT20)	Support	2TX
	802.11n (HT40)	Support	2TX
	802.11ac (VHT20)	Support	2TX
5GHz Band	802.11ac (VHT40)	Support	2TX
	802.11ac (VHT80)	Support	2TX
	802.11ax (HE20)	Support	2TX
	802.11ax (HE40)	Support	2TX
	802.11ax (HE80)	Support	2TX

^{*} The bandwidth and modulation are similar for 802.11n mode for 20MHz (40MHz), 802.11ac mode for 20MHz (40MHz, 80MHz) and 802.11ax mode for 20MHz (40MHz, 80MHz). Therefore the investigated worst case is the representative mode in test report. (Final test mode refer section 3.2.1)

^{*} For 802.11n/ax, CDD mode and Beamforming mode are presented in power output test item. For other test items, CDD mode is the worst case for final tests after pretesting.

^{*}After pretest OFDMA mode, the Full RU is the worst case and record in this report.

3. The following antennas were provided to the EUT.

	RF	itennas were prov	nueu to tile EUT.	Antenna			
Ant. No.	Chain No.	Brand	Model	Net Gain (dBi)	Frequency Range (MHz)	Antenna Type	Connector Type
				5.5069	2400-2483.5	Monopole	R-SMA
				5.8125	5150-5250	Monopole	R-SMA
	1	Cradlepoint	test antenna 1	5.7725	5250-5350	Monopole	R-SMA
				5.7133	5425-5725	Monopole	R-SMA
Wi-Fi				5.9957	5725-5850	Monopole	R-SMA
Set1				5.5069	2400-2483.5	Monopole	R-SMA
				5.8125	5150-5250	Monopole	R-SMA
	2	Cradlepoint	test antenna 1	5.7725	5250-5350	Monopole	R-SMA
		- '		5.7133	5425-5725	Monopole	R-SMA
				5.9957	5725-5850	Monopole	R-SMA
				2	2400-2483.5	Monopole	R-SMA
				1.1	5150-5250	Monopole	R-SMA
	1	PANORAMA	LG-IN2457	2.4	5250-5350	Monopole	R-SMA
		-		3.1	5425-5725	Monopole	R-SMA
Wi-Fi				3.5	5725-5850	Monopole	R-SMA
Set2				2.4	2400-2483.5	Monopole	R-SMA
		PANORAMA	LG-IN2457	0.9	5150-5250	Monopole	R-SMA
	2			1.7	5250-5350	Monopole	R-SMA
				2.9	5425-5725	Monopole	R-SMA
				3.5	5725-5850	Monopole	R-SMA
				2.47	2400-2483.5	Dipole	R-SMA
		WNC 170836-000	2.	2.18	5150-5250	Dipole	R-SMA
	1			2.19	5250-5350	Dipole	R-SMA
			2.14	5425-5725	Dipole	R-SMA	
Wi-Fi				2.47	5725-5850	Dipole	R-SMA
Set3				2.47	2400-2483.5	Dipole	R-SMA
		2 WNC 170836-000		2.18	5150-5250	Dipole	R-SMA
	2		2 WNC 170836-000	2.19	5250-5350	Dipole	R-SMA
			2.14	5425-5725	Dipole	R-SMA	
				2.47	5725-5850	Dipole	R-SMA
ВТ	1	Cradlepoint	170847-000	2.16	2400-2500	Dipole	R-SMA
GPS	1	PANORAMA	LG-IN2457	26	1562-1612	Dipole	SMA
GPS	2	Taoglas	AA.162	30	1562-1612	Dipole	SMA
		<u> </u>		1.42	619-790	Dipole	SMA
				0.88	1445-1515	Dipole	SMA
LTE Set1	1	Cradlepoint	170801-000	2.69	1710-2700	Dipole	SMA
5511				4.13	3400-3700	Dipole	SMA
				4.29	5150-5925	Dipole	SMA
				1.42	619-790	Dipole	SMA
I TE				0.88	1445-1515	Dipole	SMA
LTE Set2	2	Cradlepoint	170801-000	2.69	1710-2700	Dipole	SMA
				4.13	3400-3700	Dipole	SMA
					4.29	5150-5925	Dipole

Ant. No.	RF Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency Range (MHz)	Antenna Type	Connector Type
				0.5	617-698	Monopole	SMA
				1.3	699-798	Monopole	SMA
				1.9	807- 862	Monopole	SMA
				1.6	880-960	Monopole	SMA
				1.5	1427-1518	Monopole	SMA
LTE	4	DANODAMA	LO INO457	2	1625-1661	Monopole	SMA
Set1	1	PANORAMA	LG-IN2457	1.6	1710-1920	Monopole	SMA
			1.2 2 1.3 2 2.2 3	2.2	1920-2170	Monopole	SMA
				1.2	2300-2400	Monopole	SMA
				2496-2690	Monopole	SMA	
				2.2	3300-4200	Monopole	SMA
				1.9	4400-5000	Monopole	SMA
				0.15	617-698	Monopole	SMA
				1.5	699-798	Monopole	SMA
				2	807- 862	Monopole	SMA
				2	880-960	Monopole	SMA
				2.6	1427-1518	Monopole	SMA
LTE		2 PANORAMA	LO INO457	1.8	1625-1661	Monopole	SMA
Set2	2		LG-IN2457	1.6	1710-1920	Monopole	SMA
				2	1920-2170	Monopole	SMA
				1.5	2300-2400	Monopole	SMA
				1.4	2496-2690	Monopole	SMA
				2.6	3300-4200	Monopole	SMA
				1.7	4400-5000	Monopole	SMA

^{*}Detail antenna specification please refer to antenna datasheet.

4. The EUT contains following accessory devices.

Product	Brand	Model	Description
			I/P: 100-240Vac, 50-60Hz, 0.9A
Adapter 1	ADP	WA-36N12R	O/P: 12.0Vdc, 3.0A
			Power cable: 1.5m without core
			I/P: 100-240V~50/60Hz, 1.0A
Adapter 2	Ktec	KSA-36W-120300D5	O/P: 12.0Vdc, 3.0A, 36.0W
			Power cable: 1.42m without core
DC Cable	Cradlepoint	170864-000	3m meter (Nien-Yi NYS4862)
Nebula dock			
(Expansion dock)	Cradlepoint, Inc.	S0A235A	-
Support Unit			

5. The EUT has two different configuration, after pretest the original one was the worst case for final test.

Configuration					
PCBA PHY IC eMMC					
Original	QCA-8081	MTFC8GAMALGT-AAT			
2nd Source	QCA-8080	THGBMJG6C1LBAU7			

6. The EUT has two Power Supply mode, after pretest the AC Adapter was the worst case for final test.

Pre-Scan:	The Power Supply have the following modes: AC Adapter / DC source (12Vdc and 24Vdc). Pre-scan these modes of Power Supply and find the worst case as a representative test condition.
Worst Case:	Power Supply Worst Condition: AC Adapter

^{*}After the monopole antennas pre-test, the worst case is the Wi-Fi Set1 antenna with maximum antenna gain, so it was finally selected for testing. Therefore the investigated worst case is the representative mode in test report. (Final test mode refer section 3.2.1)

3.2 Description of Test Modes

For WLAN: For 2.4GHz

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20), VHT20, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

7 channels are provided for 802.11n (HT40), VHT40, 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
3	2422MHz	7	2442MHz
4	2427MHz	8	2447MHz
5	2432MHz	9	2452MHz
6	2437MHz		

5260~5320MHz:

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
52	5260 MHz	60	5300 MHz
56	5280 MHz	64	5320 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
54	5270 MHz	62	5310 MHz

1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Frequency
58	5290MHz

For 5500 ~ 5720MHz:

12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel Frequence	
100	5500 MHz	124	5620 MHz
104	5520 MHz	128	5640 MHz
108	5540 MHz	132	5660 MHz
112	5560 MHz	136	5680 MHz
116	5580 MHz	140	5700 MHz
120	5600 MHz	144	5720 MHz

6 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
102	5510 MHz	126	5630 MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz	142	5710 MHz

3 channels are provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Channel Frequency		Frequency
106	5530 MHz	122	5610 MHz
138	5690 MHz		

BT LE:

40 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	Applic	December 41	
Mode	RE≥1G	RE<1G	Description
-	\checkmark	\checkmark	-

Where RE≥1G: Radiated Emission above 1GHz & Bandedge Measurement

RE<1G: Radiated Emission below 1GHz

Note

- 1. The EUT's antenna was positioned and tested under the listed conditions:
 - a.) The Monopole Antenna Parallel
 - b.) The Dipole Antenna's angle of 90 degrees

Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Frequency Band (MHz)	Available Channel	Tested Channel	Modulation Technology
		2412-2462	1 to 11	6 + 116+ 19 + 4182	OFDM
	802.11b + 802.11a - + Bluetooth LE 2M + WCDMA Band 5	5500-5720	100 to 144		OFDM
-		2402-2480	0 to 39		GFSK
		824-849	4132 to 4233		BPSK

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

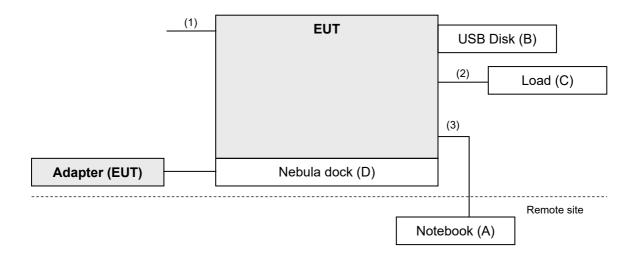
EUT Configure Mode	Mode	Frequency Band (MHz)	Available Channel	Tested Channel	Modulation Technology
		2412-2462	1 to 11	6 + 116+ 19 + 4182	OFDM
	802.11b + 802.11a + Bluetooth LE 2M +	5500-5720	100 to 144		OFDM
-	WCDMA Band 5	2402-2480	0 to 39		GFSK
WCDIVIA Ballu 3	824-849	4132 to 4233		BPSK	

Test Condition:

Applicable to Environmental Conditions		Input Power (System)	Tested by	
RE≥1G	23 deg. C, 73% RH	120Vac, 60Hz	Poy Wong	
KE21G	22 deg. C, 70% RH	120 Vac, 60H2	Rex Wang	
RE<1G	22 deg. C, 72% RH	120\/00 60 7	Day Wang	
RESIG	22 deg. C, 70% RH	120Vac, 60Hz	Rex Wang	

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook	DELL	Inspiron 14R	8LRKKW1	FCC DoC Approved	Provided by Lab
B.	USB Disk	SanDisk	SDDDC3	NA	NA	Provided by Lab
C.	Load	NA	NA	NA	NA	Provided by Lab
D.	Nebula dock (Expansion dock)	Cradlepoint, Inc.	S0A235A	NA	NA	Provided by client

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item A acted as a communication partner to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RS232 Cable	1	1	Ν	0	Provided by Lab
2.	LAN Cable	1	1.5	N	1 0	Provided by Lab RJ45, Cat.5e
3.	LAN Cable	1	10	N	1 0	Provided by Lab RJ45, Cat.5e

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specification of the EUT declared by the manufacturer, it must comply with the requirements of the following standards:

47 CFR FCC Part 15, Subpart C (Section 15.247)
47 CFR FCC Part 15, Subpart E (Section 15.407)
FCC Part 22, Subpart H
FCC Part 24, Subpart E
FCC Part 27, Subpart C, F, H, L, M
FCC Part 90, Subpart I, S
FCC Part 96

ANSI 63.26-2015 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

For WLAN/BT:

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applicable To			Limit			
789033 D02 General UNII Test Procedure			Field Strength at 3m			
New Ru	les v()2r01	PK: 74 (dBµV/m)	AV: 54 (dBμV/m)		
Frequency Band	Applicable To		EIRP Limit	Equivalent Field Strength at 3m		
5150~5250 MHz	15.407(b)(1)			PK: 68.2(dBμV/m)		
5250~5350 MHz	15.407(b)(2)		PK: -27 (dBm/MHz)			
5470~5725 MHz		15.407(b)(3)				
5725~5850 MHz	\boxtimes	15.407(b)(4)(i)	PK: -27 (dBm/MHz) *1 PK: 10 (dBm/MHz) *2 PK: 15.6 (dBm/MHz) *3 PK: 27 (dBm/MHz) *4	PK: 68.2(dBµV/m)*1 PK: 105.2 (dBµV/m)*2 PK: 110.8(dBµV/m)*3 PK: 122.2 (dBµV/m)*4		
		15.407(b)(4)(ii)	Emission limits in section 15.247(d)			

^{*1} beyond 75 MHz or more above of the band edge.

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

E =
$$\frac{1000000 \sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RFBCKS-WTW-P22040223A-1 Page No. 16 / 31 Report Format Version: 6.1.1

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

For WWAN The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to –13dBm.							

Report No.: RFBCKS-WTW-P22040223A-1 Page No. 17 / 31 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer ROHDE & SCHWARZ	FSV40	100979	Mar. 25, 2022	Mar. 24, 2023
Test Receiver KEYSIGHT	N9038A	MY55420137	Apr. 27, 2022	Apr. 26, 2023
Spectrum Analyzer ROHDE & SCHWARZ	FSW43	101867	Jan. 07, 2022	Jan. 06, 2023
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-1169	Nov. 14, 2021	Nov. 13, 2022
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Oct. 26, 2021	Oct. 25, 2022
Loop Antenna TESEQ	HLA 6121	45745	Jul. 21, 2021 Jul. 27, 2022	Jul. 20, 2022 Jul. 26, 2023
Preamplifier Agilent	8447D	2944A10638	Jun. 05, 2021	Jun. 04, 2022
(Below 1GHz)	01112		May 14, 2022	May 13, 2023
Preamplifier Agilent (Above 1GHz)	8449B	3008A01962	Oct. 05, 2021	Oct. 04, 2022
RF signal cable HUBER+SUHNER&EMCI	SUCOFLEX 104 & EMC104-SM-SM8 000	CABLE-CH9-02 (248780+171006)	Jan. 15, 2022	Jan. 14, 2023
RF signal cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795/4)	Jan. 15, 2022	Jan. 14, 2023
RF signal cable Woken	8D-FB	Cable-CH9-01	Jun. 05, 2021 May 14, 2022	Jun. 04, 2022 May 13, 2023
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower &Turn BV ADT	AT100	AT93021705	NA	NA
Turn Table BV ADT	TT100	TT93021705	NA	NA
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Pre-amplifier (18GHz-40GHz) EMC	EMC184045B	980175	Sep. 04, 2021	Sep. 03, 2022
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	Jan. 18, 2022	Jan. 17, 2023
Wideband Power Sensor KEYSIGHT	N1923A	MY58020002	Jan. 17, 2022	Jan. 16, 2023

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

^{2.} The test was performed in HwaYa Chamber 9.

4.1.3 Test Procedures

For WLAN/BT

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

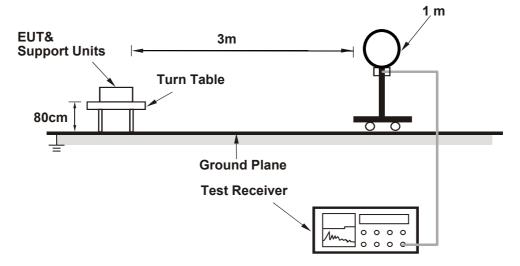
- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

For WWAN

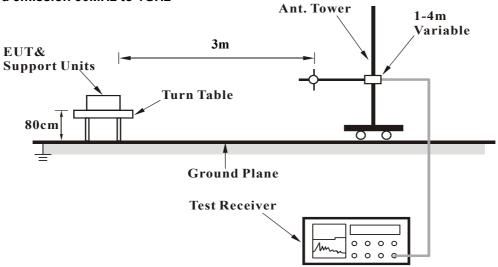
- a. In the semi-anechoic chamber, EUT placed on the 0.8m (below or equal 1GHz) and/or 1.5m (above 1GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP/ERP level.
- d. Following C63.26 section 5.5 and 5.2.7
 - EIRP (dBm) = E (dBμV/m) + 20log(D) 104.8; where D is the measurement distance (in the far field region) in m.
 - ERP (dBm) = E (dBµV/m) + 20log(D) 104.8 2.15; where D is the measurement distance (in the far field region) in m.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.
- 2. The emission levels were against the limit of frequency range 9 kHz ~ 30 MHz: The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

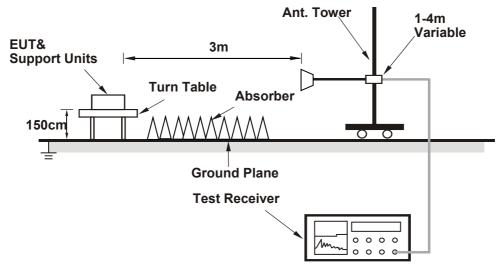

4.1.4 Deviation from Test Standard

NΙΛ	deviation	



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

802.11b + 802.11a + Bluetooth LE 2M + WCDMA Band 5

RF Mode	TX 802.11b+ TX BT-LE 2M	Channel	CH 6: 2437 MHz+ CH 19: 2440 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
			enna Polarity	& rest Dist					
	Frequency	Emission	Limit	Margin	Antenna	Table	Raw	Correction	
No	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor	
	, ,	(dBuV/m)	(aba i,)	(42)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2437.00	106.10 PK			1.50 H	180	73.30	32.80	
2	*2437.00	103.60 AV			1.50 H	180	70.80	32.80	
3	*2440.00	108.80 PK			1.23 H	290	76.00	32.80	
4	*2440.00	106.00 AV			1.23 H	290	73.20	32.80	
5	4874.00	50.00 PK	74.00	-24.00	1.64 H	75	44.40	5.60	
6	4874.00	42.00 AV	54.00	-12.00	1.64 H	75	36.40	5.60	
7	4880.00	47.60 PK	74.00	-26.40	2.50 H	333	42.10	5.50	
8	4880.00	34.70 AV	54.00	-19.30	2.50 H	333	29.20	5.50	
9	7311.00	58.50 PK	74.00	-15.50	1.79 H	35	46.20	12.30	
10	7311.00	52.50 AV	54.00	-1.50	1.79 H	35	40.20	12.30	
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m			
	Fraguanay	Emission	Limit	Morgin	Antenna	Table	Raw	Correction	
No	Frequency	Level		Margin	Height	Angle	Value	Factor	
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2437.00	106.10 PK			1.50 V	180	73.30	32.80	
2	*2437.00	103.60 AV			1.50 V	180	70.80	32.80	
3	*2440.00	116.80 PK			2.20 V	166	84.00	32.80	
4	*2440.00	113.80 AV			2.20 V	166	81.00	32.80	
5	4874.00	50.00 PK	74.00	-24.00	1.64 V	75	44.40	5.60	
6	4874.00	42.00 AV	54.00	-12.00	1.64 V	75	36.40	5.60	
7	4880.00	49.50 PK	74.00	-24.50	1.66 V	211	44.00	5.50	
8	4880.00	40.50 AV	54.00	-13.50	1.66 V	211	35.00	5.50	
9	7311.00	58.50 PK	74.00	-15.50	1.79 V	35	46.20	12.30	
10	7311.00	52.50 AV	54.00	-1.50	1.79 V	35	40.20	12.30	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

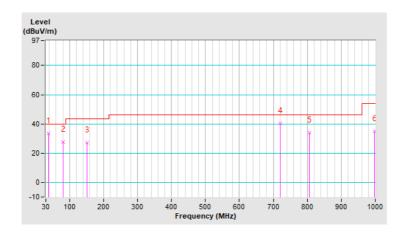
RF Mode	TX 802.11a	Channel	CH 116: 5580 MHz
Frequency Range	1GHz ~ 40GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*5580.00	115.20 PK			1.60 H	70	74.90	40.30	
2	*5580.00	105.80 AV			1.60 H	70	65.50	40.30	
3	11160.00	58.70 PK	74.00	-15.30	3.29 H	200	40.60	18.10	
4	11160.00	44.00 AV	54.00	-10.00	3.29 H	200	25.90	18.10	
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*5580.00	112.30 PK			3.67 V	0	72.00	40.30	
2	*5580.00	103.00 AV			3.67 V	0	62.70	40.30	
3	11160.00	58.00 PK	74.00	-16.00	2.50 V	329	39.90	18.10	
4	11160.00	43.70 AV	54.00	-10.30	2.50 V	329	25.60	18.10	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

СП	CHANNEL CH 4182								
OI I	CITATION CITATION								
	Antenna Polarity & Test Distance : Horizontal at 3 m								
	Frequency	ERP	Limit	Margin	Antenna	Table	Raw	Correction	
No				· ·	Height	Angle	Value	Factor	
	(MHz)	(dBm)	(dBm)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	
1	1672.80	-54.41	-13.00	-41.41	2.10 H	297	48.08	-102.49	
Antenna Polarity & Test Distance : Vertical at 3 m									
	Fraguenay	ERP	Limit	Morgin	Antenna	Table	Raw	Correction	
No	Frequency			Margin	Height	Angle	Value	Factor	
	(MHz)	(dBm)	(dBm)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	
1	1672.80	-49.97	-13.00	-36.97	1.55 V	170	52.52	-102.49	

- 1. ERP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8 2.15
- 3. Margin value = ERP Limit value
- 4. The other ERP levels were very low against the limit.

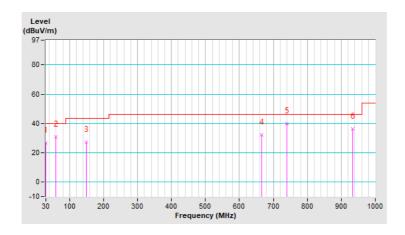

Below 1GHz data

802.11b + 802.11a + Bluetooth LE 2M + WCDMA Band 5

CHANNEL	CH 6 + CH 116 + CH 19	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	37.76	33.60 QP	40.00	-6.40	1.00 H	132	43.30	-9.70		
2	80.44	27.50 QP	40.00	-12.50	1.00 H	206	41.20	-13.70		
3	152.22	27.00 QP	43.50	-16.50	1.50 H	19	35.90	-8.90		
4	720.64	40.50 QP	46.00	-5.50	1.00 H	10	39.20	1.30		
5	806.00	34.00 QP	46.00	-12.00	1.00 H	313	30.60	3.40		
6	997.09	35.00 QP	54.00	-19.00	1.50 H	17	29.10	5.90		

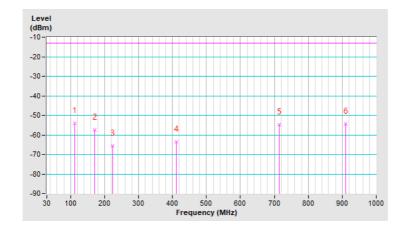
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range $30 MHz \sim 1000 MHz$
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



CHANNEL	CH 6 + CH 116 + CH 19	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	30.94	26.90 QP	40.00	-13.10	1.00 V	263	37.50	-10.60		
2	60.13	30.90 QP	40.00	-9.10	1.00 V	201	40.50	-9.60		
3	150.22	27.20 QP	43.50	-16.30	1.00 V	100	36.00	-8.80		
4	665.14	32.20 QP	46.00	-13.80	1.00 V	359	31.70	0.50		
5	739.07	40.00 QP	46.00	-6.00	1.00 V	215	38.20	1.80		
6	933.67	36.30 QP	46.00	-9.70	1.00 V	87	30.20	6.10		

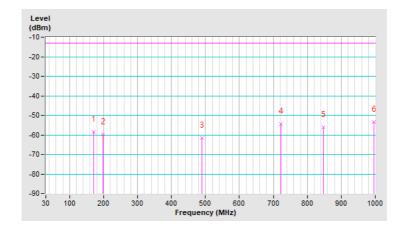
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



CHANNEL CH 4182	FREQUENCY RANGE	Below 1000 MHz
-----------------	--------------------	----------------

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor
	, ,		, ,	` '	(m)	(Degree)	(dBuV)	(dB/m)
1	111.48	-53.94	-13.00	-40.94	1.00 H	276	55.54	-109.48
2	170.65	-57.46	-13.00	-44.46	1.00 H	58	49.05	-106.51
3	223.03	-65.54	-13.00	-52.54	1.00 H	195	43.08	-108.62
4	411.21	-63.41	-13.00	-50.41	1.00 H	116	38.76	-102.17
5	714.82	-54.82	-13.00	-41.82	1.00 H	19	41.32	-96.14
6	910.76	-54.47	-13.00	-41.47	1.00 H	6	37.25	-91.72

- 1. ERP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8 2.15
- 3. Margin value = ERP Limit value
- 4. The other ERP levels were very low against the limit.



RANGE BEIOW 1000 MHZ	CHANNEL	CH 4182	FREQUENCY RANGE	Below 1000 MHz
----------------------	---------	---------	--------------------	----------------

	Antenna Polarity & Test Distance : Vertical at 3m								
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor	
	(1711 12)	(dDill)	(dDill)	(dD)	(m)	(Degree)	(dBuV)	(dB/m)	
1	170.65	-58.52	-13.00	-45.52	1.00 V	210	47.99	-106.51	
2	197.81	-59.81	-13.00	-46.81	1.00 V	52	49.21	-109.02	
3	489.78	-61.67	-13.00	-48.67	1.00 V	10	38.48	-100.15	
4	721.61	-54.25	-13.00	-41.25	1.00 V	47	41.80	-96.05	
5	847.71	-56.09	-13.00	-43.09	1.00 V	184	37.38	-93.47	
6	995.15	-53.43	-13.00	-40.43	1.50 V	176	37.97	-91.40	

- 1. ERP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8 2.15
- 3. Margin value = ERP Limit value
- 4. The other ERP levels were very low against the limit.

5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Report No.: RFBCKS-WTW-P22040223A-1

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---