Precisely Right.

Emissions
 Test Report

EUT Name: Powerview Gen3 Motor Control Board
Model No.: 1012000217
CFR 47 Part 15.247: 2019 and RSS 247: 2017

Prepared for:
Hunter Douglas Window Fashions
One Duette Way
Broomfield, CO 80020

Prepared by:
TUV Rheinland of North America, Inc.
5015 Brandin Ct.
Fremont, CA 94538
Tel: (925) 249-9123
Fax: (925) 249-9124
http://www.tuv.com/

Report/Issue Date: \quad March 19, 2020
Job \#
234112098
Report Number: $\quad 32060521.001$

Revisions

Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	$3 / 19 / 2020$	Original Document	JB

Note: Latest revision report will replace all previous reports.

Statement of Compliance

Manufacturer:	Hunter Douglas Window Fashions One Duette Way Broomfield, CO 80020
Requester/Applicant:	Hunter Douglas Window Fashions
Name of Equipment:	Powerview Gen3 Motor Control Board
Model No.	1012000217
Type of Equipment:	Intentional Radiator
Application of Regulations:	CFR 47 Part 15.247: 2019 and RSS 247: 2017
Test Dates:	January 14th, 2020 to January 31st, 2020

Guidance Documents:

Emissions: ANSI C63.10-2013, KDB 558074 D01 DTS Measurement Guidance v05r02, KDB 662911 D01 Multiple Transmitter Output v02r01

Test Methods:

Emissions: ANSI C63.10-2013, KDB 558074 D01 DTS Measurement Guidance v05r02, KDB

 662911 D01 Multiple Transmitter Output v02r01The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Testing Cert \#3331.02

US1131

ISED

2932D
1 Executive Summary 7
1.1 Scope 7
1.2 Purpose 7
1.3 Summary of Test Results 8
1.4 Special Accessories 8
1.5 Equipment Modifications 8
2 Laboratory Information 9
2.1 Accreditations \& Endorsements 9
2.1.1 US Federal Communications Commission -9
2.1.2 NIST / A2LA -9
2.1.3 ISED 9
2.1.4 Japan - VCCI 9
2.1.5 Acceptance by Mutual Recognition Arrangement 10
2.2 Test Facilities 10
2.2.1 Emission Test Facility 10
2.3 Measurement Uncertainty 10
2.3.1 Sample Calculation - radiated \& conducted emissions 11
2.3.2 Measurement Uncertainty 11
2.3.3 Measurement Uncertainty Immunity 12
2.4 Calibration Traceability 12
3 Product Information 13
3.1 Product Description 13
3.2 Equipment Configuration 13
3.3 Operating Mode 13
3.4 Unique Antenna Connector 14
3.4.1 Results 14
4 Emissions 15
4.1 Output Power Requirements 15
4.1.1 Test Method 15
4.1.2 Results 16
4.2 DTS Bandwidth (6dB) and Occupied Bandwidth 18
4.2.1 Test Method 18
4.2.2 Results 18
4.3 Peak Power Spectral Density 23
4.3.1 Test Method 23
4.3.2 Results 24
4.4 Out of Band Emissions: Non-Restricted Bands 26
4.4.1 Test Method 26
4.4.2 Results 27
4.5 Out of Band Emissions: Restricted Band Edge 31
4.5.1 Test Method 31
4.5.2 Test Results 32
4.6 Transmitter Spurious Emissions 34
4.6.1 Test Methodology 34
4.6.2 Test Setup 35
4.6.3 Transmitter Spurious Emission Limit 36
4.6.4 Test Results 36
4.7 AC Conducted Emissions 43
4.7.1 Test Methodology 43
4.7.2 Test Results 43
5 Test Equipment List 46
5.1 Equipment List 46
6 EMC Test Plan 47
6.1 Introduction 47
6.2 Customer 47
6.3 Equipment Under Test (EUT) 47
6.4 Product Specifications 48
6.5 Test Specifications 50
Table 1: Summary of Test Results 8
Table 2: RF Output Power at the Antenna Port - Test Results 16
Table 3: Occupied Bandwidth - Test Results 19
Table 4: Peak Power Spectral Density - Test Results 24
Table 5: Emissions at the Band-Edge - Test Results 27
Table 6: Emissions at the Band-Edge - Test Results 32
Table 7: AC Conducted Emissions - Test Results 43
Table 8: Customer Information 47
Table 9: Technical Contact Information 47
Table 10: EUT Designation 47
Table 11: EUT Specifications 48
Table 12: Antenna Information 49
Table 13: Interface Specifications 49
Table 14: Accessory Equipment 49
Table 15: Ancillary Equipment (used for test purposes only) 49
Table 16: Description of Sample used for Testing 50
Table 17: Description of Test Configuration used for Radiated Measurement. 50
Table 18: Test Specifications 50

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.247: 2019 and RSS 247: 2017 based on the results of testing performed on January 14th, 2020 to January 31st, 2020 on the 1012000217 manufactured by Hunter Douglas Window Fashions. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report. The 2400 MHz to 2483.5 MHz frequency band is covered in this document.

1.3 Summary of Test Results

Table 1: Summary of Test Results

Test	Test Method C63.4	Worse Case (Measured)	Result
Maximum Output Power	CFR47 15.247 (b), RSS 247 Sect. 5.4 (d)	5.75 dBm @ 2453MHz Channel	Complied
DTS Bandwidth (6dB)	CFR47 15.247 (a)(2), RSS 247 Sect. 5.2 (a)	0.840 MHz @ 2407MHz Channel	Complied
Peak Power Spectral Density	CFR47 15.247 (e), RSS 247 Sect. 5.2 (b)	$-7.29 \mathrm{dBm} @ 2453 \mathrm{MHz}$ Channel	Complied
Out of Band Emissions: Non- Restricted	CFR47 15.247 (d), RSS 247 Sect.5.5	-56.45 dBc @ 24342.96 MHz, Lower Band Edge	Complied
Out of Band Emissions: Restricted	CFR47 15.247 (d), RSS 247 Sect.5.5	-13.83 dB margin @ 2535.152MHz, Average	Complied
Transmitter Spurious Emissions	CFR47 15.247 (d), RSS 247 Sect.5.5	$-7.02 \mathrm{~dB} \mathrm{Margin} \mathrm{@} \mathrm{4814.656} \mathrm{MHz} Average$,	Complied
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect.8.8	-19.82 dB Margin @ 0.36814 MHz, QP	Complied

Note 1: This test report covers 2400 MHz to 2483.5 MHz band.
Note 2: Class B limits were applied where applicable.

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

2 Laboratory Information

2.1 Accreditations \& Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 5015 Brandin Ct, Fremont, CA 94538, are recognized by the Commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No. US1131). The laboratory Scopes of Accreditation include Title 47 CFR Parts 15, 18 and 90. The accreditations are updated every three years.

2.1.2 NIST / A2LA

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:2005. The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 ISED

The Pleasanton 5-meter Semi-Anechoic Chamber, has been accepted by ISED to perform testing to 3 and 5 meters based on the test procedures described in ANSI C63.4-2014. The Fremont 10-meter Semi-Anechoic Chamber, has been accepted by ISED to perform testing to 3 and 10 meters based on the test procedures described in ANSI C63.4-2014. Under 2932D

2.1.4 Japan - VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 5015 Brandin Ct, Fremont, CA 94538, have been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0326
VCCI Registration No. for Fremont: A-0327

2.1.5 Acceptance by Mutual Recognition Arrangement

country.

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Ln, Pleasanton, CA 94566 test results and test reports within the scope of the laboratory NIST / A2LA accreditation will be accepted by each member

2.2 Test Facilities

Test facilities are located at 5015 Brandin Ct, Fremont, California, 94538, USA and 1279 Quarry Lane, Pleasanton, California 94566, USA (Fremont is the Pleasanton Annex).

2.2.1 Emission Test Facility

The Semi-Anechoic Chambers and AC Line Conducted measurement facilities used to collect radiated and conducted emissions data have been constructed in accordance with ANSI C63.7:1992. The Fremont 10 meter semi-anechoic chamber has been measured in accordance with and verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2014 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04), at test distances of 3 and 10 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate \#3331.02). The Pleasanton 5 meter semi-anechoic chamber has been verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2009 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. $3.0(2010-04)$ at a test distance of 3 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate \#3331.02).

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per ISO Guide To The Expression Of Uncertainty In Measurement, $1^{\text {st }}$ Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurement and the fraction may be viewed as the coverage probability or level of confidence of the interval.

2.3.1 Sample Calculation - radiated \& conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

$$
\text { Field Strength }(\mathrm{dB} \mu \mathrm{~V} / \mathrm{m})=\text { RAW }-\mathrm{AMP}+\mathrm{CBL}+\mathrm{ACF}
$$

$$
\text { Where: RAW }=\text { Measured level before correction }(\mathrm{dB} \mu \mathrm{~V})
$$

AMP = Amplifier Gain (dB)

$$
\text { CBL }=\text { Cable Loss }(\mathrm{dB})
$$

$\mathrm{ACF}=$ Antenna Correction Factor $(\mathrm{dB} / \mathrm{m})$

$$
\mu \mathrm{V} / \mathrm{m}=10^{\frac{d B \mu V / m}{20}}
$$

Sample radiated emissions calculation @ $30 \mathbf{M H z}$
Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

$$
25 \mathrm{dBuV} / \mathrm{m}+17.5 \mathrm{~dB}-20 \mathrm{~dB}+1.0 \mathrm{~dB}=23.5 \mathrm{dBuV} / \mathrm{m}
$$

2.3.2 Measurement Uncertainty

Per CISPR 16-4-2	Ulab	$\mathbf{U}_{\text {cispr }}$
Radiated Disturbance @ 10 meters		
$30-1,000 \mathrm{MHz}$	2.25 dB	4.51 dB
Radiated Disturbance @ 3 meters		
$30-1,000 \mathrm{MHz}$	2.26 dB	4.52 dB
$1-6 \mathrm{GHz}$	2.12 dB	4.25 dB
$6-18 \mathrm{GHz}$	2.47 dB	4.93 dB
Conducted Disturbance @ Mains Terminals		
$150 \mathrm{kHz}-30 \mathrm{MHz}$	1.09 dB	2.18 dB
Disturbance Power		
$30 \mathrm{MHz}-300 \mathrm{MHz}$	3.92 dB	4.3 dB

Voltech PM6000A

\square

2.3.3 Measurement Uncertainty Immunity

The estimated combined standard uncertainty for ESD immunity measurements is $\pm 8.2 \%$.	Per IEC 61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is $\pm 4.10 \mathrm{~dB}$.	Per IEC 61000-4-3
The estimated combined standard uncertainty for conducted immunity measurements with CDN is $\pm 3.66 \mathrm{~dB}$	Per IEC 61000-4-6
The estimated combined standard uncertainty for power frequency magnetic field immunity is $\pm 2.9 \%$.	Per IEC 61000-4-8

Thermo KeyTek EMC Pro

The estimated combined standard uncertainty for EFT fast transient immunity measurements is $\pm 2.6 \%$.
The estimated combined standard uncertainty for surge immunity measurements is $\pm 2.6 \%$.
The estimated combined standard uncertainty for voltage variation and interruption measurements is $\pm 1.74 \%$.

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2 . Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

3 Product Information

3.1 Product Description

The Model 1012000217 is assembled into various motor assemblies and fabricated into Hunter Douglas window coverings that include a fabric member that is rolled around an aluminum tube. User inputs to the system include a push button on the motor module, a TTL level serial port, and 2.4 GHz RF signals. The RF protocol used is proprietary to Hunter Douglas and is implemented with Nordic NRF52840 series SoC's (system on chips). At the time of this writing only three primary frequencies are being used in the protocol [$2407 \mathrm{MHz}, 2453 \mathrm{MHz}, 2471 \mathrm{MHz}$].

The EUT will be in compliance with regulatory standards of regions it will be operating in.

3.2 Equipment Configuration

A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

A description of the operation mode is given in the Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.
The final operating mode was selected to produce the worst case radiation for emissions testing.

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results

The Powerview Gen 3 Motor Control Board has 1 dedicated Flex PIFA antenna that has maximum gain of 1.58 dBi . It is attached using a non-standard connector and is not easily accessible to the end user.

4 Emissions

Testing was performed in accordance with CFR 47 Part 15.247: 2019 and RSS 247: 2017. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power delivering at the transmitting antenna under specified conditions of measurements in the presence of modulation.

The maximum output power and harmonics shall not exceed CFR47 Part 15.247 (b) and RSS 247 5.4 (d).

The maximum transmitted power in the band 2400-2483.5 MHz: 1 W

4.1.1 Test Method

Method of measurement as stated in ANSI C63.10:2013 Sect. 11.9 was used to measure the channel power output. The worst findings were conducted on 3 channels in each operating range per CFR47 Part 15.247 (b) and RSS 247 Sect. 5.4(d); 2400 MHz to 2483.5 MHz . The worst mode results indicated below.

Test Setup:

4.1.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s). Worse case data for each mode reported below. Plots of highest power included for low, medium, and high channels.

Table 2: RF Output Power at the Antenna Port - Test Results

Data Rate	Operating Channel (MHz)	Power $[\mathbf{d B m}]$	Limit $[\mathbf{d B m}]$	Margin $[\mathbf{d B}]$
	2407	5.75	30	-14.25
	2453	5.75	30	-14.25
	2471	5.63	30	-14.37

Plot 1. Maximum Conducted Power, 2 Mbps 2407 MHz

Date: 14.JAN. 2020 08:58:35
Plot 2. Maximum Conducted Power, 2Mbps 2453MHz

Date: 14.JAN. 2020 09:01:59
Plot 3. Maximum Conducted Power, 2 Mbps 2471 MHz

4.2 DTS Bandwidth (6dB) and Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.
The minimum 6 dB bandwidth shall be at least 500 kHz .

4.2.1 Test Method

The conducted method was used to measure the occupied bandwidth according to ANSI C63.10:2013 Section 11.8. The measurement was performed with modulation per CFR47 15.247 (a) (2) and RSS Gen Sect. 6.7. Measurements were performed on the low, middle and high channels of the operating frequency range; 2400 MHz to 2483.5 MHz .

Test Setup:

4.2.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 3: Occupied Bandwidth - Test Results

Bandwidth (MHz)				
Data Rate	Freq. (MHz)	$\mathbf{9 9 \%}$ Bandwidth (MHz)	6dB (DTS) Bandwidth (MHz)	
$\mathbf{2} \mathbf{2 M b p s}$	2407	1.086	0.840	
	2453	1.884	0.8865	
	2471	1.8585	0.909	
	Note: None			

Plot 4. 2 Mbps , 2407MHz, 6dB Bandwidth

Date: 14.JAN. 2020 08:15:42
Plot 5. 2Mbps, 2453MHz, 6dB Bandwidth

Plot 6. 2Mbps, 2471MHz, 6dB Bandwidth

Date: 14.JAN. 2020 08:55:15
Plot 7. $2 \mathrm{Mbps}, 2407 \mathrm{MHz}, 99 \%$ Bandwidth

Plot 8. $2 \mathrm{Mbps}, 2453 \mathrm{MHz}, 99 \%$ Bandwidth

Plot 9. 2Mbps, 2471MHz, 99\% Bandwidth

4.3 Peak Power Spectral Density

According to the CFR47 Part 15.247 (e) and RSS 247 Sect. 5.2 (b), the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.1 Test Method

The conducted method was used to measure the channel power output per ANSI C63.10-2013 Section 11.10.2. The measurement was performed with modulation per CFR47 Part 15.247 (e) and RSS 247 Sect. 5.2 (b). The worst findings were conducted on 3 channels in each operating frequency range of 2400 MHz to 2483.5 MHz .

Test Setup:
\square

4.3.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 4: Peak Power Spectral Density - Test Results

Peak Power Spectral Density					
Data Rate	Freq. $(\mathbf{M H z})$	Total PSD [dBm]	Limit [dBm]	Margin [dB]	
2 Mbps	2407	-7.47	8	-15.47	
	2453	-7.29	8	-15.29	
	2471	-8.45	8	-16.45	
Note: None					

Date: 14.JAN. 2020 09:12:53
Plot 10. 2Mbps, 2407MHz PSD

Date: 14.JAN. 2020 09:08:03
Plot 11. 2 Mbps , 2453 MHz PSD

Plot 12. 2Mbps, 2471MHz PSD

4.4 Out of Band Emissions: Non-Restricted Bands

Any frequency outside the band of 2400 MHz to 2483.5 MHz , the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under the regulation, the attenuation required under this paragraph shall be 30 dB instead of 20 $d B$. ; CFR 47 Part 15.247(d) and RSS 247 Sect. 5.5.

4.4.1 Test Method

Conducted measurements per ANSI C63.10-2013 Sections 6.10, 11.11, 14.3.3 were used to measure the undesirable emission requirement in non-restricted bands. The measurement was performed with modulation. The measurement was conducted from 30 MHz to 26.5 GHz on 3 channels in each mode on the EUT. Reference level was established on the channel with highest measured PSD (2453 MHz) as stated in ANSI C63.10-2013 Section 11.11.2. Band edge tests were conducted on the low and high channel of each mode. The worst case measurement of each mode is recorded in this report.

Test Setup:

4.4.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 5: Emissions at the Band-Edge - Test Results

Non-Restricted Frequency Band Edge Emissions								
Data Rate	Band Edge	Center Freq $(\mathbf{M H z})$	Measured $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$	Freq $(\mathbf{M H z})$	Results	
2 Mbps	Low	2407	-51.78	-15.33	-36.45	2342.96	Pass	
	High	2471	-55.07	-15.78	-36.7	2535.089	Pass	

Note:

Plot 13. 2Mbps, 2407MHz Lower Band Edge

Date: 14.JAN. 2020 09:22:21
Plot 14. $2 \mathrm{Mbps}, 2471 \mathrm{MHz}$ Upper Band Edge

Date: 14.JAN. 2020 09:25:51
Plot 15. PSD Reference Measurement, 2Mbps 2453MHz

Date: 14.JAN. 2020 09:38:06
Plot 16. 2 Mbps , $2407 \mathrm{MHz} 30 \mathrm{MHz}-26.5 \mathrm{GHz}$ Spurious

Date: 14.JAN. 2020 09:32:25
Plot 17. 2Mbps, 2453MHz 30MHz-26.5GHz Spurious

Plot 18. $2 \mathrm{Mbps}, 2471 \mathrm{MHz} 30 \mathrm{MHz}-26.5 \mathrm{GHz}$ Spurious

4.5 Out of Band Emissions: Restricted Band Edge

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmitting mode; per requirement of CFR47 15.205, 15.209, 15.247(d), RSS247 Sect. 5.5, RSS-GEN Sect. 8.9 and 8.10.

4.5.1 Test Method

Radiated measurements per ANSI C63.10-2013 Section 6.10 .5 were used to measure the undesirable emission requirement in restricted bands. Peak points were found and RMS Average was taken for each point found. The measurement was performed with modulation. This test was conducted on the upper and lower most channels in each mode on the EUT. The worst case measurement of each channel is recorded in this report. All channels were tested at highest power settings.

Test Setup

The DUT was stimulated by manufacturer provided test software that is not available to the end user.

4.5.2 Test Results

Table 6: Emissions at the Band-Edge - Test Results

Test Conditions: Radiated Measurement, Normal Temperature and Voltage							
Lower Restricted Band Edge							
Freq. (MHz)	Mode/Data Rate	$\begin{gathered} \hline \text { Center } \\ \text { Freq } \\ \text { (MHz) } \\ \hline \end{gathered}$	Detector (Average/ Peak)	Measured (dBuV/m)	$\begin{gathered} \text { Limit } \\ (\mathbf{d B u V} / \mathbf{m}) \end{gathered}$	Margin	Results
2342.867	2Mbps	2407	Average	39.04	54	-14.96	Pass
2343.164	2Mbps	2407	Peak	49.21	74	-24.79	Pass
Upper Restricted Band Edge							
Freq. (MHz)	Mode	$\begin{gathered} \text { Center } \\ \text { Freq } \\ \text { (MHz) } \\ \hline \end{gathered}$	Detector (Average/ Peak)	Measured (dBuV/m)	$\begin{gathered} \text { Limit } \\ (\mathbf{d B u V} / \mathbf{m}) \end{gathered}$	Margin	Results
2535.152	2Mbps	2471	Average	40.17	54	-13.83	Pass
2535.210	2Mbps	2471	Peak	50.84	74	-23.16	Pass

Note:

Plot 19. 2Mbps, 2407MHz, Lower Band Edge, Restricted

Plot 20. 2Mbps, 2471MHz, Upper Band Edge, Restricted

4.6 Transmitter Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205, 15.209, 15.247(d), RSS 247 Sect.5.5, RSS-GEN Sect. 8.9 and 8.10.

4.6.1 Test Methodology

4.6.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.
Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a $1.0 \mathrm{~m} \times 1.5 \mathrm{~m}$ non-conductive table $80 \mathrm{~cm}(<1 \mathrm{GHz})$ and $150 \mathrm{~cm}(>1 \mathrm{GHz})$ above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3 m at a fixed height of 1 m . Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

Pre-scans were performed to determine the worst data rate / chains.

4.6.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a $1.0 \mathrm{~m} \times 1.5 \mathrm{~m}$ non-conductive table $80 \mathrm{~cm}(<1 \mathrm{GHz})$ and $150 \mathrm{~cm}(>1 \mathrm{GHz})$ above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

4.6.1.3 Deviations

None.

4.6.2 Test Setup

All tests were conducted at full power on low, middle, and high channels. The DUT was stimulated by manufacturer provided test software that is not available to the end user.

30MHz-1 GHz

1-26GHz

4.6.3 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209: 2015 and RSS Gen Sect. 8.9 and 8.10: 2014.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490.	2400/F(kHz)	300
0.490-1.705	$24000 / \mathrm{F}(\mathrm{kHz})$	30
1.705-30.0	30	30
30-88	100 **	3
88-216.	150 **	3
216-960	200 **	3
Above 960..	500	3

4.6.4 Test Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and test plan.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).
Worse case configurations/modes shown below, all plots taken using a peak detector in order to identify frequencies of interest. No emissions were observed below 30 MHz or above 18 GHz .

4.6.4.1 Plots

Frequency							
(MHz)	QuasiPeak						
$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	
30.966264	18.92	40.00	21.08	100.0	H	-40.0	30.966264
64.726880	11.67	40.00	28.33	100.0	V	10.0	64.726880
118.533800	14.74	43.52	28.78	200.0	V	119.0	118.533800
378.761000	14.12	46.00	31.88	154.0	V	18.0	378.761000
954.794560	26.78	46.00	19.22	101.0	V	-14.0	954.794560

Plot 35. $30 \mathrm{MHz}-1000 \mathrm{MHz}, 2 \mathrm{Mbps}, 2407 \mathrm{MHz}$

Frequency	QuasiPeak	Limit	Margin	Meas. (MHz)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Height
(dB)	(ms)	(cm)	Pol	Azimuth			
(deg)							

Plot 36. $30 \mathrm{MHz}-1000 \mathrm{MHz}, 2 \mathrm{Mbps}$, 2453 MHz

Frequency (MHz)	QuasiPeak $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
30.697000	19.07	40.00	20.93	288.0	V	-175.0	30.697000	19.07
119.079760	14.74	43.52	28.78	400.0	V	-83.0	119.079760	14.74
288.551040	15.31	46.00	30.69	101.0	H	-139.0	288.551040	15.31
311.894120	17.54	46.00	28.46	101.0	H	129.0	311.894120	17.54
660.425840	16.79	46.00	29.21	100.0	V	-185.0	660.425840	16.79
956.831880	26.26	46.00	19.74	154.0	V	36.0	956.831880	26.26

Plot 37. $30-1000 \mathrm{MHz}, 2 \mathrm{Mbps}$, 2471 MHz

5015 Brandin Ct. Fremont, California, 94538
Tel: (925) 249-9123, Fax: (925) 249-9124

Frequency (MHz)	MaxPeak ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Average ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\begin{gathered} \text { Limit } \\ (\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}) \end{gathered}$	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
1900.463000	---	20.42	54.00	33.58	1000.000	201.0	V	180.0
1900.463000	33.21	---	74.00	40.79	1000.000	201.0	V	180.0
4814.656500	---	46.98	54.00	7.02	1000.000	101.0	H	34.0
4814.656500	54.43	---	74.00	19.57	1000.000	101.0	H	34.0
7220.102000	41.74	---	74.00	32.26	1000.000	101.0	H	4.0
7220.102000	---	29.95	54.00	24.05	1000.000	101.0	H	4.0
9022.287000	43.87	---	74.00	30.13	1000.000	100.0	H	180.0
9022.287000	---	30.56	54.00	23.44	1000.000	100.0	H	180.0
12036.416000	48.17	---	74.00	25.83	1000.000	201.0	V	-72.0
12036.416000	---	35.88	54.00	18.12	1000.000	201.0	V	-72.0
17985.342000	48.14	---	74.00	25.86	1000.000	201.0	V	121.0
17985.342000	---	34.83	54.00	19.17	1000.000	201.0	V	121.0

Plot 38. $1-18 \mathrm{GHz}, 2 \mathrm{Mbps}$, 2407 MHz

Frequency (MHz)	MaxPeak $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Average $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
1904.470500	33.56	--	74.00	40.44	1000.000	100.0	V	-81.0
1904.470500	---	20.78	54.00	33.22	1000.000	100.0	V	-81.0
2452.708500	39.30	---	74.00	34.70	1000.000	202.0	V	115.0
2452.708500	--	33.53	54.00	20.47	1000.000	202.0	V	115.0
4905.304000	48.65	$-\ldots$	74.00	25.35	1000.000	101.0	H	113.0
4905.304000	---	39.16	54.00	14.84	1000.000	101.0	H	13.0
8981.227000	--	30.72	54.00	23.28	1000.000	201.0	H	163.0
8981.227000	43.96	--	74.00	30.04	1000.000	201.0	H	163.0
12266.691000	---	38.23	54.00	15.77	1000.000	200.0	V	145.0
12266.691000	49.90	--	74.00	24.10	1000.000	200.0	V	145.0
17955.244500	46.02	--	74.00	27.98	1000.000	100.0	V	135.0
17955.244500	--	33.21	54.00	20.79	1000.000	100.0	V	135.0

Plot 39. $1-18 \mathrm{GHz}, 2 \mathrm{Mbps}, 2453 \mathrm{MHz}$

5015 Brandin Ct. Fremont, California, 94538
Tel: (925) 249-9123, Fax: (925) 249-9124

Frequency (MHz)	MaxPeak $(\mathrm{dB} \mu \mathrm{~V} / \mathrm{m})$	Average $(\mathrm{dB} \mu \mathrm{~V} / \mathrm{m})$	Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
1913.263000	34.08	---	74.00	39.92	1000.000	201.0	H	-101.0
1913.263000	---	21.02	54.00	32.98	1000.000	201.0	H	-101.0
2470.884500	---	31.28	54.00	22.72	1000.000	201.0	H	180.0
2470.884500	36.81	---	74.00	37.19	1000.000	201.0	H	180.0
4942.666500	44.59	---	74.00	29.41	1000.000	101.0	H	16.0
4942.666500	---	34.92	54.00	19.08	1000.000	101.0	H	16.0
7412.281500	43.52	---	74.00	30.48	1000.000	201.0	V	101.0
7412.281500	---	32.04	54.00	21.96	1000.000	201.0	V	101.0
13529.000500	---	32.91	54.00	21.09	1000.000	201.0	V	159.0
13529.000500	45.75	---	74.00	28.25	1000.000	201.0	V	159.0
17782.810000	47.91	---	74.00	26.09	1000.000	200.0	V	-180.0
17782.810000	---	34.88	54.00	19.12	1000.000	200.0	V	-180.0

Plot 40. $1-18 \mathrm{GHz}, 2 \mathrm{Mbps}, 2471 \mathrm{MHz}$

4.7 AC Conducted Emissions

Testing was performed in accordance with ANSI C63.4: 2014. These test methods are listed under the laboratory's A2LA Scope of Accreditation.

This test measures the levels emanating from the EUT's AC input port, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

The AC conducted emissions of equipment under test shall not exceed the values in CFR47 Part 15.207 and RSS-GEN. Sect. 8.8.

4.7.1 Test Methodology

A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into subranges such as to yield a frequency resolution of 9 kHz . Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of $50 \mu \mathrm{H}$ / 50Ω LISNs.

Testing is performed in Lab1. The setup photographs clearly identify which site was used. The vertical ground plane used in the semi-anechoic chamber is a $2 \mathrm{~m} \times 2 \mathrm{~m}$ solid aluminum frame and panel, and it is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a $1.0 \mathrm{~m} \times 1.5 \mathrm{~m}$ non-conductive table 80 cm above the ground plane and 40 cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40 cm from the ground plane. Support equipment was powered from a separate LISN.

4.7.1.1 Deviations

There were no deviations from this test methodology.

4.7.2 Test Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 7: AC Conducted Emissions - Test Results

| Test Conditions: Conducted Measurement at Normal Conditions only | | |
| :---: | :---: | :---: | :---: |
| AC Power: $120 \mathrm{Vac} / 60 \mathrm{~Hz}$ | Configuration: Tabletop | |
| Configuration | Frequency Range | Test Result |
| Line 1 (Live) | 0.15 to 30 MHz | Pass |
| Line 2 (Neutral) | 0.15 to 30 MHz | Pass |

4.7.2.1 Live Line

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail
0.150272	22.08	11.18	0.09	33.35	Quasi Peak	Neutral	65.98	-32.63	Pass
0.150272	4.81	11.18	0.09	16.08	Average	Neutral	55.98	-39.9	Pass
0.156337	3.33	10.84	0.08	14.25	Average	Neutral	55.66	-41.41	Pass
0.156337	21.77	10.84	0.08	32.69	Quasi Peak	Neutral	65.66	-32.97	Pass
0.36814	15.22	10.1	0.04	25.36	Average	Neutral	48.54	-23.18	Pass
0.36814	28.58	10.1	0.04	38.72	Quasi Peak	Neutral	58.54	-19.82	Pass
3.985008	11.04	10.21	0.03	21.28	Quasi Peak	Neutral	56	-34.72	Pass
3.985008	-2.68	10.21	0.03	7.56	Average	Neutral	46	-38.44	Pass
4.041178	2	10.21	0.03	12.24	Average	Neutral	46	-33.76	Pass
4.041178	9.96	10.21	0.03	20.2	Quasi Peak	Neutral	56	-35.8	Pass
13.426377	-0.42	10.4	-0.03	9.94	Average	Neutral	50	-40.06	Pass
13.426377	10.99	10.4	-0.03	21.36	Quasi Peak	Neutral	60	-38.64	Pass

4.7.2.2 Neutral Line

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail
0.153373	22.21	11	0.09	33.3	Quasi Peak	Neutral	65.82	-32.51	Pass
0.153373	3.64	11	0.09	14.73	Average	Neutral	55.82	-41.09	Pass
0.208052	4.27	10.21	0.07	14.55	Average	Neutral	53.28	-38.73	Pass
0.208052	16.52	10.21	0.07	26.8	Quasi Peak	Neutral	63.28	-36.48	Pass
0.216595	16.09	10.2	0.06	26.36	Quasi Peak	Neutral	62.95	-36.59	Pass
0.216595	4.26	10.2	0.06	14.53	Average	Neutral	52.95	-38.42	Pass
0.37022	24.16	10.1	0.04	34.31	Quasi Peak	Neutral	58.5	-24.19	Pass
0.37022	11.78	10.1	0.04	21.92	Average	Neutral	48.5	-26.58	Pass
3.853567	-0.99	10.21	0.03	9.24	Average	Neutral	46	-36.76	Pass
3.853567	8.88	10.21	0.03	19.12	Quasi Peak	Neutral	56	-36.88	Pass
13.403309	3.72	10.4	-0.03	14.08	Average	Neutral	50	-35.92	Pass
13.403309	12.64	10.4	-0.03	23	Quasi Peak	Neutral	60	-37	Pass

5 Test Equipment List

5.1 Equipment List

Equipment	Manufacturer	Model \#	Serial/Inst \#	Last Cal mm/dd/yyyy	Next Cal mm/dd/yyyy
Spectrum Analyzer	Rohde \& Schwarz	FSU26.5	200050	11/20/2019	11/20/2020
EMI Receiver	Rohde \& Schwarz	ESW44	101663-dv	07/18/2019	07/18/2021
L.I.S.N.	Com-Power	LI-215	192000	01/16/2019	01/16/2021
Transient Limiter	Com-Power	LIT-930	531582	01/16/2019	01/16/2021
Preamplifier, $9 \mathrm{kHz}-1 \mathrm{GHz}$	Sonoma	310 N	213221	01/16/2019	01/16/2021
Bilog Antenna	Sunol Sciences	JB3	A060502	05/27/2018	05/27/2020
Amplifier	Miteq	TTA1800-30-HG	1842452	01/15/2019	01/15/2021
Horn Antenna	Sunol Sciences	DRH-118	A040806	03/05/2019	03/05/2021
Amplifier	HP	8449B	3008A01013	01/15/2019	01/15/2021
Horn Antenna	EMCO	RA42-K-F-B-C	020131-004	03/04/2019	03/04/2021
Amplifier	Rohde \& Schwarz	TS-PR26	3545.7014 .03	03/04/2019	03/04/2021
Amplifier	Sonoma	310N	185516	N/A (See Note)	
1.6 GHz Low Pass Filter	K\&L Microwave	$\begin{aligned} & \text { 8L120-X1600-0/09135- } \\ & 0249 \\ & \hline \end{aligned}$	UA691-35	N/A (See Note)	
2.4GHZ Band Pass Filter	Microtronics	BRM50702	009	N/A (See Note)	

Note: Equipment is characterized before use.

6 EMC Test Plan

6.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

6.2 Customer

Table 8: Customer Information

Company Name	Hunter Douglas Window Fashions
Address	One Duette Way
City, State, Zip	Broomfield, CO 80020
Country	USA

Table 9: Technical Contact Information

Name	Mike Rockwood
E-mail	mike.rockwood @ hunterdouglas.com

6.3 Equipment Under Test (EUT)

The information provided in the following table should be listed as it should appear in the final report. For those products that have only a model name, list the model number as non-applicable and vice-versa.
Table 10: EUT Designation

Product Name	Powerview Gen3 Motor Control Board
Model Number	1012000217

6.4 Product Specifications

Table 11: EUT Specifications

EUT Specifications	
Environment	Indoor/Outdoor
Operating Temperature Range:	$0-40^{\circ} \mathrm{C}$
Multiple Feeds:	\square Yes and how many $\boxed{\text { No }}$
Product Marketing Name (PMN)	Powerview Gen3 Motor Control Board
Hardware Version Identification Number (HVIN)	1012000217 RevB
Firmware Version Identification Number (FVIN)	--
RF Software Version	N/A
Operating Modes	Proprietary Mode, GFSK - 2MB/s
Transmitter Frequency Band	2.4 GHz - 2.4835 GHz
Power Setting @ Operating Channel	See section 4.1.2.
Modulation	GFSK
TX/RX Chain (s)	SISO
Type of Equipment	\square Table Top \square Wall-mount \square Floor standing cabinet
Other:	

Note: EUT will be on / transmitted at all times with the highest power levels and antenna gains per channel.

Table 12: Antenna Information

Number	Antenna Type	Description	Max Gain (dBi)
Antenna 0	Flex PIFA	GFSK, 2Mb/s	1.58

Table 13: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
USB - Serial	USB	No	\boxtimes Metric: $<3.0 \mathrm{~m}$	N/A

Table 14: Accessory Equipment

Equipment	Manufacturer	Model	Serial	Comment
AC/DC Power Supply	Amigo	ADS0366-		
		W180200	2989048000	Output: 18VDC, 2A
Note: None				

Table 15: Ancillary Equipment (used for test purposes only)

Equipment	Manufacturer	Model	Serial	Used for
Laptop	HP	Pavilion	N/A	Setup EUT operating channels via Serial connection to EUT
USB-Serial Interface	N/A	N/A	N/A	Setup EUT operating channels via connection to EUT and USB Connection to Laptop
Note: None.				

Table 16: Description of Sample used for Testing

Device	Serial	RF Connection	CFR47 Part 15.247
1012000217	N/A	Integrated Antenna	Radiated Emissions Conducted Emissions
		Direct via SMA Connection	Transmit Power, PSD, Occupied Bandwidth, Out of Band Emission

Table 17: Description of Test Configuration used for Radiated Measurement.

Device	Antenna	Mode	Setup Photo (X-Axis)	Setup Photo (Y-Axis)	Setup Photo (Z-Axis)
1012000217	Flex PIFA	Transmit	EUT Flat	EUT On Side	EUT Upright

Note: Worse case during radiated measurements were found when EUT was set on its "X-Axis". All testing completed from this Axis (See Test setup for Images)

6.5 Test Specifications

Table 18: Test Specifications

Emissions and Immunity	
Standard	Requirement
CFR 47 Part 15.247: 2019	All
RSS 247 Issue 2, 2017	All

END OF REPORT

