

TEST REPORT

Test report no.: 1-3000/16-02-03

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com

e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

InnoSenT GmbH

Am Rödertor 30

97499 Donnersdorf / GERMANY Phone: +49 9528 9518-0 Fax: +49 9528 9518-99 Contact: Robert Mock

e-mail: robert.mock@innosent.de Phone: +49 9528 9518-81

Manufacturer

InnoSenT GmbH

Am Rödertor 30

97499 Donnersdorf / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

RSS - 210 Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Doppler-Radar
Model name: SMR-313/323/333
FCC ID: UXS-SMR-3X3
IC: 6902A-SMR3X3

Frequency: 24.075 GHz – 24.175 GHz

Antenna: Integrated antenna

Power supply: 3.2 V to 3.4 V DC

Temperature range: -40°C to +85°C

Radio Communications & EMC

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Karsten Geraldy	Benedikt Gerber	
Lab Manager	Lab Manager	

Radio Communications & EMC

Table of contents

1	Table of contents					
2		al information				
	2.1	Notes and disclaimer				
	2.1	Application details				
	2.3	Test laboratories sub-contracted				
3	Test s	tandard/s and references				
4		nvironment				
5		em				
•	5.1	General description				
	5.2	Additional information				
6	Descr	ption of the test setup	6			
•	6.1	Shielded semi anechoic chamber				
	6.2	Shielded fully anechoic chamber				
	6.3	Radiated measurements > 18 GHz				
	6.4	Radiated measurements > 50 GHz				
	6.5	Frequency error				
7	Seque	nce of testing	12			
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12			
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz				
	7.3	Sequence of testing radiated spurious 1 GHz to 18 GHz				
	7.4	Sequence of testing radiated spurious above 18 GHz				
	7.5	Sequence of testing radiated spurious above 50 GHz with external mixers	16			
8	Summ	ary of measurement results	17			
9	RF me	asurement testing	18			
10	Mea	surement results	18			
	10.1	Field strength of emissions (wanted signal)	18			
	10.2	Occupied bandwidth (99% bandwidth)				
	10.3	Field strength of emissions (radiated spurious)	24			
	10.3.1	Additional comments	31			
Anr	nex A	Document history	32			
Anr	nex B	Further information	32			
Δnr	nex C	Accreditation Certificate	33			

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2016-12-12
Date of receipt of test item: 2017-01-26
Start of test: 2017-01-31

Person(s) present during the test: Mr. Markus Wittstadt

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus
RSS - 210	August 2016	Licence-Exempt Radio Apparatus: Category I Equipment

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests -/- °C during high temperature tests -/- °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	3.3 V DC by lab power supply3.4 V DC by lab power supply3.2 V DC by lab power supply

5 Test item

5.1 General description

Kind of test item :	Doppler-Radar
Type identification :	SMR-313/323/333
HMN :	-/-
PMN :	SMR-313, SMR-323, SMR-333
HVIN :	SMR-3X3
FVIN :	-/-
S/N serial number :	00001187, 00001233, 00001268
HW hardware status :	SMR-313-REV1_01, SMR-323-REV1_01, SMR-333-Rev1_01
Frequency band :	24.075 GHz – 24.175 GHz
Type of radio transmission: Use of frequency spectrum:	single carrier
Type of modulation :	unmodulated signal
Number of channels :	1
Antenna :	Integrated antenna
Power supply :	3.2 V to 3.4 V DC
Temperature range :	-40°C to +85°C

5.2 Additional information

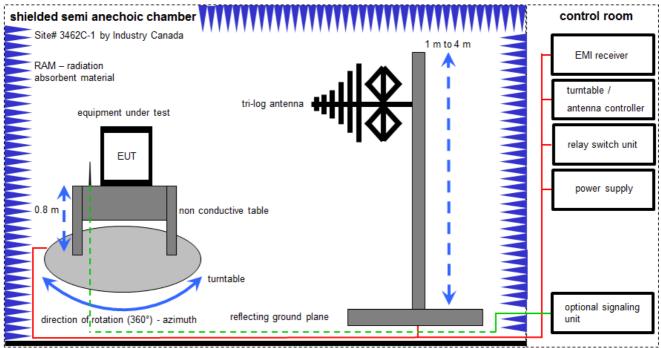
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-3000/16-02-01_AnnexA 1-3000/16-02-01_AnnexC

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	ΕK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

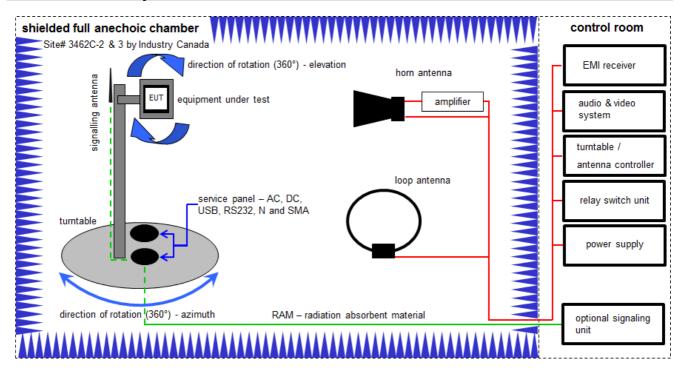
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

Equipment table (semi anechoic chamber):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	45	Switch-Unit	3488A	HP	2719A14505	300000368	ev		
2	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne		
3	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
4	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
5	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw		
6	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw		
7	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw		
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018
9	n.a.	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	31.01.2017	30.01.2018

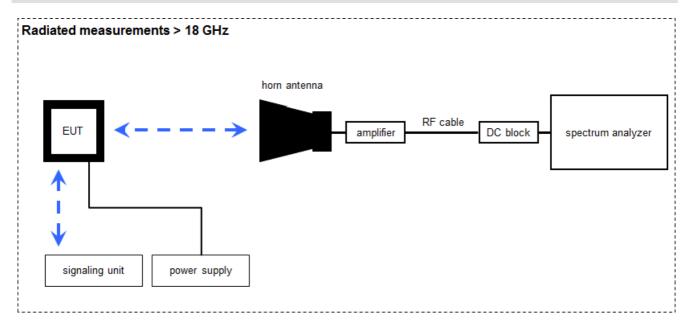
6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter / 1 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

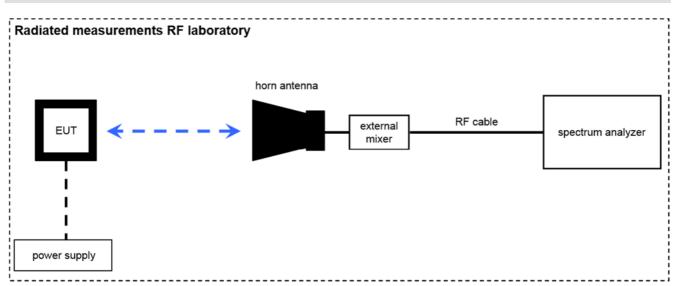
Example calculation:


 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table (fully anechoic chamber):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO	2210	300001015	k	20.05.2015	20.05.2017
2	n. a.	Power Supply 0-20V	6632A	HP	2851A01814	300000924	ne	09.11.2005	-/-
3	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	k	13.08.2015	13.08.2017
4	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	02.02.2016	02.02.2017
5	n. a.	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
6	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
7	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	318	300003696	k	22.04.2014	22.04.2017
8	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22050	300004482	ev	-/-	-/-
9	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
10	n. a.	Messrechner und Monitor	Intel Core i3 3220/3,3 GHz, Prozessor	Agilent Technologies	2V2403033A54 21	300004591	ne	-/-	-/-
11	n. a.	NEXIO EMV- Software	BAT EMC	EMCO	2V2403033A54 21	300004682	ne	-/-	-/-
12	n. a.	Anechoic chamber	BAT EMC	TDK	2V2403033A54 21	300003726	ne	-/-	-/-
13	n. a.	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018

6.3 Radiated measurements > 18 GHz


FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

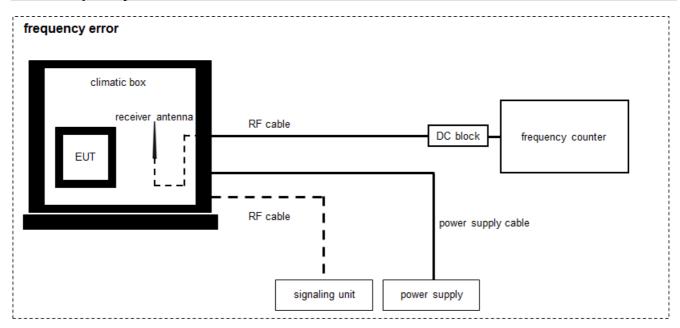
Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

6.4 Radiated measurements > 50 GHz

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)


Example calculation:

 $\overline{OP [dBm]} = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 \mu W)$

Note: conversion loss of mixer is already included in analyzer value.

6.5 Frequency error

Equipment table (RF laboratory):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	CR 79	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	7911	300001751	ne	-/-	-/-
2	n.a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001986	ne	-/-	-/-
3	n.a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
4	n.a.	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017
5	n.a.	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8402	300000486	k	10.09.2015	10.09.2017
6	n.a.	Spectrum Analyzer 20 Hz - 50 GHz	FSU50	R&S	200012	300003443	Ve	28.10.2016	28.10.2018
7	n.a.	Harmonic Mixer 2- Port, 50-75 GHz	FS-Z75	R&S	100099	300003949	k	09.03.2016	09.03.2017
8	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
9	n.a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	24.10.2016	24.10.2017
10	n.a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	7911	300001751	ne	-/-	-/-
11	n.a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001986	ne	-/-	-/-
12	n.a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
13	n.a.	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017
14	n.a.	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8402	300000486	k	10.09.2015	10.09.2017
15	n.a.	Spectrum Analyzer 20 Hz - 50 GHz	FSU50	R&S	200012	300003443	Ve	28.10.2016	28.10.2018
16	n.a.	Harmonic Mixer 2- Port, 50-75 GHz	FS-Z75	R&S	100099	300003949	k	09.03.2016	09.03.2017
17	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
18	n.a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	24.10.2016	24.10.2017

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

7.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 15 RSS 210, Issue 8, Annex 8	Passed	2017-04-21	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Pass	Fail	NA	NP	Results (max.)
§15.245(b) RSS 210 / A7.1	Field strength of emissions (wanted signal)	Nominal	Nominal					complies
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				complies
§15.209(a) / §15.245(b)(1)(2)(3) RSS 210 / A7.1-4	Field strength of emissions (spurious)	Nominal	Nominal					complies

Note: NA = Not Applicable; NP = Not Performed

9 RF measurement testing

10 Measurement results

10.1 Field strength of emissions (wanted signal)

Description:

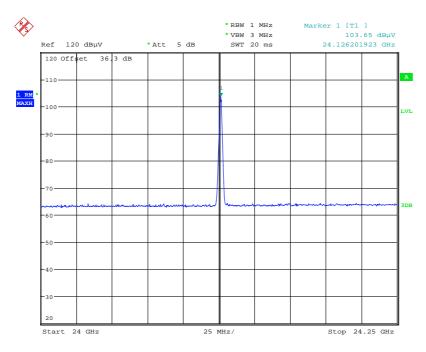
Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

Measurement parameter				
Detector:	Pos-Peak			
Sweep time:	Auto			
Video bandwidth:	Auto			
Resolution bandwidth:	1 MHz			
Span:	max. 100 MHz			
Trace-Mode:	Max Hold			

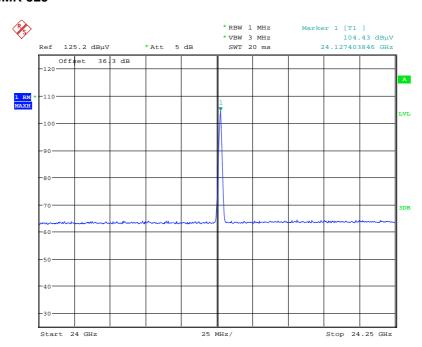
Limits:

FCC			IC	
CFR Part 15.245(b)		RSS - 210, Annex 7		
Field strength of emissions				
The field strength of emissions from intentional radiators operated within these frequency bands shall comply with t following:				
Frequency Field Strength Measurement distance [GHz] [mV/m // dBµV/m]			Measurement distance	
24.075 – 24.175	12	28	3m	


Result:

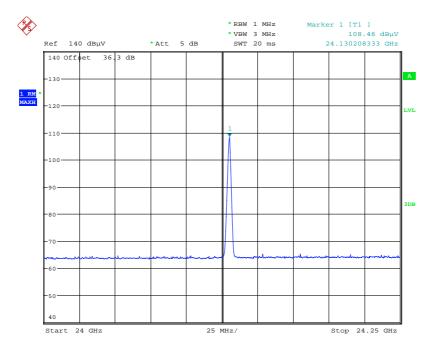
	Maximum field strength					
EUT	Frequency [GHz]	Field strength E [mV/m] @ 3 m	Field strength e [dBµV/m] @ 3 m			
SMR 313	24.1262	152.2	103.7			
SMR 323	24.1274	166.0	104.4			
SMR 333	24.1302	266.1	108.5			
Measurement uncertainty		± 3 dB				

Result: The measurement is passed.



Plot 1: EIRP, SMR 313

Date: 26.JAN.2017 11:59:02


Plot 2: EIRP, SMR 323

Date: 26.JAN.2017 13:19:22

Plot 3: EIRP, SMR 333

Date: 26.JAN.2017 13:26:09

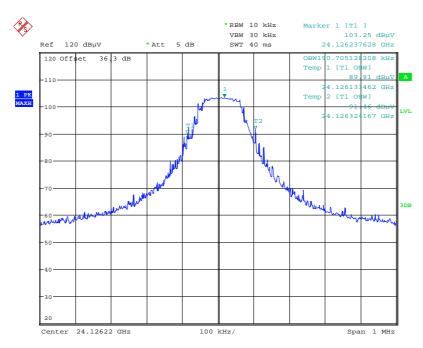
10.2 Occupied bandwidth (99% bandwidth)

Description:

Measurement of the 99% bandwidth of the wanted signal.

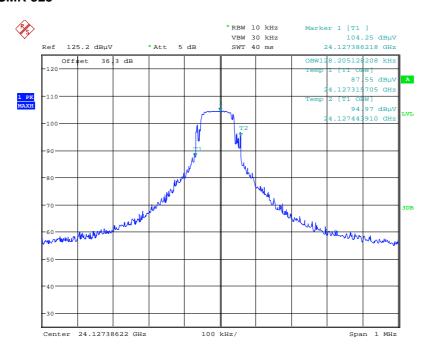
Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	100 kHz			
Resolution bandwidth:	100 kHz			
Span:	8 MHz			
Trace-Mode:	Max Hold			


Results:

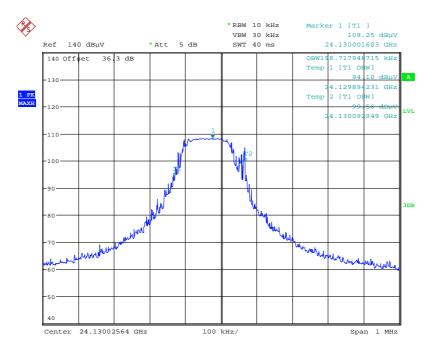
	Occupied bandwidth						
EUT	f _L [MHz]	f _H [MHz]	Occupied bandwidth [kHz]				
SMR 313	24126.133	24126.324	190.71				
SMR 323	24127.316	24127.444	128.21				
SMR 333	24129.894	24130.093	198.72				
Measurement uncertainty		± 3 dB	•				

Result: The measurement is passed.



Plot 4: OBW, SMR 313

Date: 26.JAN.2017 12:04:54


Plot 5: OBW, SMR 323

Date: 26.JAN.2017 13:18:00

Plot 6: OBW, SMR 333

Date: 26.JAN.2017 13:28:39

10.3 Field strength of emissions (radiated spurious)

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

Measurement parameter				
Detector:	Peak / Quasi Peak			
Sweep time:	Auto			
Video bandwidth:	Auto			
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz			
Frequency range:	30 MHz to 100 GHz			
Trace-Mode:	Max Hold			

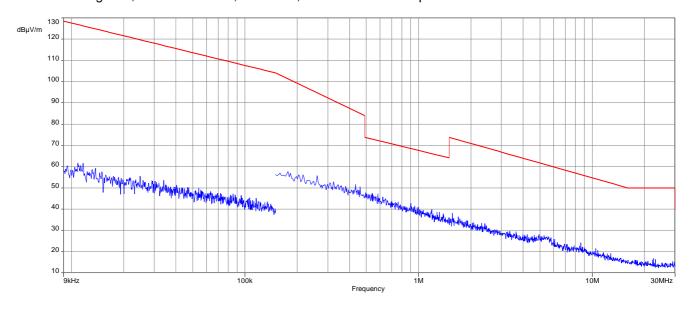
Limits:

FCC	IC
CFR Part 15.209(a)	RSS - GEN

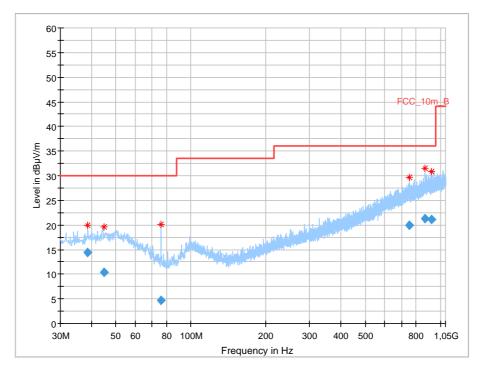
Radiated Spurious Emissions

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

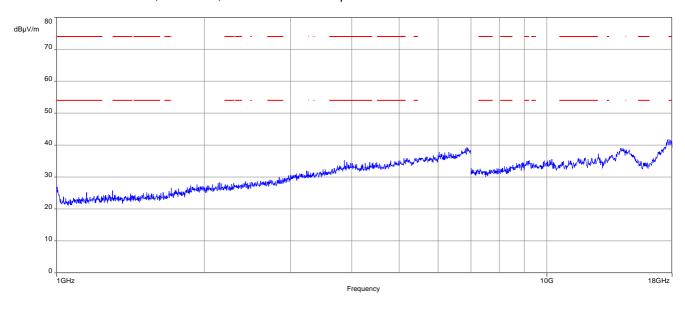
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

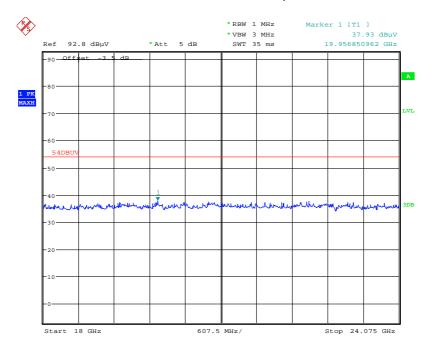

Results:

		T.	X Spurious En	nissions Radi	ated [dBµV/m]			
	Lowest			Middle			Highest		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
No o	critical peaks f	found	No c	ritical peaks fo	ound	No c	No critical peaks found		
Measurement uncertainty					± 3	dB	l .	!	

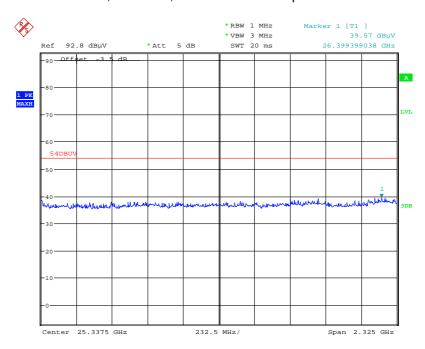

Result: The measurement is passed.

Plot 7: TX Magnetic, 9 kHz – 30 MHz, SMR 333, horizontal / vertical polarization

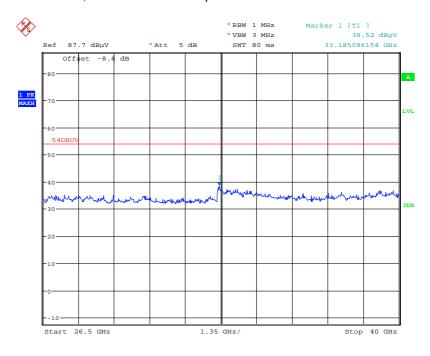

Plot 8: 30 MHz to 1 GHz, SMR 333, horizontal / vertical polarization


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.686500	14.33	30.00	15.67	1000.0	120.000	103.0	٧	267.0	13.1
44.968200	10.32	30.00	19.68	1000.0	120.000	169.0	Н	-3.0	13.6
75.822750	4.77	30.00	25.23	1000.0	120.000	103.0	Н	132.0	8.7
751.718850	19.87	36.00	16.13	1000.0	120.000	200.0	Н	86.0	22.7
869.712750	21.25	36.00	14.75	1000.0	120.000	400.0	Н	267.0	23.8
923.696400	21.16	36.00	14.84	1000.0	120.000	400.0	Н	240.0	24.3

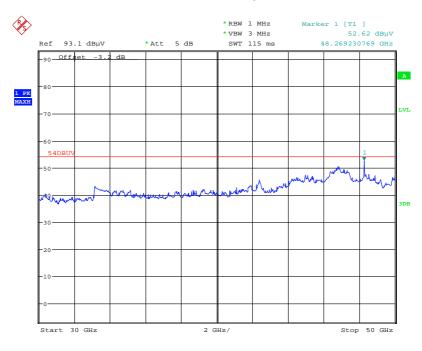
Plot 9: 1 GHz to 18 GHz, SMR 333, horizontal / vertical polarization



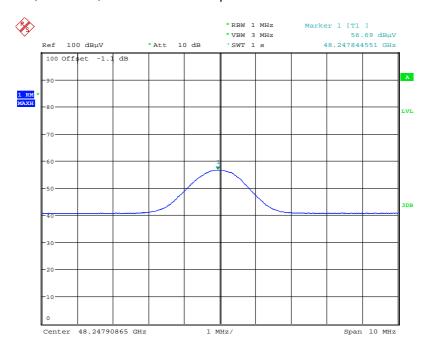
Plot 10: 18 GHz to 24.075 GHz, SMR 333, horizontal / vertical polarization


Date: 27.JAN.2017 13:19:24

Plot 11: 24.175 GHz to 26.5 GHz, SMR 333, horizontal / vertical polarization

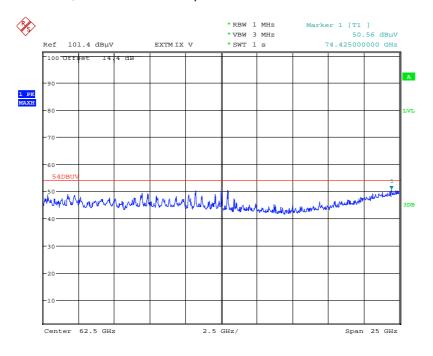

Date: 27.JAN.2017 13:18:42

Plot 12: 26.5 GHz to 40 GHz, horizontal / vertical polarization

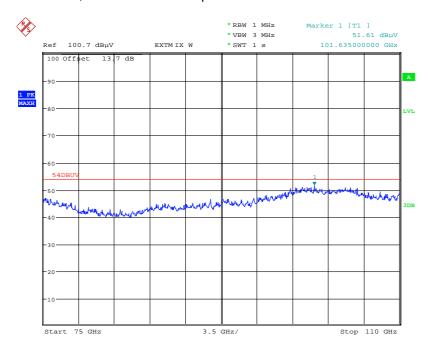

Date: 27.JAN.2017 12:14:01

Plot 13: 40 GHz to 50 GHz, SMR 333, horizontal / vertical polarization

Date: 27.JAN.2017 12:10:47


Plot 14: 1st harmonic, SMR 333, horizontal / vertical polarization

Date: 27.JAN.2017 09:07:43


Note: Max. field strength of harmonics: $25.0 \text{ mV/m} = 88 \text{ dB}\mu\text{V/m}$ (§15.245 (b))

Plot 15: 50 GHz to 75 GHz, horizontal / vertical polarization

Date: 3.FEB.2017 15:50:35

Plot 16: 75 GHz to 110 GHz, horizontal / vertical polarization

Date: 3.FEB.2017 15:54:36

10.3.1 Additional comments

Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:	\boxtimes	Normal operation, no special test mode available.
		Special software is used.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2017-04-21

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak

S/N - Serial number SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

OBW Occupied Bandwidth OC Operating Channel

OCW Operating Channel Bandwidth

OOB Out Of Band

Annex C Accreditation Certificate

first page

DAkkS Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Akkreditierung Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaborator CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Funk
Mobiliumk (GSM / DCS) + OTA
Elektromagnetische Verträglichkeit (EMV)
Produktsicherheit
SAR / EMF
Umwelt
Umwelt
Smart Card Technology
Bluetooth*
Automotive
Wi-H-Services
Kanadische Anforderungen
Us-Anforderungen
Aksustik Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsnummer D-Pt-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Dec der Rückseite des Deckblatts und der folgenden Anlage mit Insgesamt 63 Seiten. Registrierungsnummer der Urkunde: D-PL-12076-01-01 Frankfurt, 25.11.2016

last page

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entno EA: www.curopean-accreditation.org ILAC: www.llac.org ILAC: www.llac.org

Note:

The current certificate including annex can be received on request.