

TEST REPORT

Deutsche Akkreditierungsstelle D-PL-12076-01-01

Test report no.: 1-2758/16-01-03

Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.cetecom.com</u> e-mail: <u>ict@cetecom.com</u>

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01

Applicant

InnoSenT GmbH Am Rödertor 30 97499 Donnersdorf / GERMANY Phone: +49 9528 9518-0 Fax: +49 9528 9518-99 Contact: Martin Maidhof e-mail: <u>martin.maidhof@innosent.de</u> Phone: +49 9528 9518-18

Manufacturer

InnoSenT GmbH Am Rödertor 30 97499 Donnersdorf / GERMANY

Test standard/s

47 CFR Part 15

Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

	Test Item	
Kind of test item:	3D-MIMO-RADAR iSYS-5010	
FCC ID:	UXS-ISYS5010	
Frequency:	24.05 GHz to 24.25 GHz	Print 1 M
Antenna:	Integrated patch antenna	
Power supply:	6.10 V to 6.40 V DC	
Temperature range:	-40°C to +85°C	

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Meheza Walla Lab Manager Radio Communications & EMC

Test performed:

Karsten Geraldy Lab Manager Radio Communications & EMC

Test report no.: 1-2758/16-01-03

1 Table of contents

1	Table of contents2					
2	Gene	ral information	3			
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3 3 3			
3	Test s	standard/s and references	4			
4	Test e	environment	5			
5	Test i	tem	5			
	5.1 5.2	General description Additional information	5 5			
6	Descr	iption of the test setup	6			
	6.1 6.2 6.3 6.4 6.5	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz Radiated measurements > 50 GHz AC conducted	7 9 10 10 12			
7	Seque	ence of testing	13			
	7.1 7.2 7.3 7.4 7.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50 GHz with external mixers	13 14 15 16 17			
8	Sumn	nary of measurement results	18			
9	Meas	urement results	19			
	9.1 9.2 9.3 9.1	Field strength of emissions (wanted signal) Occupied bandwidth (99% bandwidth) Field strength of emissions (radiated spurious) Spurious emissions conducted below 30 MHz (AC conducted)	19 24 26 41			
Anı	nex A	Document history	44			
Anı	nex B	Further information	44			
Anı	nex C	Accreditation Certificate	45			

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2016-10-05
Date of receipt of test item:	2016-11-03
Start of test:	2016-11-03
End of test:	2016-11-09
Person(s) present during the test:	Mr. Martin Maidhoff
	Mr. Benjamin Mai

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	2016	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature : T			 +22 °C during room temperature tests +85 °C during high temperature tests -40 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		not relevant for this kind of testing
Power supply	•	V _{nom} V _{max} V _{min}	6.25 V DC 6.40 V 6.10 V

5 Test item

5.1 General description

Kind of test item :	3D-MIMO-RADAR
Type identification :	iSYS-5010
S/N serial number :	00001009
HW hardware status :	REV2_01
SW software status :	1.0
Frequency band :	24.05 GHz to 24.25 GHz
Type of modulation :	FMCW Mode 1: sweeping up Mode 2: sweeping down
Number of channels :	1
Antenna :	Integrated patch antenna
Power supply :	6.10 V to 6.40 V DC
Temperature range :	-40°C to +85°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-2758/16-01-01_AnnexA 1-2758/16-01-01_AnnexB 1-2758/16-01-01_AnnexD

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

<u>Example calculation</u>: FS [dB μ V/m] = 12.35 [dB μ V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB μ V/m] (35.69 μ V/m)

Test report no.: 1-2758/16-01-03

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	45	Switch-Unit	3488A	HP	2719A14505	300000368	ev		
2	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne		
3	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
4	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
5	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw		
6	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw		
7	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw		
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018
9	n. a.	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	29.01.2016	29.01.2017
10	n. a.	Double Ridge Broadband Horn Antenna 1-10 GHz	BBHA9120 B	Schwarzbeck	188	300003896	k	20.05.2015	20.05.2017

6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKI!	20.05.2015	20.05.2017
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
4	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne		
5	90	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
6	n. a.	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
7	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
9	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev		
10	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY5000037	300004509	ne		
11	n. a.	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018

6.3 Radiated measurements > 18 GHz

6.4 Radiated measurements > 50 GHz

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

<u>Example calculation:</u> OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 µW)

Note: conversion loss of mixer is already included in analyzer value.

Equipment table for radiated measurements from 18 GHz to 110 GHz:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A026	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017
2	A030	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8402	300000487	ne	-/-	-/-
3	A031	Std. Gain Horn Antenna 26.5 to 40.0 GHz	V637	Narda	82-16	300000510	k	14.08.2015	14.08.2017
4	n. a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
5	n. a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	-/-	-/-
6	A025	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
7	A028	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001991	ne	-/-	-/-
8	n. a.	PXA Spectrum Analyzer 3Hz to 50GHz	N9030A PXA Signal Analyzer	Agilent Technologies	US51350267	300004338	k	09.02.2016	09.02.2017
9	n. a.	Waveguide Harmonic Mixer, 75- 110 GHz	M1970W	KEYSIGHT	MY51430848	300005115	k	25.02.2016	25.02.2018
10	n.a.	Waveguide Harmonic Mixer, 50- 80 GHz	M1970V	KEYSIGHT	MY51390914	300005116	k	05.02.2016	05.02.2018

6.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 \overline{FS} [dBµV/m] = 37.62 [dBµV/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dBµV/m] (244.06 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	101	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	893045/004	300000584	k	02.02.2016	02.02.2017
2	67	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	
3	n. a.	Magnetfeldantenne	MS 100	EM-Test		300002659	ev	24.04.2000	
4	n. a.	AC- Spannungsquelle variabel	MV2616-V	EM-Test	0397-12	300003259	k	11.12.2015	11.12.2017
5	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
6	n. a.	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	08.04.2008	

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

 The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

Test report no.: 1-2758/16-01-03

7.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Summary of measurement results

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	FCC 47 CFR Part 15 / IC RSS-310	Passed	2016-11-24	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Results (max.)
§15.249(a) / RSS-310, 3.10	Field strength of emissions (wanted signal)	Nominal	Nominal					PK: 112.8 dBµV/m RMS: 95.0 dBµV/m @ 3m
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				191.8 MHz
§15.209(a) / §15.249(d) / RSS-310, 3.10	Field strength of emissions (spurious & harmonics)	Nominal	Nominal					complies

Note: NA = Not Applicable; NP = Not Performed

9 Measurement results

9.1 Field strength of emissions (wanted signal)

Description:

Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

Measurement parameter					
Detector:	Pos-Peak / RMS				
Sweep time:	Auto				
Resolution bandwidth:	1 MHz				
Video bandwidth:	≥ RBW				
Span:	250 MHz				
Trace-Mode:	Max Hold				

Limits:

FCC / IC						
47 CFR Part 15.249(a) / RSS-310, 3.10						
	Field strength of emissions					
The field strength of emissions from ir	The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:					
Frequency Field Strength Measurement distance [GHz] [dBµV/m]						
24.00 – 24.25	3					

(e) As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Measurement results:

Peak-Measurement:

Test condition t = 22 °C	Frequency	Maximum field strength (Peak)		
	[GHZ]	[dBµV/m] @ 3 m		
Mode 1	24.23225	112.3		
Mode 2	24.24450	112.8		
stopped mode 1, low frequency	24.05950	111.9		
stopped mode 1, mid frequency	24.15100	112.1		
stopped mode 1, high frequency	24.24225	112.6		
stopped mode 2, low frequency	24.05700	112.0		
stopped mode 2, mid frequency	24.14825	112.0		
stopped mode 2, high frequency	24.23950	112.4		
Measurement uncertainty	±3	dB		

Average-Measurement:

Test condition t = 22 °C	Frequency	Maximum field strength (Peak)		
	[GHz]	measured values [dBµV/m] @ 3 m		
Mode 1	24.05500	94.3		
Mode 2	24.24425	95.0		
Measurement uncertainty	± 3	dB		

<u>Result:</u> The measurement is passed.

Plot No. 1: Peak measurement, Mode 1

Plot No. 2: Peak measurement, Mode 2

Plot No. 3: Peak measurement, stopped mode, Mode 1, low/mid/high frequency

Plot No. 4: Peak measurement, stopped mode, Mode 2, low/mid/high frequency

Plot No. 5: Average measurement, Mode 1

Plot No. 6: Average measurement, Mode 2

9.2 Occupied bandwidth (99% bandwidth)

Description:

Measurement of the 99% bandwidth of the wanted signal.

Measurement:

Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Resolution bandwidth:	1 MHz				
Video bandwidth:	≥ RBW				
Span:	250 MHz				
Trace-Mode:	Max Hold				

Measurement results:

Test condition t = 22 °C	Occupied bandwidth [MHz]
Mode 1 U _{DC} = 6.25 V	191.8
Mode 2 U _{DC} = 6.25 V	191.8
Measurement uncertainty	± span/1000

Result: The measurement is passed.

Plot No. 7: OBW, Mode 1

Plot No. 8: OBW, Mode 2

🔤 Keysight	t Spectrum A	nalyzer - (Occupied	BW							
L)XI	RF	50	Ω DC			SENSE:INT	Al	LIGN AUTO		05:04:	07 PM Nov 03, 2016
		of 20	00 dE						IV	17 IKF1 24.2	4475 GHZ 528 dBm
Log	v n		.00 UE	9111							
20.0										>	
10.0		<u> </u>	\sim	$\sim \sim$	\sim	\sim	\sim	\dots	\sim	\sim	
0.00											
10.0											
-10.0		1									
-20.0	hand the party										Reduced as sold in
-30.0											
-40.0											
-50.0											
-60.0											
Center	24.15	GHz				40.0	0147 O BALL-			Sp #Sw	an 250 MHz
#Res D		12				#VI	SWY JIVINZ			#SW	eep 200 ms
Occ	upied	Ban	dwid	dth		Total F	ower	36.0 d	Bm		
			1	91 7	5 MHz						
				01.7	2 IVII 12						
Tran	ismit F	req E	rror	-53	7.86 kHz	% of O	BW Power	99.0	0 %		
x dB	Bandv	width		19	97.2 MHz	x dB		-26.00	dB		
MSG								STATUS			

9.3 Field strength of emissions (radiated spurious)

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

Measurement parameter					
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz				
Video bandwidth:	Auto				
Frequency range:	30 MHz to 100 GHz				
Trace-Mode:	Max Hold				

Limits:

FCC / IC						
CFR Part 15.209(a) / RSS-310, 3.10 / RSS-Gen						
Radiated Spurious Emissions						
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.						
Frequency (MHz) Field Strength (dBµV/m) Measurement distance						
0.009 – 0.490	0.009 – 0.490 2400/F(kHz)					
0.490 – 1.705	24000/F(kHz)	30				
1.705 – 30.0	30	30				
30 88	30.0	10				
88 - 216 33.5 10						
216 – 960 36.0 10						
Above 960	54.0	3				

Measurement results:

	TX Spurious Emissions Radiated [dBµV/m]								
			Low	/ / Middle / H	ligh				
F [GHz]	[GHz] Detector Level [dBµV/m] F [GHz] Detector Level [dBµV/m]					F [GHz]	Detector	Level [dBµV/m]	
No critical peaks found			No critical peaks found			No critical peaks found			
			22.7	RMS	39.3				
			48.1	RMS	45.1				
Measu	Measurement uncertainty ± 3 dB								

<u>Result:</u> The measurement is passed.

Plot No. 9: 9 kHz to 30 MHz, magnetic, low/mid/high frequency

Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time (ms)	(kHz)	(cm)		(deg)	(dB)
48.027300	24.63	30.00	5.37	1000.	120.000	101.0	V	254.0	13.3
71.982300	18.91	30.00	11.09	1000.	120.000	179.0	V	0.0	8.4
84.007500	12.98	30.00	17.02	1000.	120.000	185.0	V	138.0	9.1
233.773350	9.78	36.00	26.22	1000.	120.000	178.0	V	159.0	12.9
600.003300	27.48	36.00	8.52	1000.	120.000	98.0	V	198.0	20.7
893.579250	21.61	36.00	14.39	1000.	120.000	185.0	Н	73.0	24.0

Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
				(me)					
48.028500	25.96	30.00	4.04	1000.	120.000	98.0	V	324.0	13.3
51.308100	17.63	30.00	12.37	1000.	120.000	101.0	V	309.0	13.2
71.981700	21.67	30.00	8.33	1000.	120.000	185.0	V	298.0	8.4
144.042450	21.19	33.50	12.31	1000.	120.000	101.0	V	336.0	8.8
232.461300	14.32	36.00	21.68	1000.	120.000	98.0	V	168.0	12.8
599.989950	28.13	36.00	7.87	1000.	120.000	98.0	V	199.0	20.7

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
48.015000	26.52	30.00	3.48	1000.	120.000	101.0	V	353.0	13.3
50.880000	23.09	30.00	6.91	1000.	120.000	101.0	V	353.0	13.3
72.034350	23.37	30.00	6.63	1000.	120.000	185.0	V	345.0	8.4
232.737750	12.93	36.00	23.07	1000.	120.000	101.0	V	170.0	12.8
599.974650	26.19	36.00	9.81	1000.	120.000	101.0	V	187.0	20.7
927.633150	21.68	36.00	14.32	1000.	120.000	98.0	V	161.0	24.2

7GHz

Plot No. 14: 1 GHz to 7GHz, horizontal polarization, mid frequency (Peak)

10

Frequency

Plot No. 15: 1 GHz to 7 GHz, horizontal / vertical polarization, high frequency (Peak)

Plot No. 17: 7 GHz to 18 GHz, horizontal / vertical polarization, mid frequency (Peak)

Plot No. 19: 17.7 GHz to 18 GHz, horizontal / vertical polarization, low frequency (Peak and RMS)

Plot No. 20: 17.7 GHz to 18 GHz, horizontal / vertical polarization, mid frequency (Peak and RMS)

Note:

Upper limit and upper trace show peak limit and peak measurement. Lower limit and lower trace show average limit and average measurement.

Plot No. 21: 17.7 GHz to 18 GHz, horizontal / vertical polarization, high frequency (Peak and RMS)

Note:

Upper limit and upper trace show peak limit and peak measurement. Lower limit and lower trace show average limit and average measurement.

Plot No. 22: 18 GHz to 24 GHz, horizontal / vertical polarization, low/mid/high frequency

Plot No. 23: lower band edge, horizontal / vertical polarization, Mode 1 and Mode 2

Plot No. 24: upper band edge, horizontal / vertical polarization, Mode 1 and Mode 2

Plot No. 25: 24.25 GHz to 26.5 GHz, horizontal / vertical polarization, low/mid/high frequency

Plot No. 26: 26.5 GHz to 40 GHz, horizontal / vertical polarization, low/mid/high frequency

Plot No. 27: 40 GHz to 50 GHz, horizontal / vertical polarization, low/mid/high frequency

 Keylight Spectrum Analyzer - Swept SA
 Image: Control of the state of the sta

Plot No. 28: 50 GHz to 75 GHz, horizontal / vertical polarization, low/mid/high frequency

Plot No. 29: 75 GHz to 110 GHz, horizontal / vertical polarization, low/mid/high frequency

9.1 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to channel 6. This measurement is repeated for DSSS and OFDM modulation. If peaks are found channel 1 and channel 11 will be measured too. The measurement is performed with the data rate producing the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter					
Detector:	Peak - Quasi Peak / Average				
Sweep time:	Auto				
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace mode:	Max Hold				

Limits:

FCC			IC			
Frequency (MHz)	Quasi-Peak (dBµV/m)		Quasi-Peak (dBµV/m)		Average (dBµV/m)	
0.15 – 0.5	66 to 56*		66 to 56*		56 to 46*	
0.5 – 5	56		56		46	
5 – 30.0	6	0	50			

*Decreases with the logarithm of the frequency

Result: The measurement is passed.

Plot 30: 150 kHz to 30 MHz, phase line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.152929	43.89	21.95	65.839	40.07	15.85	55.916
0.357023	31.53	27.26	58.797	24.91	25.18	50.085
0.459488	29.55	27.15	56.702	22.81	24.35	47.157
0.853070	28.14	27.86	56.000	21.26	24.74	46.000
2.958824	36.79	19.21	56.000	32.30	13.70	46.000
3.194955	37.29	18.71	56.000	32.54	13.46	46.000
3.429964	37.80	18.20	56.000	32.66	13.34	46.000
4.490329	37.80	18.20	56.000	31.91	14.09	46.000
8.748106	39.91	20.09	60.000	33.76	16.24	50.000
8.756012	39.91	20.09	60.000	34.34	15.66	50.000
8.990749	39.53	20.47	60.000	33.63	16.37	50.000
9.343603	40.64	19.36	60.000	35.34	14.66	50.000

Plot 31: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.153664	44.29	21.51	65.800	40.41	15.48	55.895
0.248980	34.27	27.52	61.791	27.20	25.98	53.172
0.317412	31.25	28.52	59.774	24.35	26.87	51.217
0.978834	30.28	25.72	56.000	23.61	22.39	46.000
3.196287	35.86	20.14	56.000	30.64	15.36	46.000
3.431172	36.35	19.65	56.000	31.41	14.59	46.000
4.257680	35.13	20.87	56.000	29.49	16.51	46.000
4.500096	34.65	21.35	56.000	28.48	17.52	46.000
27.019430	36.17	23.83	60.000	26.90	23.10	50.000
27.554570	31.75	28.25	60.000	24.98	25.02	50.000
28.270124	37.26	22.74	60.000	31.13	18.87	50.000
28.361298	29.81	30.19	60.000	25.13	24.87	50.000

Annex A Document history

Version	Applied changes	Date of release
	Initial release - DRAFT	2016-11-18
	Editorial changes based on applicant's remarks	2016-11-24

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN	-	Product marketing name
HMN	-	Host marketing name
HVIN	-	Hardware version identification number
FVIN	-	Firmware version identification number
OBW		Occupied Bandwidth
OC		Operating Channel
OCW		Operating Channel Bandwidth
OOB		Out Of Band

Annex C Accreditation Certificate

Front side of certificate	Back side of certificate
Deutsche Aktreditierungsstelle Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von FA, IAC und IAF zur geseneitigen Anerkennung	Deutsche Akkreditierungsstelle GmbH
Akkreditierung	Sandout Benini Sundoot Pankuri am Main Standoot Braunschweig Spitelmarkt 10 Europa-Allie S Bundesalee 100 1011/7 Benin 60327 Frankfurt am Main 38116 Braunschweig
Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken	
die Kompetenz nach olini Ewi SO/IEU 27025-2005 besitzt, Prufungen in Toigenoen Bereichen durchzuführen: Funk Mobilitunk (GSM / DCS) + OTA Elektromagnetische Verträglichkeit (EMV) Produksicherheit SAR / EMF Umwelt Smart Card Technology Biletooth* Automotive Wi-Fi-Services Kanadische Anforderungen	Die auszugsweise Veroffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAkk5), Ausgenommen davon ist die separate Weiterverbreitung des Deckblattes durch die umseitig genannte Konformitätsbewertungsstelle in unweränderter Form. Eis darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche entreckt, die über den durch die DAkis bestätigten Akkreditierungsbereich hinausgehen.
US-Anforderungen Akustik Near Field Communication (NFC) Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 04.05.2015 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 04.05.2015 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 04.05.2015 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 04.05.2015 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 04.05.2015 mit der	Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBL 15. 2625) sowie der Verorchung (EG) Mr. 755/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 über die Versrchnieft für die Akkreditierung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. 218 vom 9. Juli 2008, S. 30). Die DAKK ist Unterzeichnerni der Multilateralen Abkommen zur gegenstigen Annehennung der European co-operation för Accreditation (EA), des International Accreditation forum (IAF) und der International Laboratory Accreditation Cooperation (ILAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an. Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: Ex. vww.europaan-accreditation org
Registrierungsnummer der Urkunde: D-PL-12076-01-01	ILAC: www.lat.ovg

Note:

The current certificate including annex can be received from CETECOM ICT Services GmbH on request.