

FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Wireless Speaker

MODEL NUMBER: LSX

FCC ID: UXD18001 IC: 21561-18001

REPORT NUMBER: 4788430402-1

ISSUE DATE: July 08, 2018

Prepared for

GP Electronics (HK) Ltd. 9/F, Building 12W, 12 Science Park West Avenue, Hong Kong Science Park,Pak Shek Kok New Territories - Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone, Dongguan, People's Republic of China Tel: +86 769-22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

REPORT NO.: 4788430402-1 Page 2 of 126

Revision History

Rev.	Issue Date	Revisions	Revised By
	7/8/2018	Initial Issue	\

	Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results			
1	20dB Bandwidth And 99% Bandwidth	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	Pass			
2	Peak Conducted Output Power	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass			
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass			
4	Number of Hopping Frequency	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass			
5	Time of Occupancy (Dwell Time)	e of Occupancy (Dwell Time) 15.247 (a) (1) III RSS-247 Clause 5.1 (d)				
6	Conducted Bandedge	Conducted Bandedge FCC 15.247 (d) RSS-247 Clause 5.5				
7	FCC 15.247 (d) FCC 15.209 FCC 15 205		Pass			
8	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Pass			
9	Antenna Requirement	FCC 15.203 RSS-GEN Clause 8.3	Pass			

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	;
2.	TES	T METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAL	IBRATION AND UNCERTAINTY	3
	4.1.	MEASURING INSTRUMENT CALIBRATION	3
	4.2.	MEASUREMENT UNCERTAINTY	3
5.	EQU	JIPMENT UNDER TEST)
	5.1.	DESCRIPTION OF EUT	9
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	PACKET TYPE CONFIGURATION	9
	5.4.	CHANNEL LIST)
	5.5.	TEST CHANNEL CONFIGURATION10)
	5.6.	THE WORSE CASE POWER SETTING PARAMETER)
	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	
	5.8.	WORST-CASE CONFIGURATIONS1	1
	5.9.	TEST ENVIRONMENT	1
	5.10.	DESCRIPTION OF TEST SETUP12	2
	5.11.	MEASURING INSTRUMENT AND SOFTWARE USED	3
6.	ANT	ENNA PORT TEST RESULTS14	ŀ
	6.1.	ON TIME AND DUTY CYCLE	1
	6.1.	20 dB BANDWIDTH AND 99% BANDWIDTH	
	6.1. 6.1.	••••	
	6.2.	PEAK CONDUCTED OUTPUT POWER	
	6.2.	1. GFSK MODE	3
	6.2.		
	6.3. 6.3.	CARRIER HOPPING CHANNEL SEPARATION27 1. GFSK MODE	
	6.3.2		
		NUMBER OF HOPPING FREQUENCY	
	6.4. 6.4.		
	6.5.	TIME OF OCCUPANCY (DWELL TIME)	
	6.5.	1. GFSK MODE	3
	6.5.	2. 8DPSK MODE	J

			Page 5 01 126
	6.6. CO	NDUCTED SPURIOUS EMISSION	
	6.6.1.	GFSK MODE	
	6.6.2.	8DPSK MODE	47
7.	RADIAT	TED TEST RESULTS	51
	7.1. LIN	/ITS AND PROCEDURE	51
	7.2. RE	STRICTED BANDEDGE	
	7.2.1.	GFSK MODE FOR ANTENNA 1	
	7.2.2.	GFSK MODE FOR ANTENNA 2	
	7.2.3.	8DPSK MODE FOR ANTENNA 1	
	7.2.4.	8DPSK MODE FOR ANTENNA 2	
		URIOUS EMISSIONS (3~18GHz)	
	7.3.1.	GFSK MODE FOR ANTENNA 1 GFSK MODE FOR ANTENNA 2	
	7.3.2. 7.3.3.	8DPSK MODE FOR ANTENNA 2	
	7.3.4.	8DPSK MODE FOR ANTENNA 2	
	-	URIOUS EMISSIONS (1~3GHz)	
	7.4. 36	GFSK MODE WORSE CASE FOR ANTENNA 1	
	7.4.2.	8DPSK MODE WORSE CASE FOR ANTENNA 1	
		DRST-CASE CO-LOCATION	
	7.5.1.	GFSK AND 2.4G MODE	
		URIOUS EMISSIONS 18G ~ 26GHz	
	7.6.1.		
	7.7. SPC 7.7.1.	URIOUS EMISSIONS 30M ~ 1 GHz GFSK MODE WORSE CASE FOR ANTENNA 1	
		URIOUS EMISSIONS BELOW 30M	
	7.8.1.	GFSK MODE WORSE CASE FOR ANTENNA 1	
8.	AC POV	WER LINE CONDUCTED EMISSIONS	123
	8.1.1.	GFSK MODE WORSE CASE FOR ANTENNA 1	124
9.	ANTEN	NA REQUIREMENTS	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	GP Electronics (HK) Ltd. 9/F, Building 12W, 12 Science Park West Avenue, Hong Kong Science Park,Pak Shek Kok New Territories - Hong Kong
Manufacturer Information	GP Electronics (HK) Ltd.
Company Name:	9/F, Building 12W, 12 Science Park West Avenue, Hong Kong
Address:	Science Park,Pak Shek Kok New Territories - Hong Kong

EUT Description

Product Name Model Name Sample Status Sample Received date Date Tested

Wireless Speaker LSX Good April 23, 2018 April 23~July 6, 2018

APPLICABLE STANDARDS					
	STANDARD		TEST RESULTS		
	CFR 47 Part 15 Subpart C		PASS		
	ISED RSS-247 Issue 2		PASS		
	ISED RSS-GEN Issue 5		PASS		
ested By:		Checked By:			

Tested By:

Kebo. Thurs

Kebo Zhang Engineer Approved By:

bephen bus

Stephen Guo Laboratory Manager

Shenny les

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with DA 00-705,KDB414788 D01 Radiated Test Site v01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 5, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. IAS (Lab Code: TL-702) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has demonstrated compliance with ISO/IEC Standard 17025:2005, General requirements for the competence of testing and calibration laboratories FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Uncertainty for Conduction emission test	2.90dB		
Uncertainty for Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB		
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.52dB		
Uncertainty for Radiation Emission test	5.04dB(1-6GHz)		
(1GHz to 26GHz)(include Fundamental	5.30dB (6GHz-18Gz)		
emission)	5.23dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST 5.1. DESCRIPTION OF EUT

Equipment	Wireless Speaker				
Model Name	LSX				
	Operation Frequency	2402 MH	lz ~ 2480 MHz		
Product	Modulation Type		Data Rate		
Description	GFSK		1Mbps		
(Bluetooth)	∏/4-DQPSK		2Mbps		
	8DPSK		3Mbps		
Power Supply	AC120V/60Hz				
Bluetooth Version BT 4.2+EDR					

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode	Frequency (MHz)	Channel Number	Max Output Power (dBm)	EIRP (dBm)
GFSK	2402-2480	0-78[79]	0.919	4.219
8DPSK	2402-2480	0-78[79]	0.635	3.935

5.3. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting(Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339
	2-DH1	54
∏/4-DQPSK	2-DH3	367
	2-DH5	679
	3-DH1	83
8DPSK	3-DH3	552
	3-DH5	1021

5.4. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	١	\

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel Number	Test Channel
GFSK	CH 00, CH 39, CH 78	Low, Middle, High
8DPSK	CH 00, CH 39, CH 78	Low, Middle, High

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Se	oftware	Bluetooth test 3				
Modulation Type	Transmit Antenna	Test Channel				
	Number	CH 00	CH 39	CH 78		
GFSK	1	255/25	190/0	190/0		
8DPSK	1	1 255/40 255/10 255/10				

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2402-2480	External Antenna	3.3
2	2402-2480	External Antenna	2.1

Test Mode	Transmit and Receive Mode	Description
GFSK	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.
8DPSK	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.
NI-1		

Note:

1. The equipment has two antennas but only one antenna will be use in the end product.

2. The two antennas have the same power setting, only one antenna test data record in the report which has the max antenna gain.

3. WIFI & BT can't transmit simultaneously. (declared by client)

4. BT and 2.4G can transmit simultaneously. (declared by client)

5.8. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

5.9. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests				
Relative Humidity	55 ~ 65%				
Atmospheric Pressure:	1025Pa				
Temperature	TN	23 ~ 28 °C			
	VL	N/A			
Voltage :	VN	AC 120V 60Hz			
	VH	N/A			

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage.

VH= Upper Extreme Test Voltage

TN= Normal Temperature

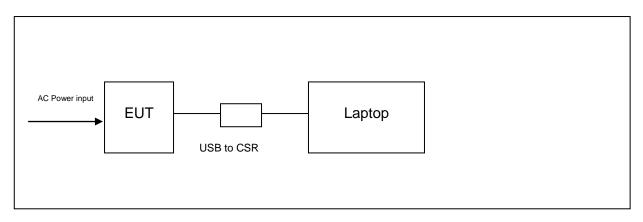
5.10. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T460S	SL10K24796 JS
2	USB TO CSR	N/A	N/A	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	N/A	N/A	0.5	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in an engineer mode with software through a Laptop.

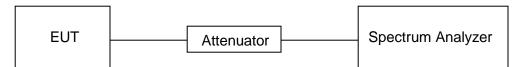
SETUP DIAGRAM FOR TESTS

5.11. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions								
			li	nstrui	ment				
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
	EMI Test Receiver	R&S	ESR	3	101961	Dec.20, 2016	Dec.12, 2017	Dec.11, 2018	
V	Two-Line V-Network	R&S	ENV2	16	101983	Dec.20, 2016	Dec.12, 2017	Dec.11, 2018	
V	Artificial Mains Networks	Schwarzbeck	NSLK 8	126	8126465	Feb.10, 2017	Dec.12, 2017	Dec.11, 2018	
				Softw	vare				
Used	Des	scription			Manufacturer	Name	Ver	sion	
	Test Software for	Conducted distu	rbance		Farad	EZ-EMC	Ver. U	L-3A1	
			Radia	ted E	missions				
			lı	nstrui	ment				
Used	Equipment	Manufacturer	Model No.		Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
	MXE EMI Receiver	KESIGHT	N9038A		MY5640003 6	Feb. 24, 2017	Dec.12, 2017	Dec.11, 2018	
	Hybrid Log Periodic Antenna	TDK	HLP-3003C		130960	Jan.09, 2016	Jan.09, 2016	Jan.09, 2019	
\checkmark	Preamplifier	HP	8447	D	2944A09099	Feb. 13, 2017	Dec.12, 2017	Dec.11, 2018	
V	EMI Measurement Receiver	R&S	ESR2	26	101377	Dec. 20, 2016	Dec.12, 2017	Dec.11, 2018	
	Horn Antenna	TDK	HRN-0	118	130939	Jan. 09, 2016	Jan. 09, 2016	Jan. 09, 2019	
	High Gain Horn Antenna	Schwarzbeck	BBHA-9	170	691	Jan.06, 2016	Jan.06, 2016	Jan.06, 2019	
	Preamplifier	TDK	PA-02-0)118	TRS-305- 00066	Jan. 14, 2017	Dec.12, 2017	Dec.11, 2018	
	Preamplifier	TDK	PA-02	-2	TRS-307- 00003	Dec. 20, 2016	Dec.12, 2017	Dec.11, 2018	
	Loop antenna	Schwarzbeck	1519	В	00008	Mar. 26, 2016	Mar. 26, 2016	Mar. 26, 2019	
				Softw	vare				
Used	Desci	ription		Ma	anufacturer Name Version		sion		
	Test Software for R	adiated disturba	nce		Farad	EZ-EMC	Ver. U	L-3A1	
			Othe	r inst	ruments				
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
	Spectrum Analyzer	Keysight	N9030	A	MY5541051 2	Dec. 20, 2016	Dec.12, 2017	Dec.11, 2018	
	Power Meter	Keysight	N903 ²	IA	MY5541602 4	Feb. 13, 2017	Dec.12, 2017	Dec.11, 2018	
	Power Sensor	Keysight	N9323	BA	MY5544001 3	Feb. 13, 2017	Dec.12, 2017	Dec.11, 2018	

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


LIMITS

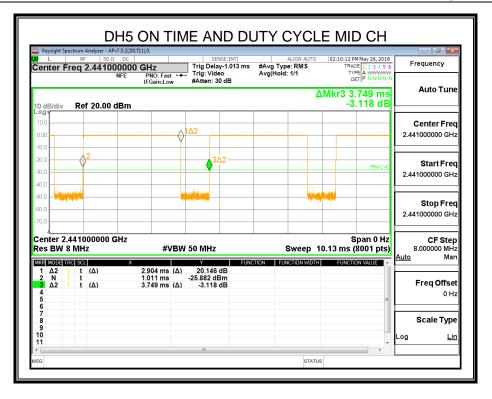
None; for reporting purposes only

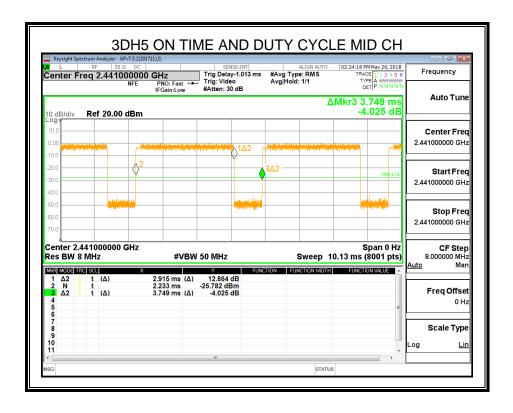
PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT


Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V


RESULTS

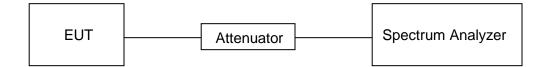
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)
GFSK	2.904	3.749	0.7746	77.46	1.109	0.344
8DPSK	2.915	3.749	0.7775	77.75	1.093	0.343

Note: Duty Cycle Correction Factor=10log(1/x). Where: x is Duty Cycle(Linear) Where: T is On Time (transmit duration)

6.1. 20 dB BANDWIDTH AND 99% BANDWIDTH

<u>LIMITS</u>

FCC Part15 (15.247) Subpart C RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20dB Bandwidth	N/A	2400-2483.5
RSS-Gen Clause 6.6	99% Bandwidth	N/A	2400-2483.5


TEST PROCEDURE

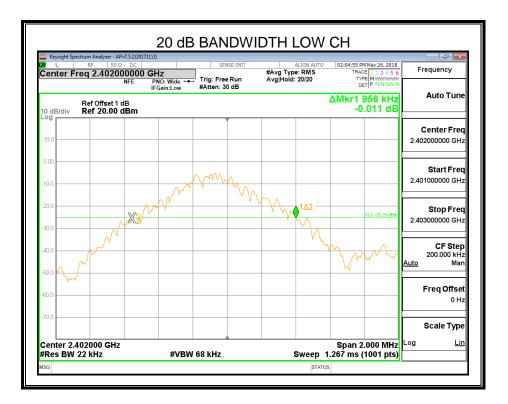
Connect the UUT to the spectrum analyser and use the following settings:

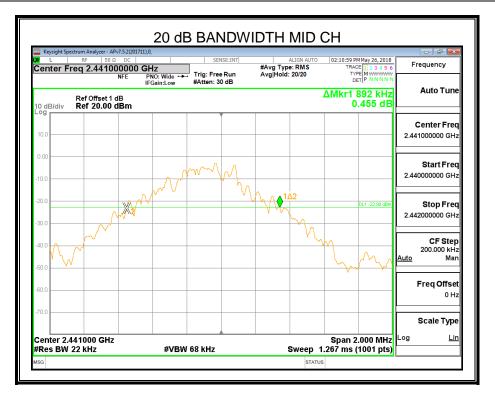
Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	For 20dB Bandwidth:1% of the 20 dB bandwidth For 99% Bandwidth: 1% to 5% of the occupied bandwidth	
VBW	For 20dB Bandwidth: ≥ RBW For 99% Bandwidth: approximately 3×RBW	
Span	approximately 2 to 3 times the 20 dB bandwidth	
Trace	Max hold	
Sweep	Auto couple	

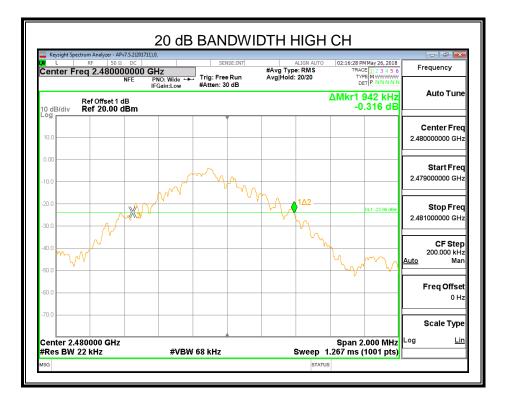
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20/99 dB relative to the maximum level measured in the fundamental emission.

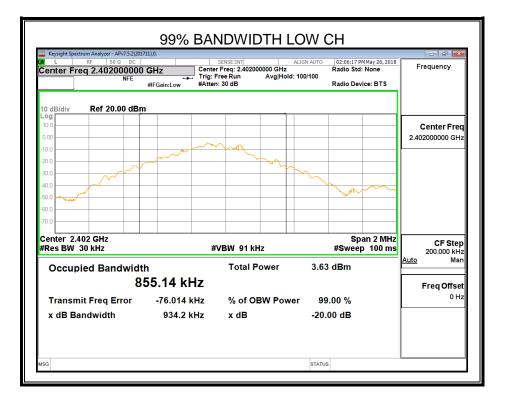
TEST SETUP

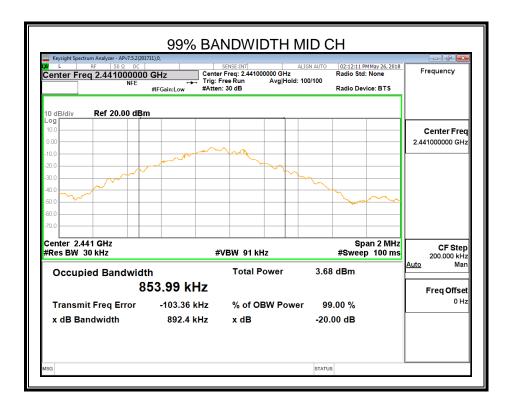
TEST ENVIRONMENT

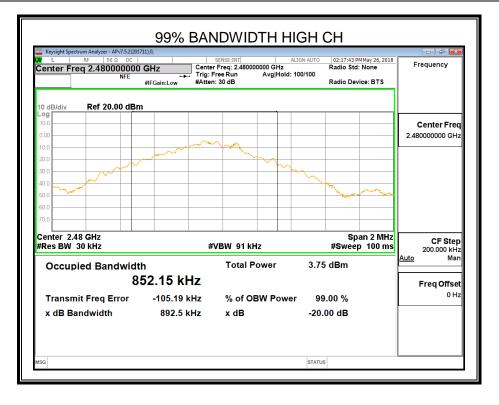

Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

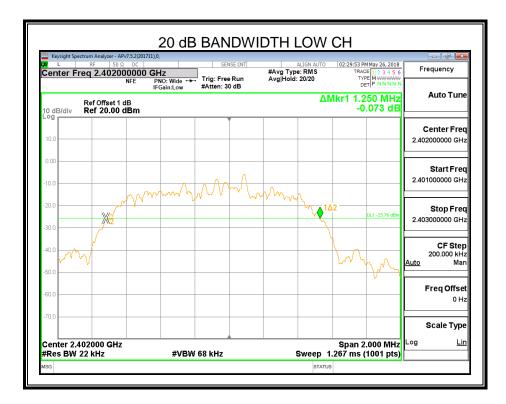

RESULTS

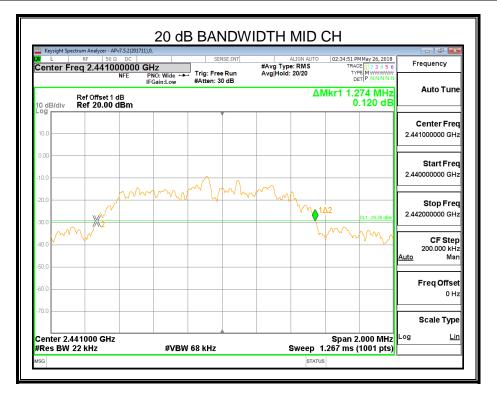

6.1.1. GFSK MODE

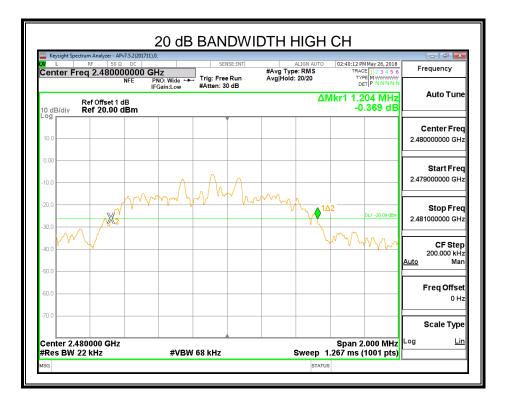

Channel	Frequency (MHz)	20dB bandwidth (MHz)	99% bandwidth (MHz)	Result
Low	2402	0.956	0.855	PASS
Middle	2441	0.892	0.854	PASS
High	2480	0.942	0.852	PASS

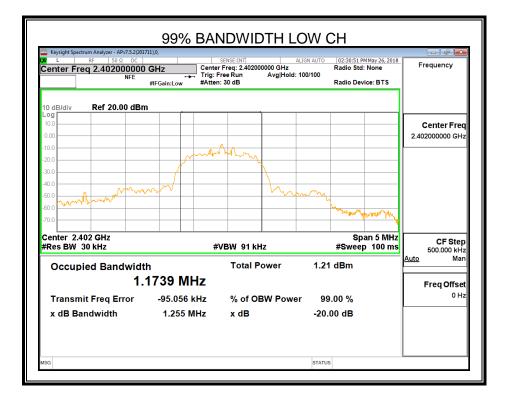

Test Graph

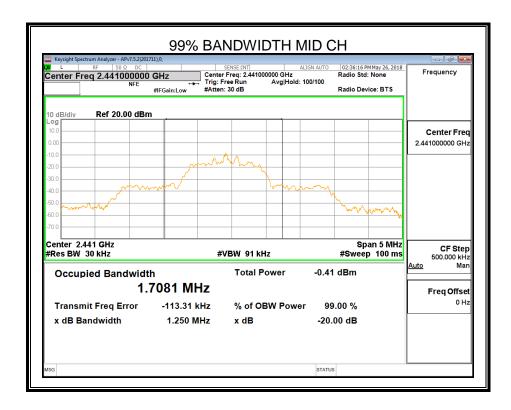


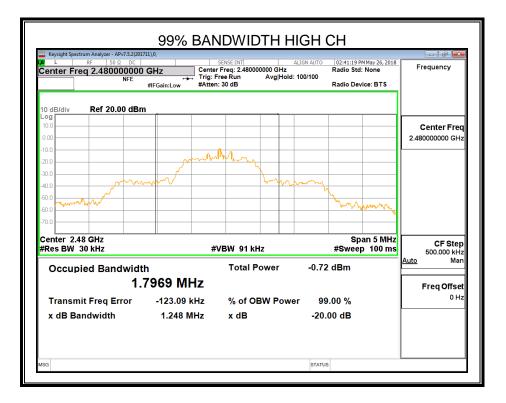







6.1.2. 8DPSK MODE

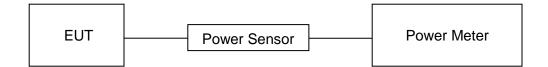

Channel	Frequency (MHz)	20dB bandwidth (MHz)	99% bandwidth (MHz)	Result
Low	2402	1.250	1.1739	PASS
Middle	2441	1.274	1.7081	PASS
High	2480	1.204	1.7969	PASS



6.2. PEAK CONDUCTED OUTPUT POWER

<u>LIMITS</u>

FCC Part15 (15.247) , Subpart C RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.247 (b) (1) RSS-247 Clause 5.4 (b)	Peak Conducted Output Power	1 watt or 30dBm	2400-2483.5


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

RESULTS

6.2.1. GFSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK) Result	
	(MHz)	(dBm)	
Low	2402	0.765	Pass
Middle	2441	0.919	Pass
High	2480	0.871	Pass

6.2.2. ∏/4-DQPSK

Channel	Frequency	Maximum Conducted Output Power(PK) Result	
	(MHz)	(dBm)	
Low	2402	0.146	Pass
Middle	2441	0.012	Pass
High	2480	0.035	Pass

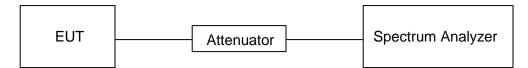
6.2.3. 8DPSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	Result	
	(MHz)	(dBm)		
Low	2402	0.635	Pass	
Middle	2441	0.046	Pass	
High	2480	0.063	Pass	

6.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

FCC Part15 (15.247),Subpart C RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Carrier Hopping Channel Separation	25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.	2400-2483.5


TEST PROCEDURE

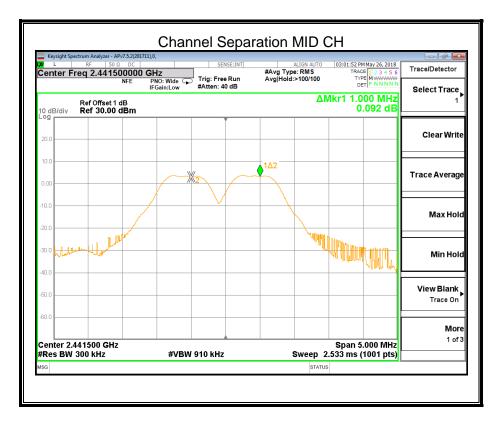
Connect the UUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
RBW	Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

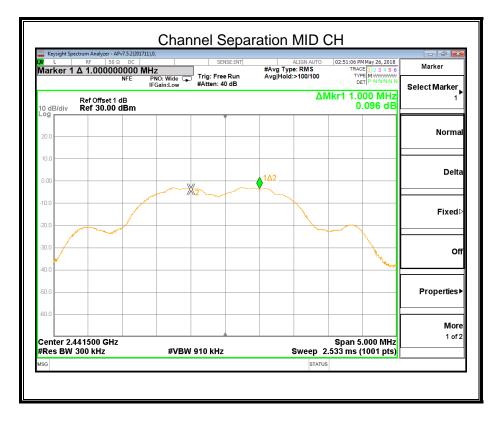
TEST SETUP

TEST ENVIRONMENT


Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

RESULTS

6.3.1. GFSK MODE


Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.1.1.

6.3.2. 8DPSK MODE

Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.1.2.

6.4. NUMBER OF HOPPING FREQUENCY

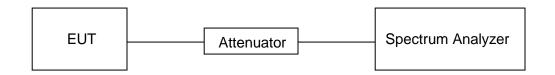
<u>LIMITS</u>

FCC Part15 (15.247) , Subpart C RSS-247 ISSUE 2							
Section	Test Item	Limit					
15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Number of Hopping Frequency	at least 15 hopping channels					

TEST PROCEDURE

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation
Trace	Max hold
Sweep time	Auto couple


Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer.

Count the quantity of peaks to get the number of hopping channels.

Normal Mode: 79 Channels observed.

AFH Mode: 20 Channels declared.

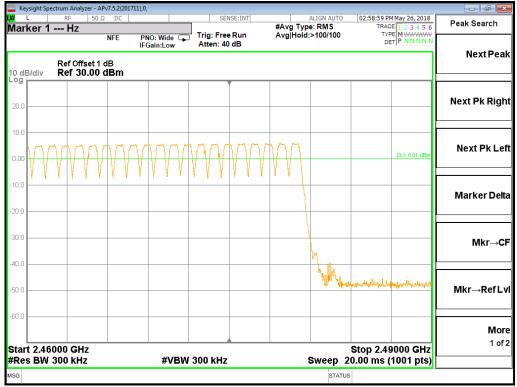
TEST SETUP

TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

RESULTS

6.4.1. GFSK MODE

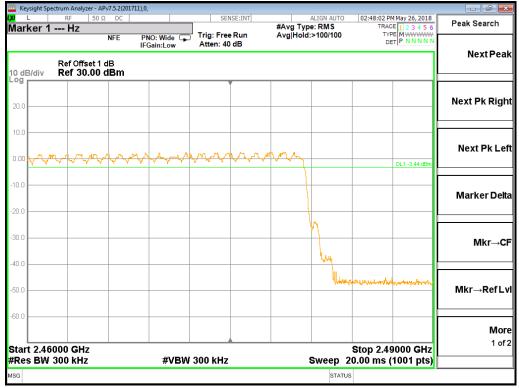

Hopping numbers	Limit	Results
79	>15	Pass

Keysight Spe	ectrum Analyzer -		11),0,					
arker 1		DΩ DC		SENSE:	#Avg T	ALIGN AUTO	02:58:25 PM May 26, 2018 TRACE 1 2 3 4 5 6	Peak Search
dB/div	Ref Offset Ref 30.0		PNO: Wide 🕞 IFGain:Low	Trig: Free Ru Atten: 40 dE		id:>100/100	TYPE WWWWW DET PNNNN	NextPe
								Next Pk Rig
0.0								Next Pk L
).0	<u> </u>	<u> </u>	¥	<u> </u>				Marker De
								Mkr→
.0								Mkr→Refl
	000 GHz 300 kHz			300 kHz			Stop 2.43000 GHz 0.00 ms (1001 pts)	M α 1 c

Count 2

				-								
								7.5.2(201711),0,			ysight Sp	u K
Peak Search	May 26, 2018 E 1 2 3 4 5 6	02:58:46 PM	LIGN AUTO		ISE:INT	SEI		DC	50 Ω	RF	L	<u>.</u>
	EMWAAAAAAA	TYP	>100/100	#Avg Type Avg Hold:	Run	Trig: Free	NO: Wide 🗔	NFE PI		Hz	ker 1	viai
	PNNNN	DE		, ang interes.		Atten: 40	NO: Wide ∟_ Gain:Low	NFE Pr IF(
NextPea												
	I								ffset 1 d			
								Bm	80.00 d	Ref	B/div	10 d _og
												-09
Next Pk Rig												
Next1 king												20.0
												10.0
				<u>,</u>	mm	mmm	-					
Next Pk Le	DL1 0.05 dBm	MMM	MMM	MMM	M M M	M M M	MATE	M M M	MM	(Λ)	$M \cap M$	
	V V V	V V V	V V V	1111	1111		V V V	1 V V	V V	V V	V V	0.00
	YYY I		Y Y Y	Y Y Y	1 I I	1 1	Y Y Y	I I I	11	- ¥ ¥	IV V	
			1 1 1								Ľ—	10.0
Marker Del												
												-20.0
												20.0
Mkr→C											<u> </u>	30.0
	P										L	40.0
Mkr→RefL												-50.0
wiki → Kei L												-50.U
											<u> </u>	60.0
Мо												
1 of												
10	6000 GHz	Stop 2.46								3000 <mark>G</mark>		
	1001 pts)	0.00 ms (Sweep 2	5		300 kHz	#VBW		Ιz	300 k	s BW	≠R e
			STATUS									ISG
			011100									

Count 3


6.4.2. 8DPSK MODE

Count 2

				000						
						11),0,		n Analyzer - Al		- Key
Peak Search	02:47:02 PM May 26, 2018	ALIGN AUTO		SENSE:INT	SE		2 DC			d I
I eak Search	TRACE 1 2 3 4 5 6	be:RMS l:>100/100	#Avg Ty	Free Run	Tains Fra			Hz	(er 1	lari
	TYPE M WWWWW DET P N N N N N	1:>100/100	Avginoi		Atten: 4	PNO: Wide G	NFE			
NextPea				. 40 00	Auen. 4	IF Galli.LOW				
Mextr et							dB	f Offset 1	R	
								ef 30.00		l0 dE
										.og I
Next Pk Rig										20.0
										10.0
Next Pk L										
NEXLEKE	M A M A		m M m	men My Ann	$h \sim n h$	لىر يامد المسر الملر ا	AAA	mm	JH A J	0.00
		N N.N.	1 44	γγγγ	γvγ	~ ע ~ ע	Y Y	A.A.A	$\Lambda : \Lambda : \Lambda$	0.00
										10.0
Marker De										
										20.0
										20.0
Mkr→										30.0
IVIKI→										
										40.0
Mkr→RefL										50.0
										50.0
Mo										
1 0										
	Stop 2.46000 GHz								2.43000	
	0.00 ms (1001 pts)	Sweep 2		Hz	V 300 kHz	#VBN) kHz	5 BW 300	Res
		STATUS								SG
		STATUS								

Count 3

6.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

FCC Part15 (15.247) , Subpart C RSS-247 ISSUE 2							
Section	Test Item	Limit					
15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.					

TEST PROCEDURE

Connect the UUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	zero span
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel

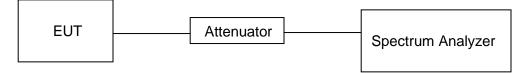
a. The transmitter output (antenna port) was connected to the spectrum analyzer

- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
 - A Period Time = (channel number)*0.4

For Normal Mode (79 Channel): DH1 Time Slot: Reading * (1600/2)*31.6/(channel number) DH3 Time Slot: Reading * (1600/4)*31.6/(channel number) DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

For AFH Mode (20 Channel):

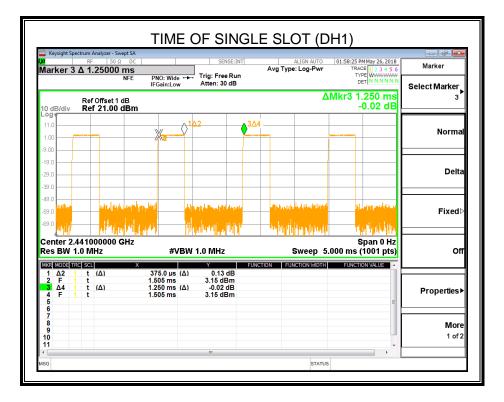
DH1 Time Slot: Reading * (1600/2)*8/(channel number)

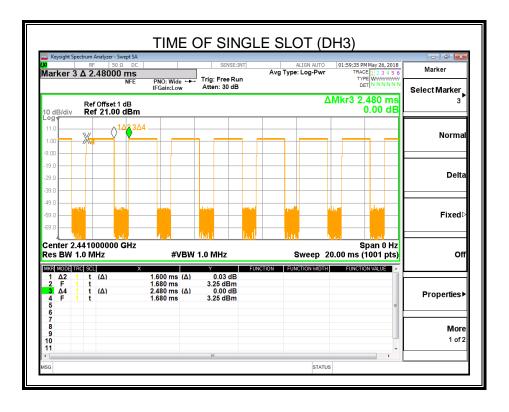

DH3 Time Slot: Reading * (1600/4)*8/(channel number) DH5 Time Slot: Reading * (1600/6)*8/(channel number)

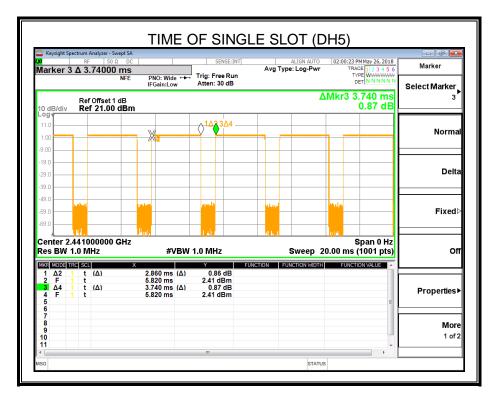
TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST SETUP

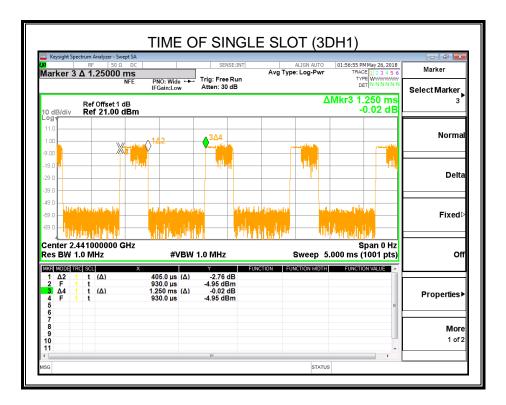


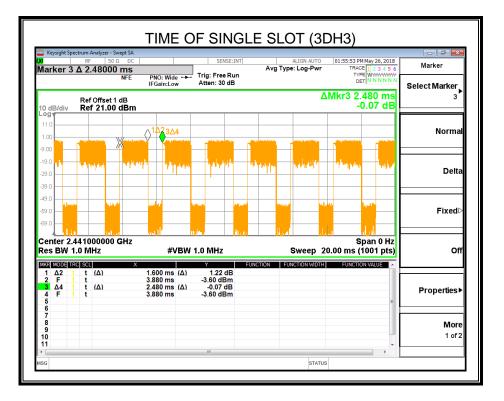

RESULTS

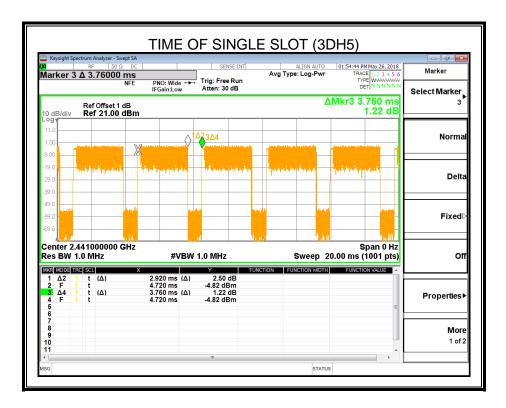

6.5.1. GFSK MODE

Normal Mode							
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [ms]	Duty Cycle [%]	Results		
DH1	MCH	0.375	0.120	30.0	PASS		
DH3	MCH	1.600	0.256	64.5	PASS		
DH5	MCH	2.860	0.305	76.5	PASS		
AFH Mode							
DH1	MCH	0.375	0.120	30.0	PASS		
DH3	MCH	1.600	0.256	64.5	PASS		
DH5	MCH	2.860	0.305	76.5	PASS		

Test Graph




6.5.2. 8DPSK MODE


Normal Mode					
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [ms]	Duty Cycle [%]	Results
3DH1	MCH	0.405	0.1296	32.4	PASS
3DH3	MCH	1.600	0.2560	64.5	PASS
3DH5	MCH	2.920	0.3115	77.7	PASS
		AFH Mod	le		
3DH1	MCH	0.405	0.1296	32.4	PASS
3DH3	MCH	1.600	0.2560	64.5	PASS
3DH5	MCH	2.920	0.3115	77.7	PASS

Test Graph

6.6. CONDUCTED SPURIOUS EMISSION

LIMITS

FCC Part15 (15.247) , Subpart C RSS-247 ISSUE 2			
Section Test Item Limit			
FCC §15.247 (d) RSS-247 5.5	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

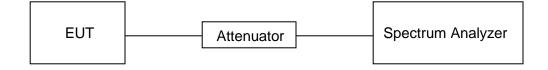
TEST PROCEDURE

For Bandedge use the following settings:

Detector	Peak
RBW	100KHz
VBW	300KHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

For Spurious Emission use the following settings:

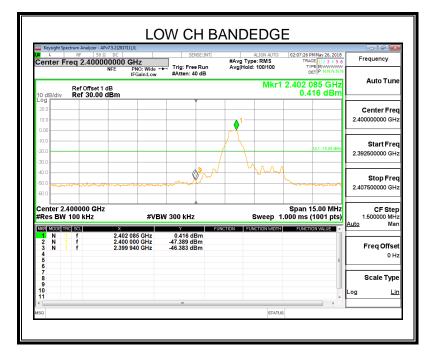
Detector	Peak
RBW	100KHz
VBW	300KHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

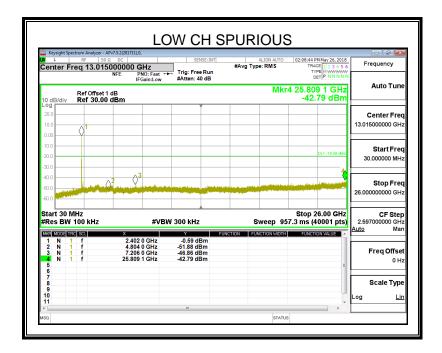

Use the peak marker function to determine the maximum amplitude level.

TEST ENVIRONMENT

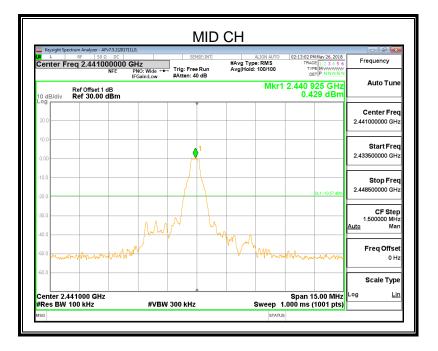
Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

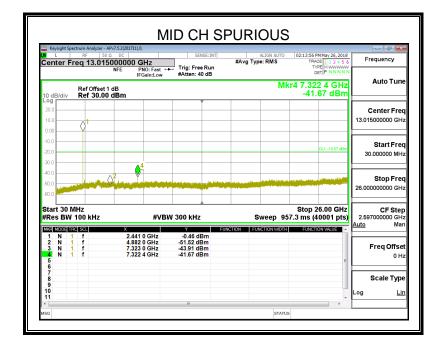
TEST SETUP

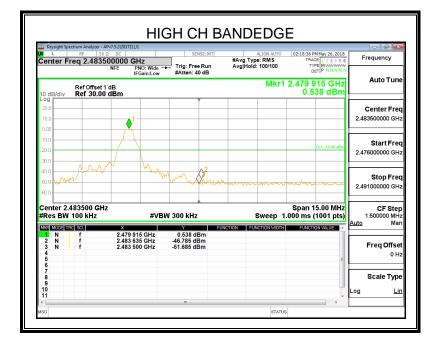


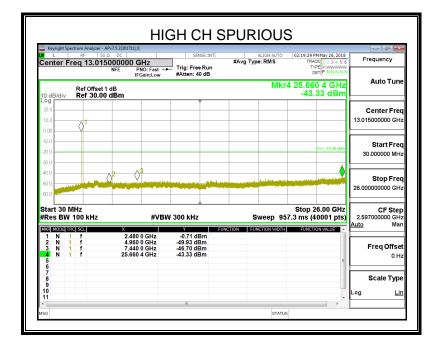

RESULTS

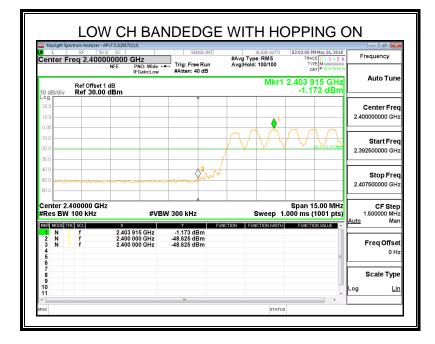
6.6.1. GFSK MODE

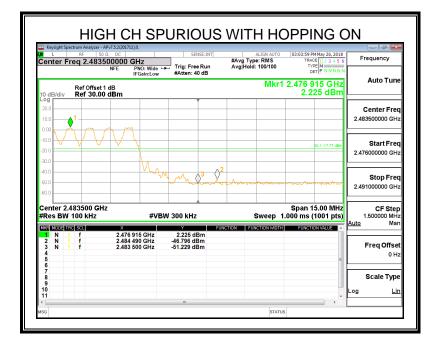

SPURIOUS EMISSIONS, LOW CHANNEL

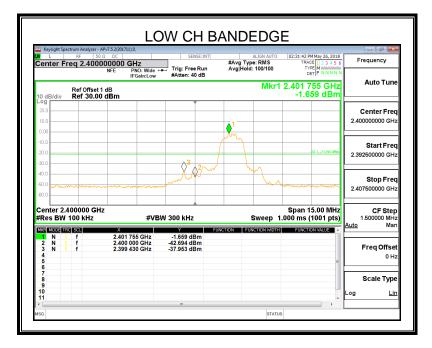


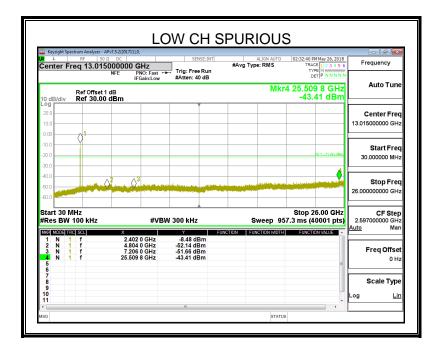

SPURIOUS EMISSIONS, MID CHANNEL

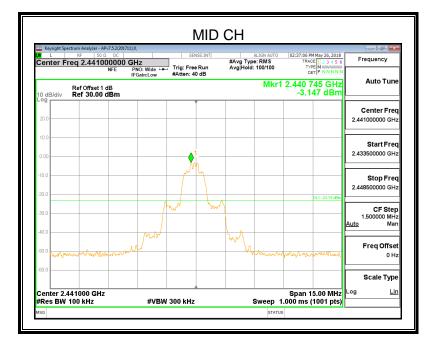


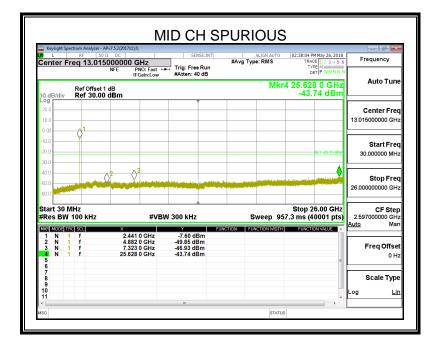

SPURIOUS EMISSIONS, HIGH CHANNEL

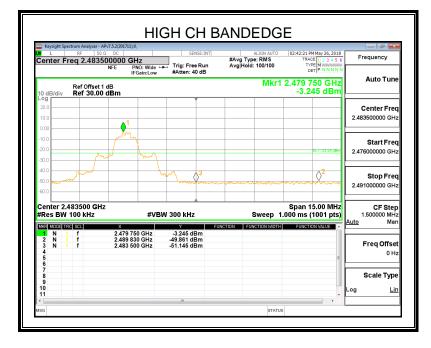


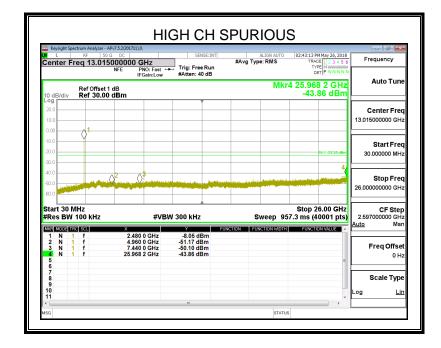

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

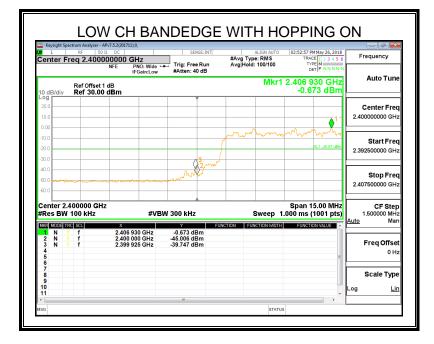


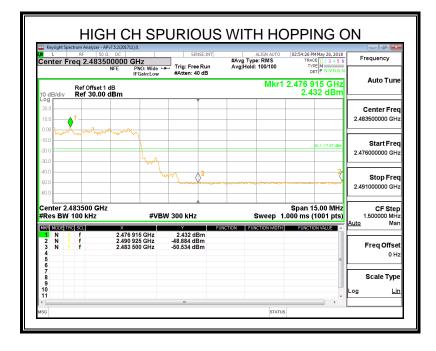

6.6.2. 8DPSK MODE


SPURIOUS EMISSIONS, LOW CHANNEL


SPURIOUS EMISSIONS, MID CHANNEL




SPURIOUS EMISSIONS, HIGH CHANNEL



SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

Please refer to FCC §15.205 and §15.209 Please refer to RSS-GEN Clause 8.9 and Clause 8.10

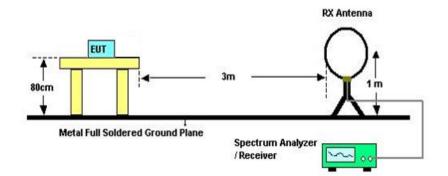
Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

	dB(uV/m) (at 3 meters)	
Frequency (MHz)	Peak	Average
Above 1000	74	54


Radiation Disturbance Test Limit for FCC (Above 1G)

About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum Analyzer

RBW	200Hz (From 9kHz to 0.15MHz)/9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

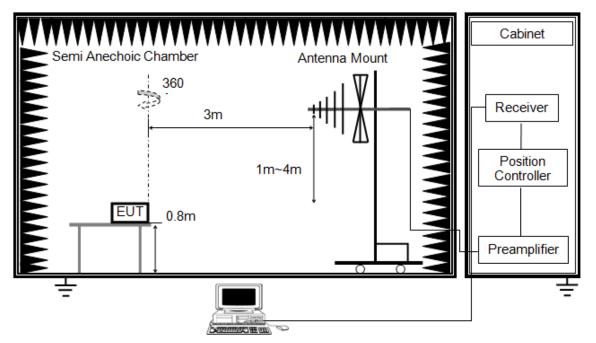
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

8. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

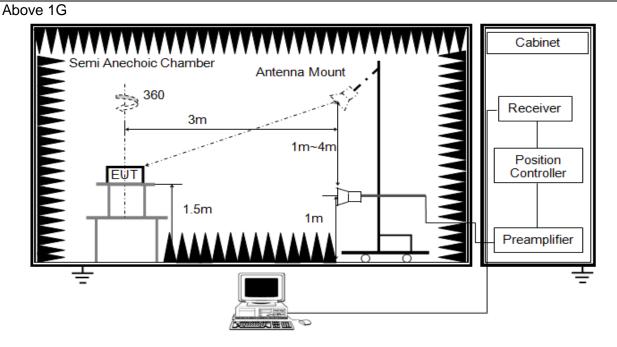
Below 1G and above 30MHz

The setting of the spectrum Analyzer

RBW	120K
VBW	300K
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

6. For the actual test configuration, please refer to the related item in this test report.

RBW	1M
VBW	PEAK: 3M
1011	AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

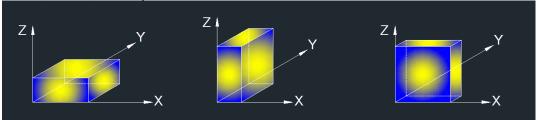
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 12cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector. For the Duty Cycle please refer to clause 6.1.ON TIME AND DUTY CYCLE.

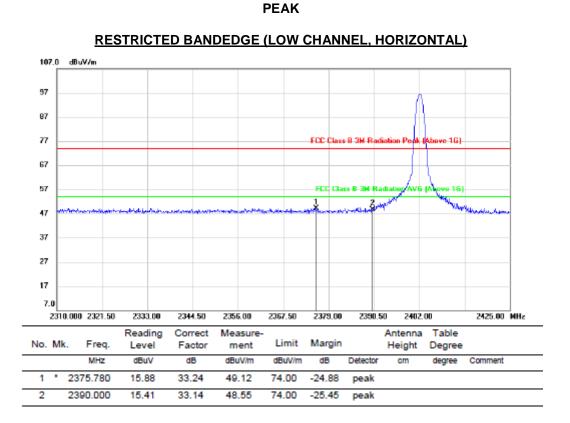

If that calculated VBW is not available on the analyzer then the next higher value should be used.

In this case 500Hz should be used.

7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

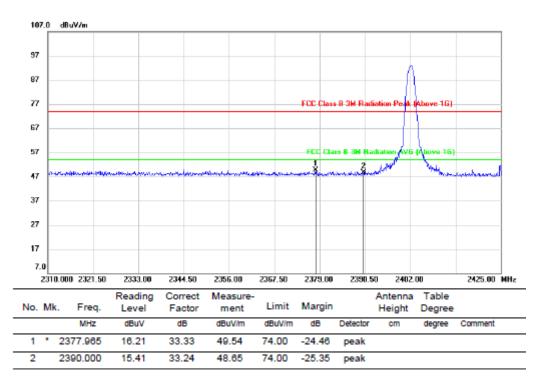

Note 2: All the EUT's emissions had been evaluated for simultaneous transmission with the other WIFI 2.4GHz, WIFI 5GHz,BT and 2.4G transmitter and there were no any additional or worse emissions found.

7.2. RESTRICTED BANDEDGE

TEST ENVIRONMENT

Temperature	24.8°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

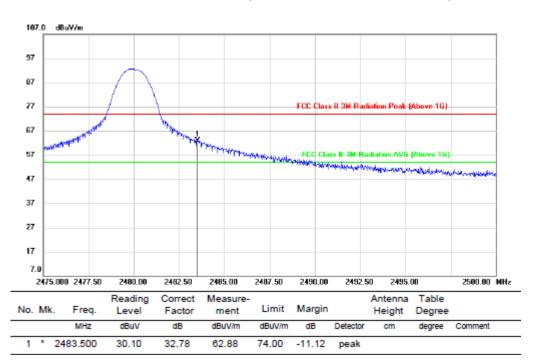
7.2.1. GFSK MODE FOR ANTENNA 1



Note: 1. Measurement = Reading Level + Correct Factor.

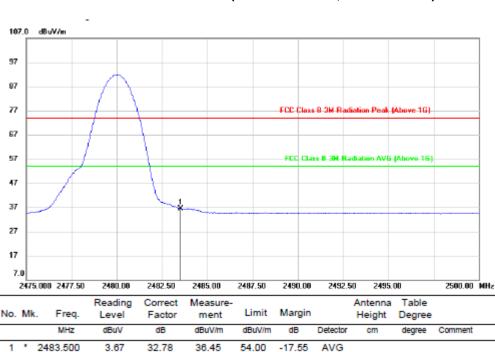
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.3. Peak: Peak detector.

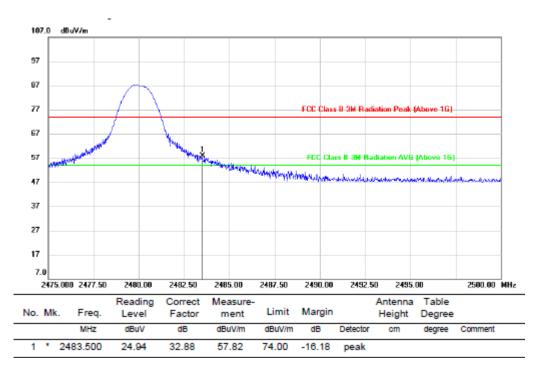

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

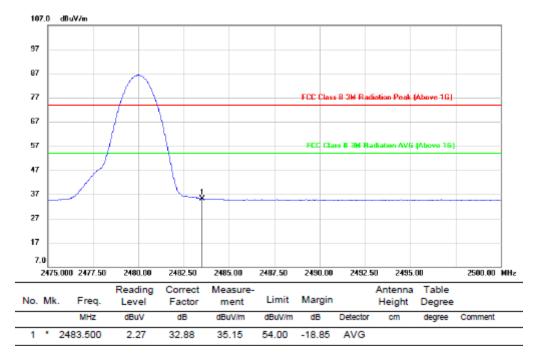
AVG



RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

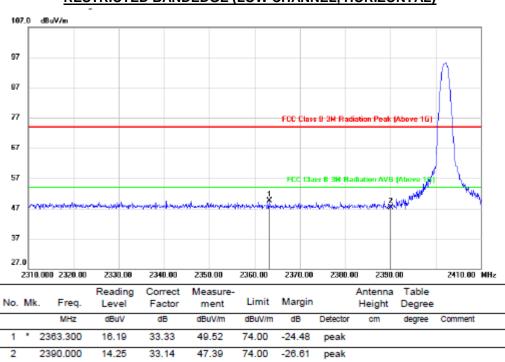
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 6.1.
- 5. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.



RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

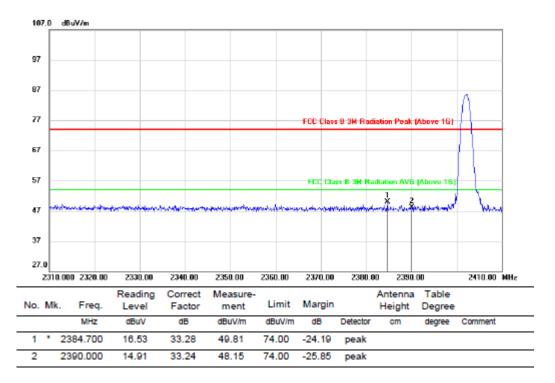
If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.


RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 6.1.

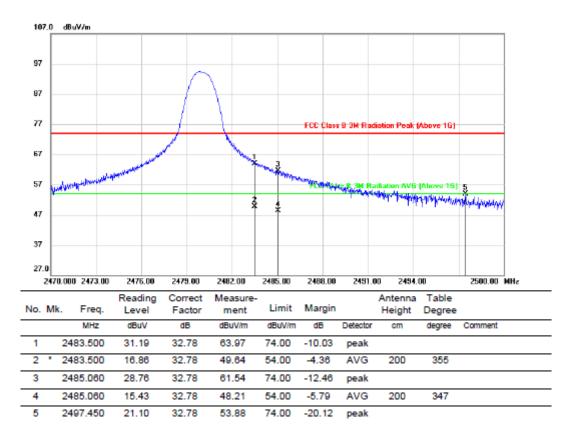
7.2.2. GFSK MODE FOR ANTENNA 2



RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

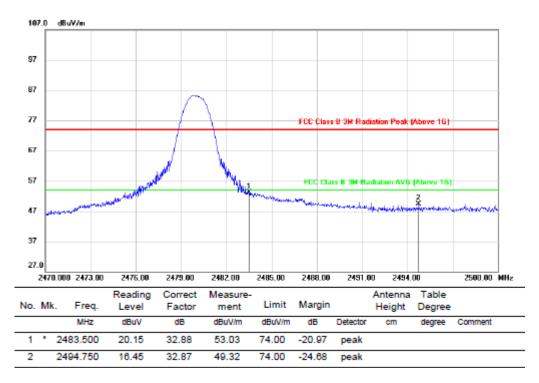
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

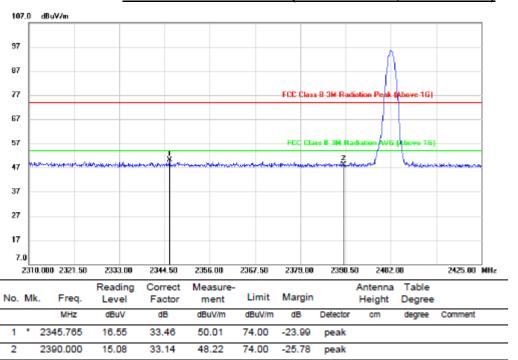
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 6.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

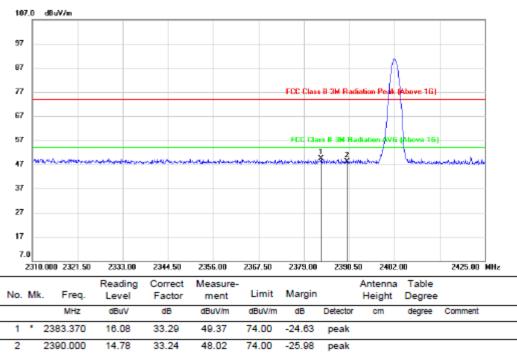
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

7.2.3. 8DPSK MODE FOR ANTENNA 1

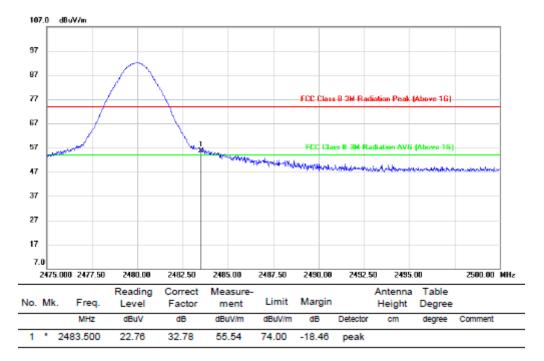
PEAK


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

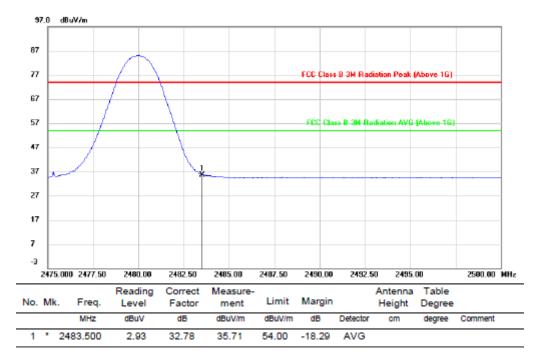
3. Peak: Peak detector.



RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

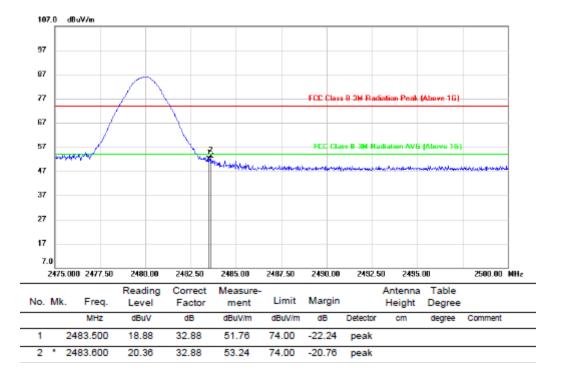


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

AVG

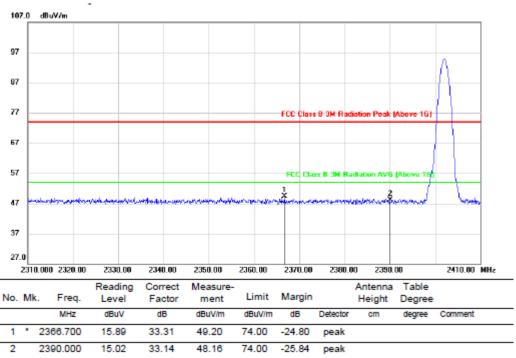


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 6.1.

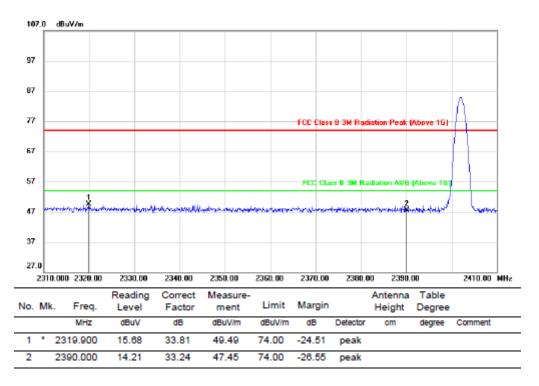
PEAK


RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

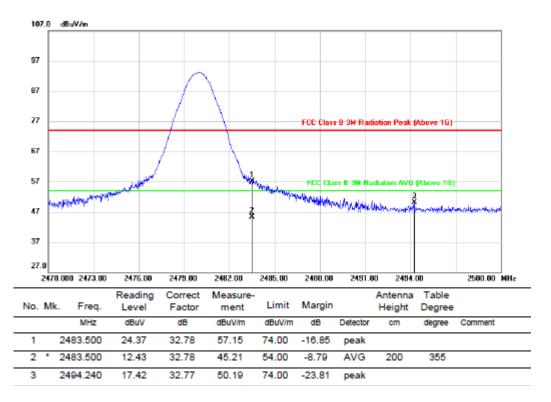
7.2.4. 8DPSK MODE FOR ANTENNA 2



RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

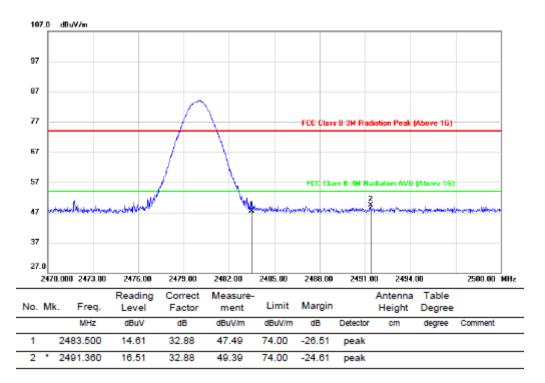
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 6.1.

6. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.

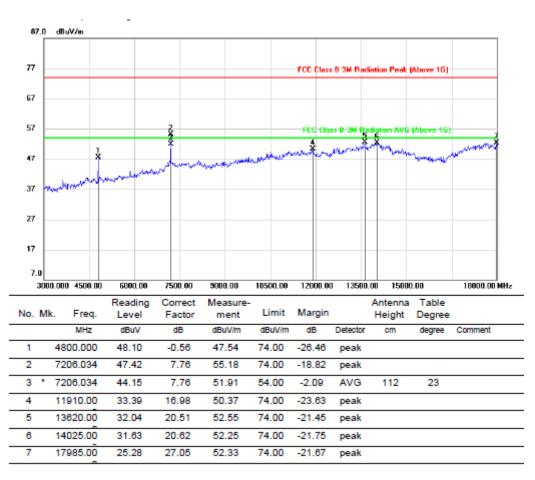
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

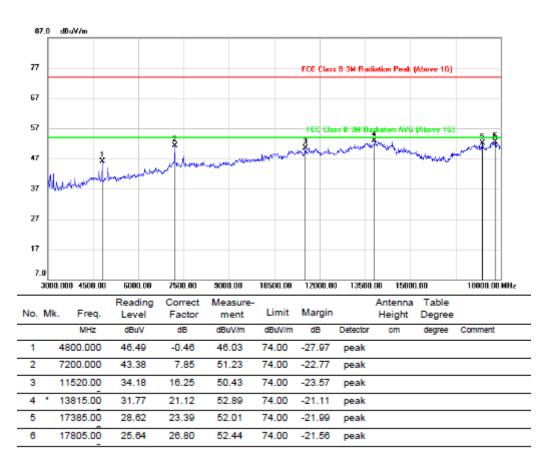
4. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.


7.3. SPURIOUS EMISSIONS (3~18GHz)

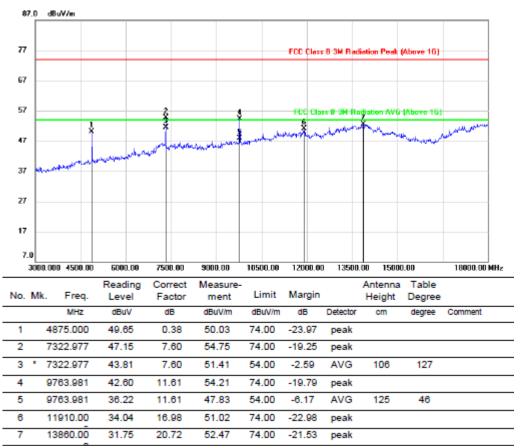
TEST ENVIRONMENT

Temperature	24.8°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

7.3.1. GFSK MODE FOR ANTENNA 1



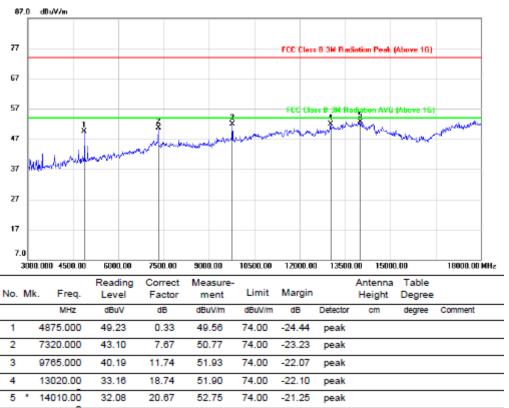
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

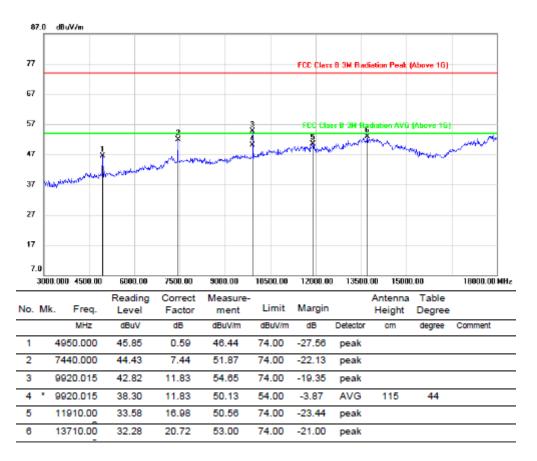
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 6.1.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

- Note: 1. Measurement = Reading Level + Correct Factor.
 - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 - 3. Peak: Peak detector.

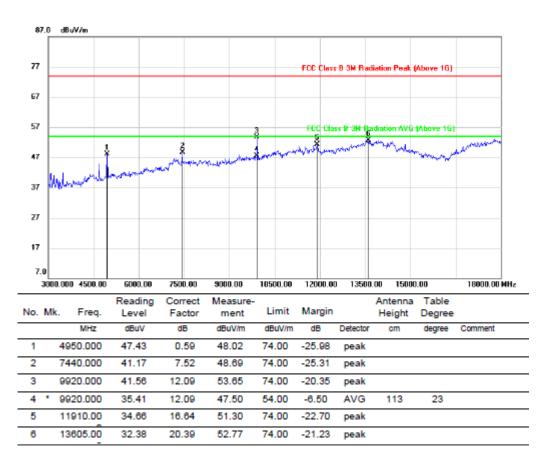


HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

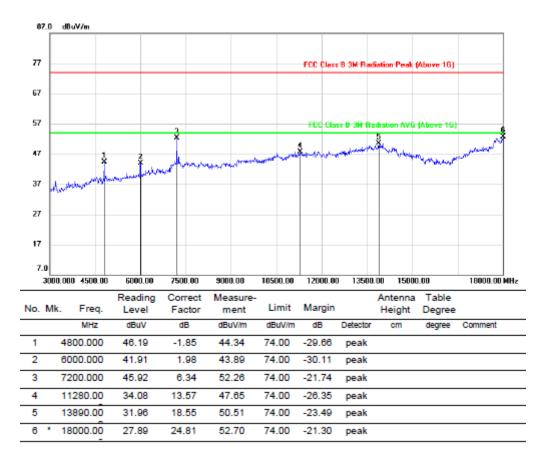
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 6.1.



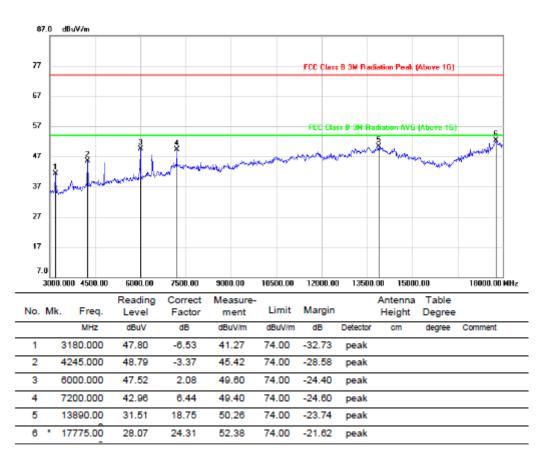
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

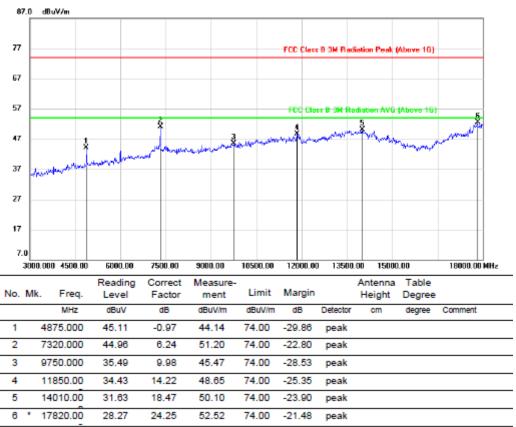
- Note: 1. Measurement = Reading Level + Correct Factor.
 - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 - 3. Peak: Peak detector.
 - 4. AVG: VBW=1/Ton where: ton is transmit duration.
 - 5. For transmit duration, please refer to clause 6.1.


HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

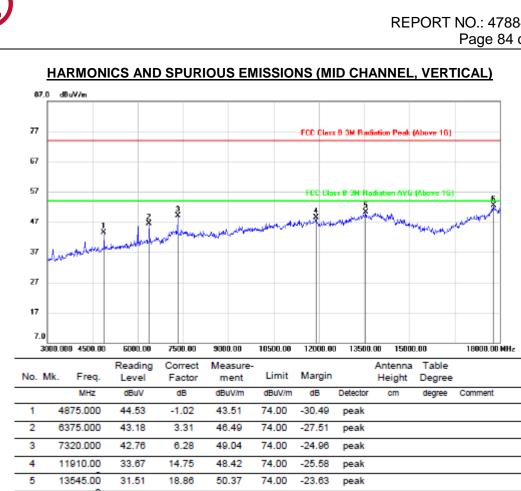
- Note: 1. Measurement = Reading Level + Correct Factor.
 - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 - 3. Peak: Peak detector.



7.3.2. GFSK MODE FOR ANTENNA 2


Note: 1. Measurement = Reading Level + Correct Factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

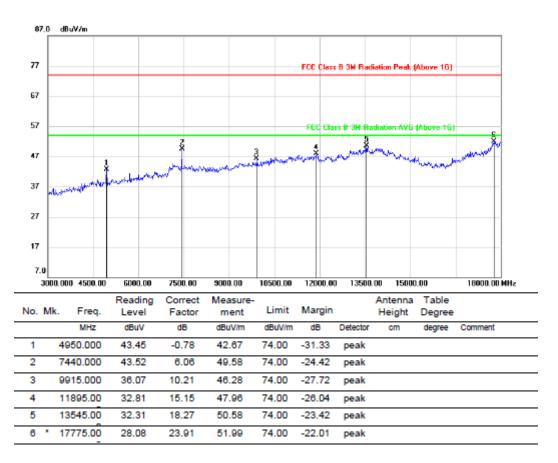
Note: 1. Measurement = Reading Level + Correct Factor.

24.51

52.57

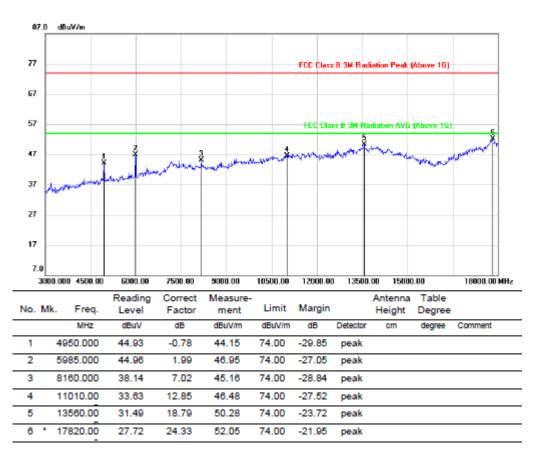
28.06

6


17790.00

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector.

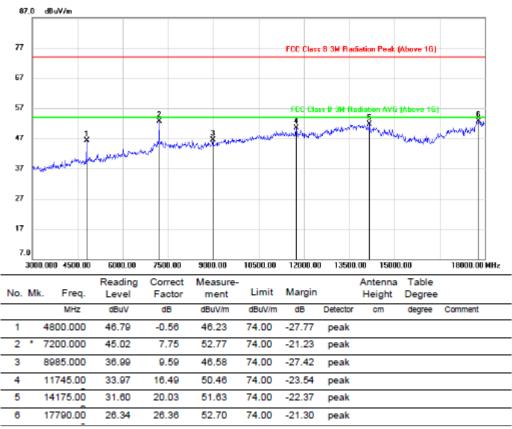
74.00


-21.43

peak

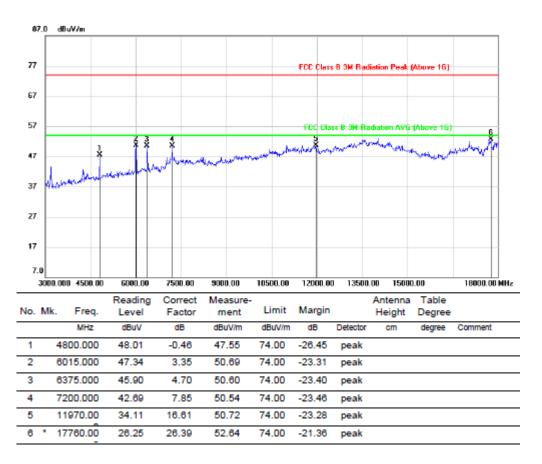
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

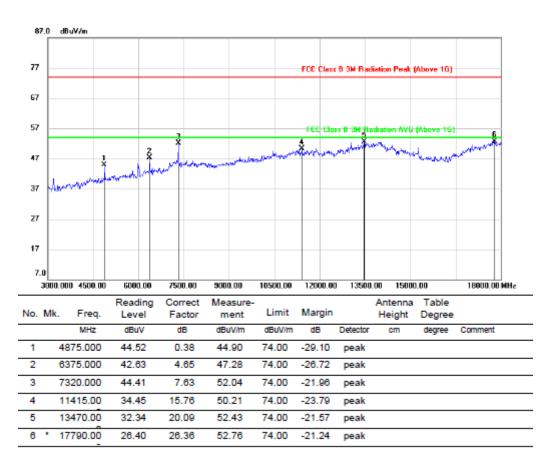

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

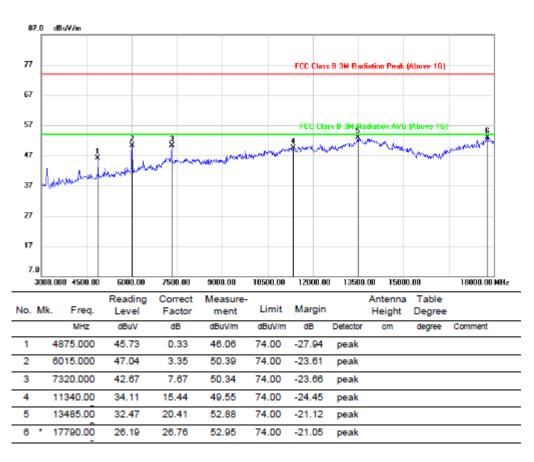
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.



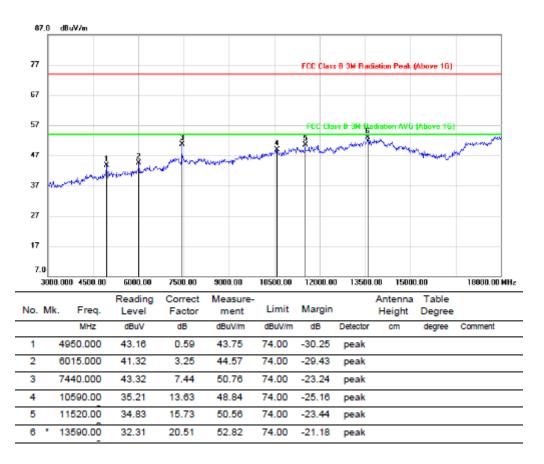
7.3.3. 8DPSK MODE FOR ANTENNA 1



HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)


- Note: 1. Measurement = Reading Level + Correct Factor.
 - If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

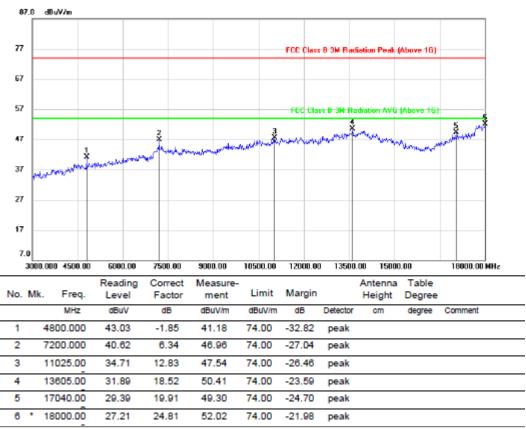
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

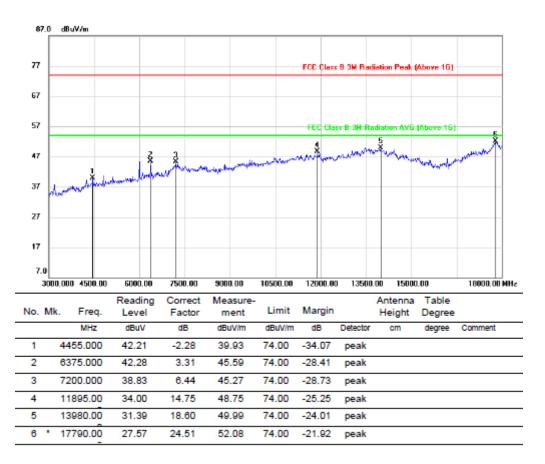
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

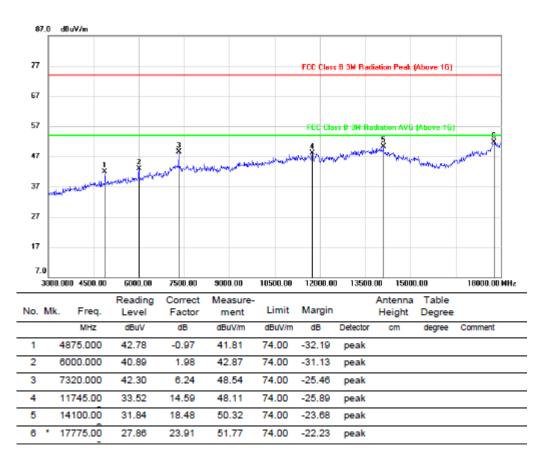


- Note: 1. Measurement = Reading Level + Correct Factor.
 - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.3. Peak: Peak detector.



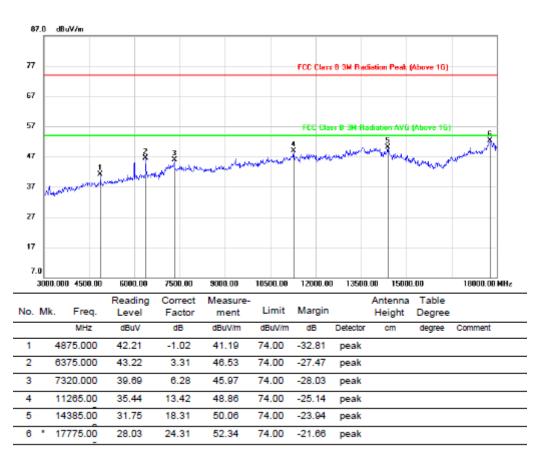
7.3.4. 8DPSK MODE FOR ANTENNA 2

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

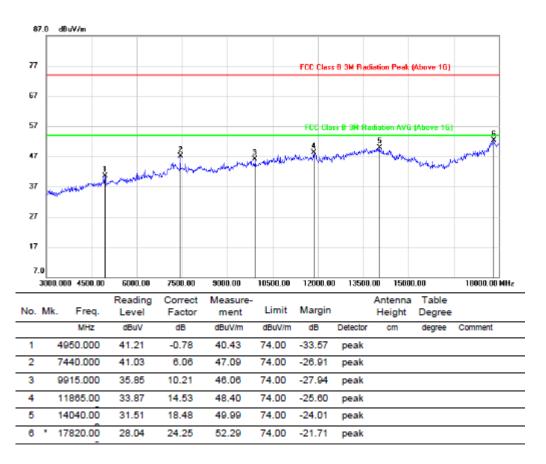

Note: 1. Measurement = Reading Level + Correct Factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

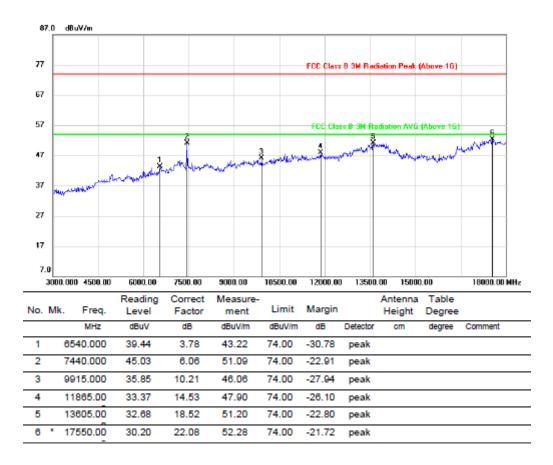
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.



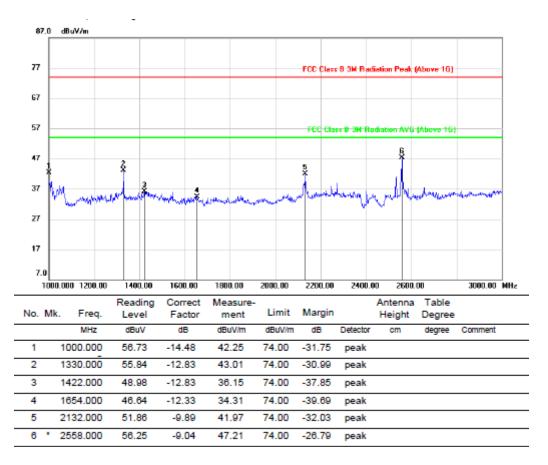
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

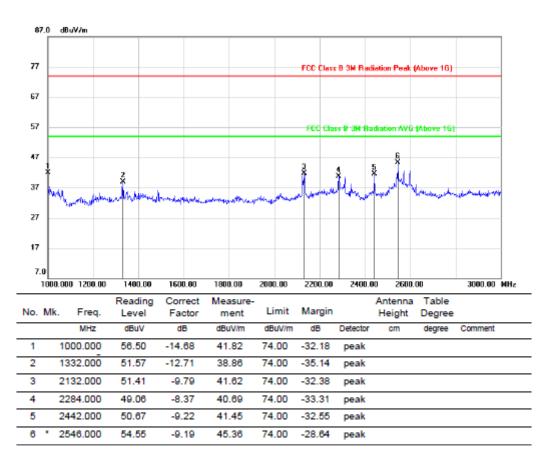
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- Note: 1. Measurement = Reading Level + Correct Factor.
 - If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

7.4. SPURIOUS EMISSIONS (1~3GHz)

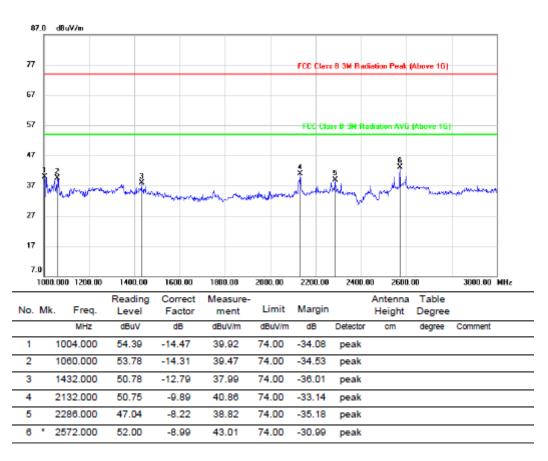

7.4.1. GFSK MODE WORSE CASE FOR ANTENNA 1

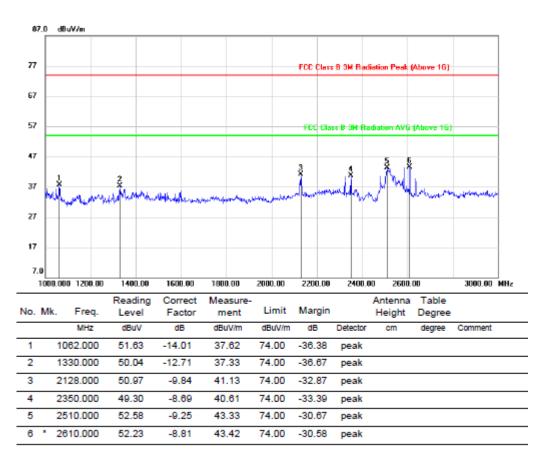
87.0 dBuV/m 77 FCC Class B 3M Radiation Peak (Above 16) 67 57 FCC Class B 3M Rad n AVG (Above 16) 47 ş 37 27 17 7.0 1000.000 1200.00 1400.00 1600.00 1800.00 2000.00 2200.00 2400.00 2600.00 3000.00 MHz Reading Correct Measure Antenna Table No. Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dBuV/m degree dB dBuV/m dB Detector cm Comment 1000.000 52.81 -14.68 74.00 38.13 -35.87 1 peak 2 1356.000 49.01 -12.73 36.28 74.00 -37.72 peak 3 2246.000 50.04 -8.41 41.63 74.00 -32.37 peak 4 2402.000 55.17 -9.04 74.00 46.13 -27.87 peak 5 2532.000 55.85 -9.21 46.64 74.00 -27.36peak 6 2558.000 56.63 -9.13 47.50 74.00 -26.50 peak


HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

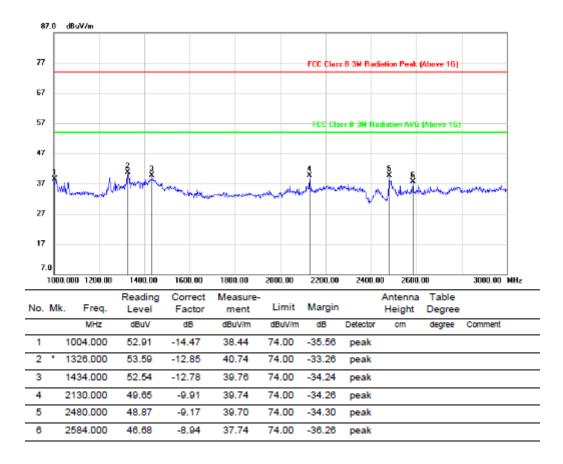
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

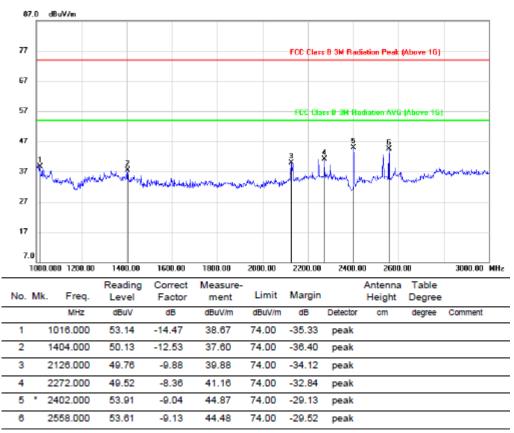

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)


HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

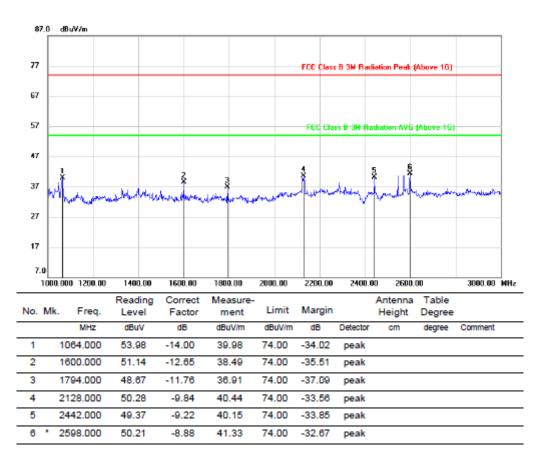

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)


HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

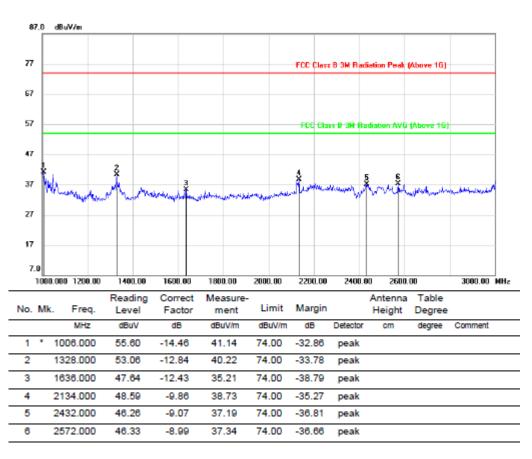
7.4.2. 8DPSK MODE WORSE CASE FOR ANTENNA 1

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

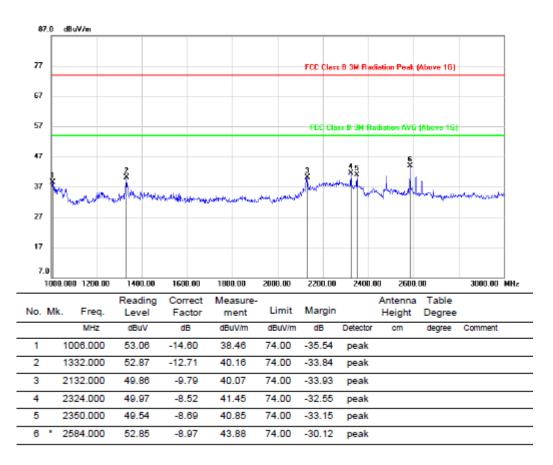

Note: 1. Measurement = Reading Level + Correct Factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

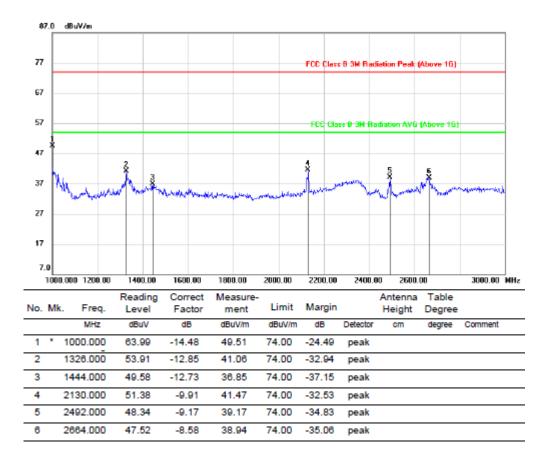
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

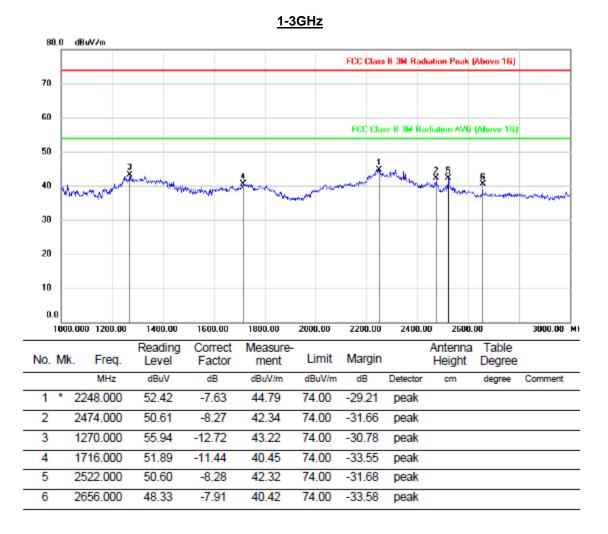


HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

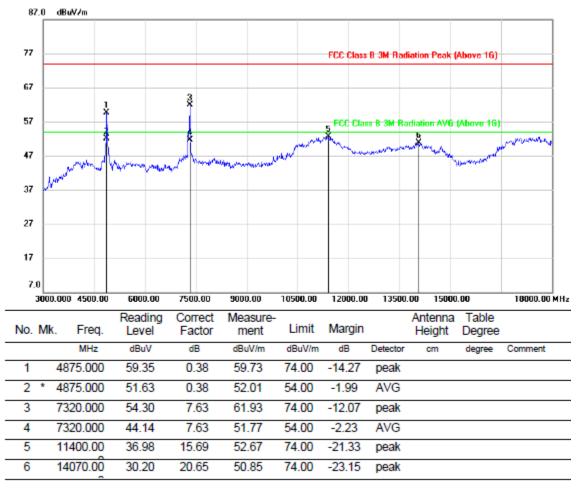


7.5. WORST-CASE CO-LOCATION

7.5.1. GFSK AND 2.4G MODE

ANTENNA1 (WORST-CASE CONFIGURATION)

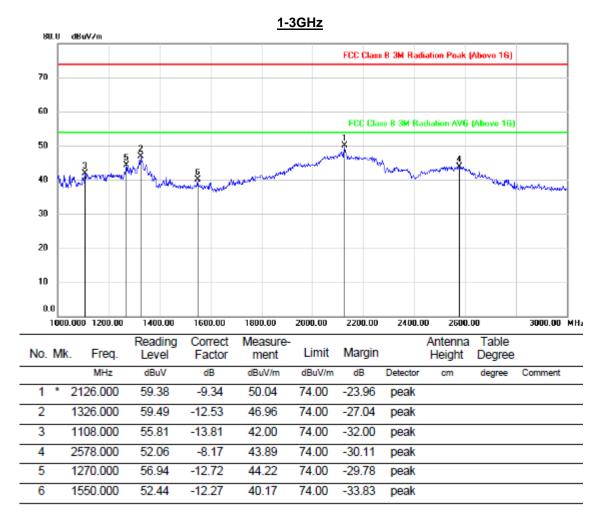
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)



Note: 1. Measurement = Reading Level + Correct Factor.

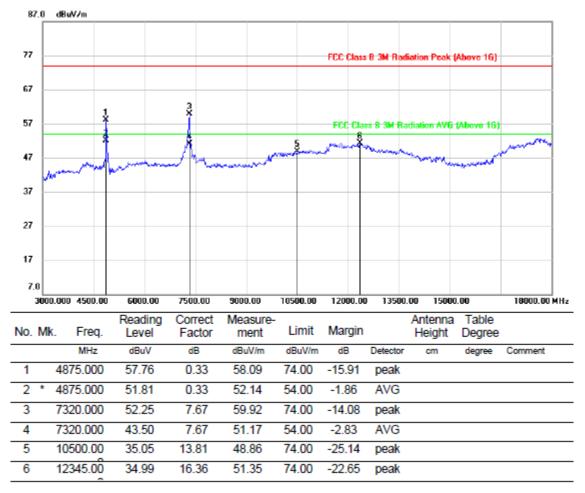
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.



2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.


SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

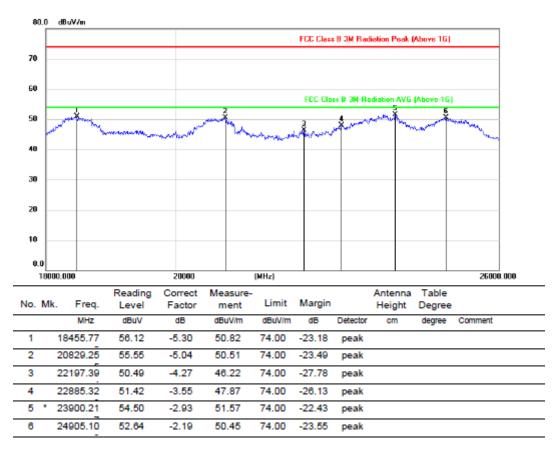
Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

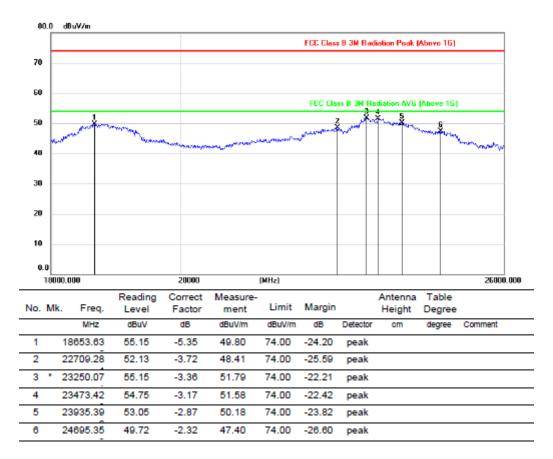
Note: All the modes had been tested, but only the worst data were recorded in the report.


7.6. SPURIOUS EMISSIONS 18G ~ 26GHz

TEST ENVIRONMENT

Temperature	24.8°C	Relative Humidity	
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

7.6.1. GFSK MODE WORSE CASE FOR ANTENNA 1


SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

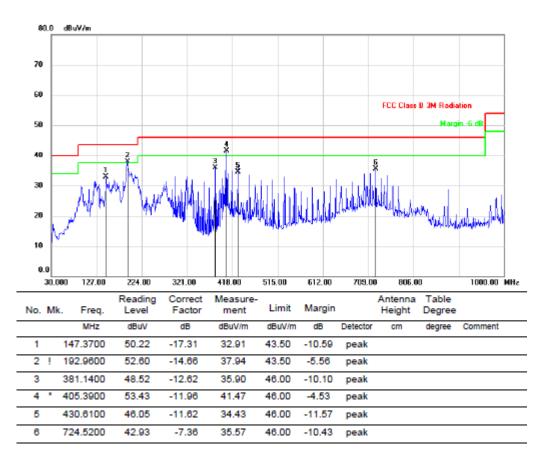
Note: 1. Peak Result= Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

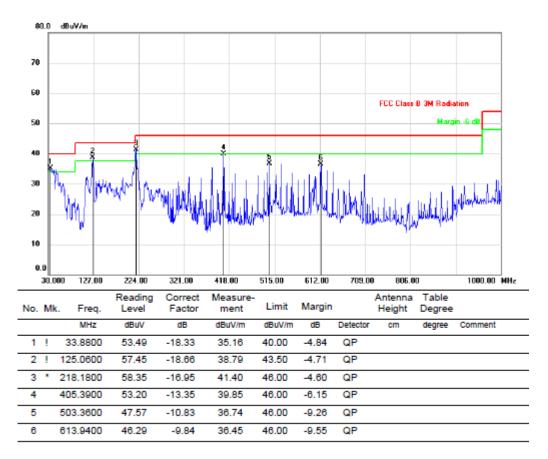
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


7.7. SPURIOUS EMISSIONS 30M ~ 1 GHz

TEST ENVIRONMENT

Temperature	24.8°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

7.7.1. GFSK MODE WORSE CASE FOR ANTENNA 1


SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

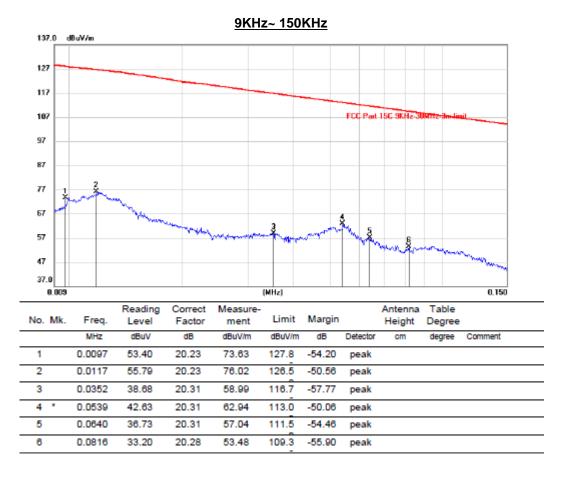
Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
 Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

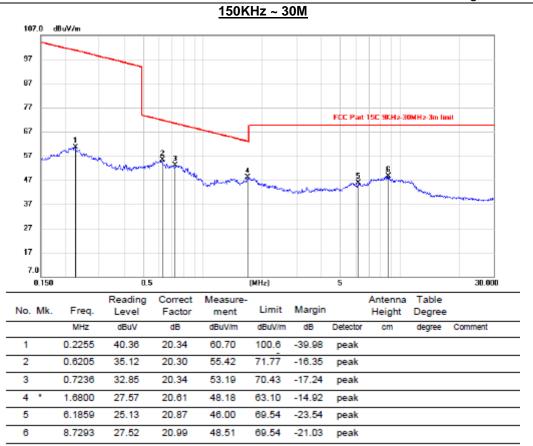
Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

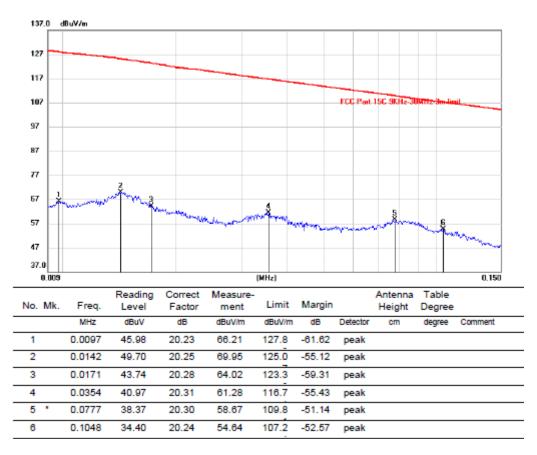

7.8. SPURIOUS EMISSIONS BELOW 30M

TEST ENVIRONMENT

Temperature	24.8°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V


7.8.1. GFSK MODE WORSE CASE FOR ANTENNA 1

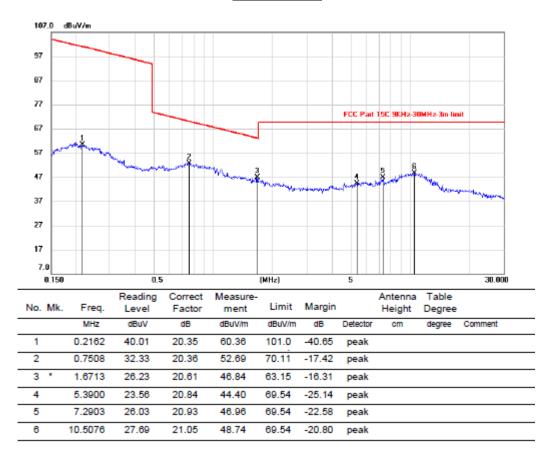
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)



<u>9KHz~ 150KHz</u>

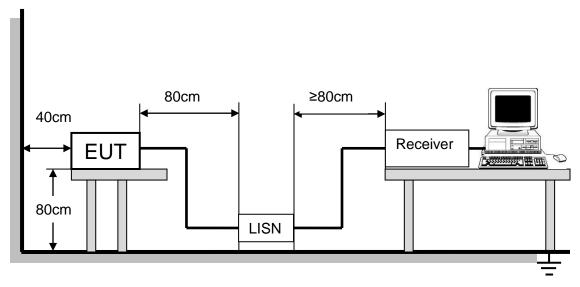
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

150KHz ~ 30M

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.


8. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

Please refer to FCC §15.207 (a) and RSS-Gen Clause 8.8.

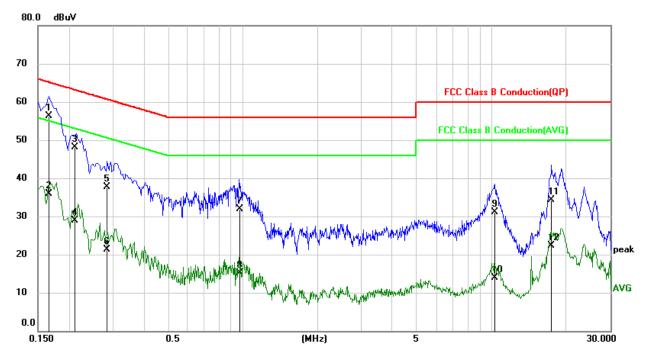
FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00 66.00		66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80mm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

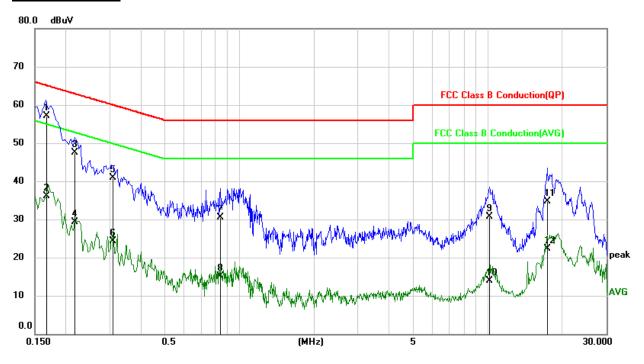

Temperature	24.5°C	Relative Humidity	
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM NO: 10-SL-F0035

8.1.1. GFSK MODE WORSE CASE FOR ANTENNA 1

TEST RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)

LINE N RESULTS


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1655	46.63	9.62	56.25	65.18	-8.93	QP
2	0.1655	26.20	9.62	35.82	55.18	-19.36	AVG
3	0.2102	38.42	9.62	48.04	63.20	-15.16	QP
4	0.2102	19.32	9.62	28.94	53.20	-24.26	AVG
5	0.2860	27.99	9.62	37.61	60.64	-23.03	QP
6	0.2860	11.72	9.62	21.34	50.64	-29.30	AVG
7	0.9758	22.34	9.63	31.97	56.00	-24.03	QP
8	0.9758	5.52	9.63	15.15	46.00	-30.85	AVG
9	10.3046	20.94	10.11	31.05	60.00	-28.95	QP
10	10.3046	3.80	10.11	13.91	50.00	-36.09	AVG
11	17.3874	24.35	9.86	34.21	60.00	-25.79	QP
12	17.3874	12.44	9.86	22.30	50.00	-27.70	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM NO: 10-SL-F0035

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1679	47.45	9.63	57.08	65.06	-7.98	QP
2	0.1679	26.38	9.63	36.01	55.06	-19.05	AVG
3	0.2178	37.84	9.63	47.47	62.90	-15.43	QP
4	0.2178	19.73	9.63	29.36	52.90	-23.54	AVG
5	0.3084	31.19	9.63	40.82	60.01	-19.19	QP
6	0.3084	14.74	9.63	24.37	50.01	-25.64	AVG
7	0.8341	20.86	9.64	30.50	56.00	-25.50	QP
8	0.8341	5.43	9.64	15.07	46.00	-30.93	AVG
9	10.1750	20.52	10.11	30.63	60.00	-29.37	QP
10	10.1750	3.72	10.11	13.83	50.00	-36.17	AVG
11	17.4146	24.96	9.84	34.80	60.00	-25.20	QP
12	17.4146	12.51	9.84	22.35	50.00	-27.65	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ANTENNA CONNECTOR

EUT has an internal antenna with antenna connector, it will be installed in a specific environment and users cannot change the antenna.

ANTENNA GAIN

The antenna gain of EUT is less than 6 dBi.

END OF REPORT