

DICENTIS

Conference System

Installation manual

en

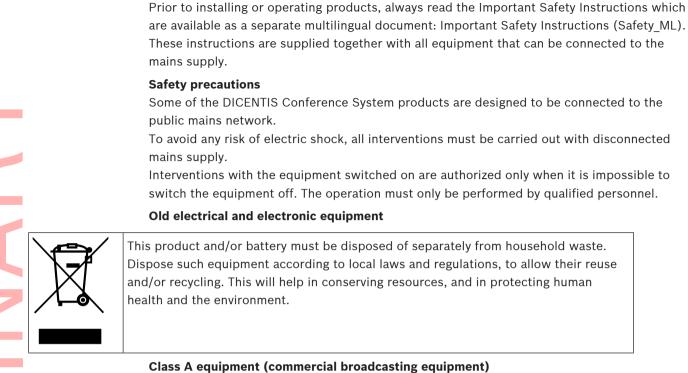

L N A R < r

Table of contents

1	Safety	5
2	About this manual	7
2.1	Intended audience	7
2.2	Alerts and notice signs	7
2.3	Copyright and disclaimer	7
2.4	Document history	7
3	System installation overview	9
3.1	Typical system setup	10
3.2	System extension	13
4	System installation design and planning	16
4.1	System capabilities	16
4.2	Hardware requirements	18
4.3	Power supply capacity calculation plan	21
4.3.1	Calculation using DCNM-APS2 or DCNM-PS2	21
4.3.2	Calculation using PoE switches	25
4.4	Redundancy options	27
4.4.1	Redundant cabling for DCNM-APS2/DCNM-PS2 units	28
4.4.2	Redundant server PC	30
5	Installation material and tools	31
5.1	DCNM-CBCPLR Cable couplers	31
5.1.1	Using a cable coupler to extend a cable	32
5.1.2	Using a cable coupler as a break-out box	32
5.1.3	Using a cable coupler as an interface between different types of cable	33
5.1.4	Using a cable coupler to insert power locally	34
5.1.5	Using a cable coupler to switch the system on	35
5.2	DICENTIS System cable assemblies	38
5.3	DCNM-CBCON Connectors for DICENTIS cable	39
5.4	DCNM-CBTK System Network Cable Toolkit	40
5.5	DCNM-CB250 System installation cable	41
5.6	DCNM-IDESKINT On-air & teleph. DCNM-IDESK	42
6	Mechanical installation of Central Equipment	46
6.1	Audio processor and powering switch and Powering switch	46
6.2	System server	50
6.3	Dante gateway	51
7	Mechanical installation of Contribution Devices	55
7.1	Connecting DICENTIS devices	55
7.2	DICENTIS tabletop devices	57
7.3	DICENTIS flush-mounted devices	60
7.3.1	DCNM-FBD2 Flush base device	65
7.3.2	DCNM-FMCP Flush microphone connection panel	68
7.3.3	DCNM-FMICB Flush microphone button panel	69
7.3.4	DCNM-FPRIOB Flush priority button panel	70
7.3.5	DCNM-FLSP Flush loudspeaker panel	71
7.3.6	DCNM-FVP Flush voting panel	73
7.3.7	DCNM-FSLP Flush language selection panel	73
7.3.8	DCNM-FAI Flush audio interface	74
7.3.9	DCNM-FHH / DCNM-FHHC Flush hand held microphones	77
7.3.10	DCNM-FIDP Flush identification panel	77

8	Installation Test	93
7.7.2	DCNM-DICH ID card holder for DCNM-D	91
7.7.1	DCNM-NCH Name Card Holder	91
7.7	DICENTIS Card holders	91
7.6	DCNM-MMDSP Anti-reflection foil	90
7.5	DICENTIS Microphones	88
7.4	DCNM-IDESK / DCNM-IDESKVID Interpreter desk	85
7.3.13	Flush setups	82
7.3.12	DCNM-FSL Flush language selector	79
7.3.11	DCNM-FICH Flush ID card holder	78

1

Safety

Class A equipment (commercial broadcasting equipment)

This equipment is for professional (Class A) electromagnetic compatibility equipment. Seller or user should pay attention to this point. It is intended for use outside the home.

Warning!

Changes or modifications made to this equipment, not expressly approved by Bosch Security Systems B.V. may void the user's authority to operate the equipment.

FCC Statement - Wired Class A digital device (unintentional radiator)

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Note: The FCC Wired Class A statement applies to:

- DCNM-D
- DCNM-FBD2
- DCNM-FMCP
- **DCNM-FMICB**
- **DCNM-FPRIOB**
- DCNM-FLSP
- **DCNM-MICSLS**
- **DCNM-MICSLL**
- DCNM-FVP
- DCNM-FAI

- DCNM-FSLP
- DCNM-FIDP
- DCNM-FHH
- DCNM-FHHC

FCC Statement - Wired Class B digital device

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Note: The FCC Wired Class B statement applies to:

- DCNM-MMD2

FCC and IC Wireless Statement

This device complies with Part 15 of the FCC Rules and with Industry Canada license exempt RSS standard(s). Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

(1) l'appareil ne doit pas produire de brouillage, et

(2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Note: The FCC and IC Wireless statement applies to:

- DCNM-MMD2
- DCNM-DVT
- DCNM-DSL
- DCNM-DE
- DCNM-IDESK
- DCNM-IDESKVID
- DCNM-FIDP

2 About this manual

The purpose of this manual is to provide information required for installing the DICENTIS Conference System.

This installation manual is available as a digital document in the Adobe portable document format (PDF).

For more information, refer to the product related information on www.boschsecurity.com

2.1

2.2

Intended audience

This hardware installation manual is intended for installers of a DICENTIS Conference System.

Alerts and notice signs

Four types of signs can be used in this manual. The type is closely related to the effect that may be caused if it is not observed. These signs - from least severe effect to most severe effect - are:

Notice!

Containing additional information. Usually, not observing a 'notice' does not result in damage to the equipment or personal injuries.

Caution!

The equipment or the property can be damaged, or persons can be lightly injured if the alert is not observed.

Warning!

The equipment or the property can be seriously damaged, or persons can be severely injured if the alert is not observed.

Danger!

Not observing the alert can lead to severe injuries or death.

2.3

Copyright and disclaimer

All rights reserved. No part of this document may be reproduced or transmitted in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting permission for reprints and excerpts, contact Bosch Security Systems B.V.

The content and illustrations are subject to change without prior notice.

2.4 Document history

Release date	Documentation version	Reason
2023-01	V4.2	Update to DCNM-CB250-I and OMN-DANTEGTW. Added: - DCNM-SERVER3 - DCNM-FBD2 - DCNN-CB250-CPR

Documentation version	Reason
	– INT-TXO.
V4.3	Added:
	– DCNM-FVP
	- DCNM-FSLP
	– DCNM-FAI
	– DCNM-FHH
	– DCNM-FHHC
	- DCNM-FIDP
	– DCNM-FICH.

3 System installation overview

It is advisable to participate in the DICENTIS Conference System training before you install, configure, prepare, and operate a DICENTIS Conference System.

The DICENTIS Conference System is an IP based conference system which runs on an OMNEO compatible Ethernet network. It is used for distributing and processing audio, video and data signals.

The DICENTIS Conference System can be quickly and easily configured as a daisy-chain configuration or as a star configuration:

- **Daisy-chain configuration**: Uses dedicated cabling, consisting of CAT-5e cables including two additional power conductors (see *Typical system setup, page 10*).
- **Star configuration**: Each DICENTIS device is connected with an individual standard CAT-5e cable. An Ethernet switch is also required for providing Power over Ethernet (PoE).

Notice!

When Power over Ethernet is used, DICENTIS devices cannot be daisy-chained.

Refer to

- Typical system setup, page 10

3.1 Typical system setup

This system overview does not give information on redundant network options. For more information, refer to *Redundancy options, page 27*.

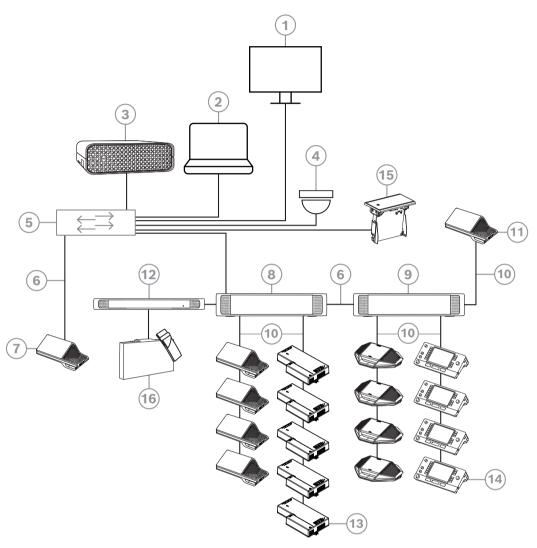
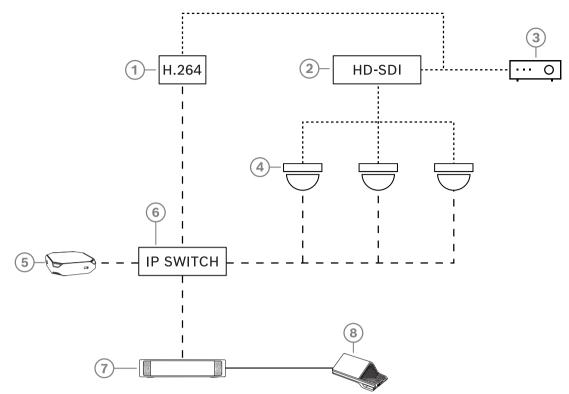


Figure 3.1: Typical DICENTIS Conference System setup

A typical DICENTIS Conference System consists of:


- 1. Hall display of the conference room:
 - Shows a synoptic layout of the meeting or meeting notes.
- 2. Client PC:
 - Can be used to: Manage meetings, prepare meetings and configure the system.
- 3. DICENTIS System server:
 - The heart of the system. It licenses functionality, configures and controls the system.
- 4. Optional video camera (Onvif Profile-S compatible cameras, Sony IP cameras via CGI commands, or Panasonic HD Integrated IP) + external power supply:
 - Captures the image of a speaking participant.
- 5. Ethernet switch:
 - Ethernet switch with PoE on some ports.
 - Routes the system data via Ethernet.
 - Provides power to the DICENTIS devices via PoE.
- 6. CAT-5e Ethernet cable (minimum requirement).

- 7. Multimedia device:
 - Only one DICENTIS device should be connected here.
- 8. Powering switch:
 - Used to increase the number of DICENTIS devices connected to the system.
- 9. Audio processor and powering switch:
 - Controls the system audio, routes audio from and to the system and supplies power to the DICENTIS devices.
- 10. System Network Cable:
 - Connects DICENTIS devices, the Audio processor and powering switch, and one or more Powering switches to each other.
- 11. Multimedia device:
 - This device is used for "system power on/off". It is always connected to the powered socket of the Audio processor and powering switch or Powering switch.
 Note: Only one DICENTIS Multimedia device should be connected here.
- 12. Transmitter OMNEO:
 - This device allows for wireless language distribution.
- 13. Flush base device:
 - This device is intended for use in flush-mounted solutions, adding a number of functions.
- 14. Interpreter Desk:
 - Provides extensive facilities for professional interpretation for the DICENTIS Conference System.

Note: A maximum of 10 desks can be installed per booth.

- 15. Flush language selector:
 - This device allows the participants to easily choose their preferred language.
- 16. IR distribution:
 - Through infrared distribution, the signals from the INT-TXO are transmitted to the radiators in the room.

A typical camera setup in a DICENTIS Conference System consists of:

Figure 3.2: Typical camera setup

1	H.264 encoder to encode the HD SDI video to H.264 if the video camera is not able to supply the supported H.264 stream	2	HD-SDI switcher to switch the HD-SDI streams of the cameras
3	Projector to show the active speaker on the large screen	4	Video camera (Onvif Profile-S compatible camera, Sony, Panasonic)
5	DICENTIS System server	6	L3 Ethernet switch
7	DCNM-APS2	8	DCNM-MMD2, displaying the active speaker on the device
	HD-SDI (coax cable)		Ethernet TCP/IP
	DCNM-Cables		

3.2 System extension

The DICENTIS Conference System is scalable from small to medium to large. This section describes what a small, medium and large system is and what the requirements are for these systems:

A small to medium DICENTIS Conference System (see *Typical system setup, page 10*) consists of:

- up to 450 DICENTIS nodes.

Refer to table **Node and device count of DICENTIS equipment** below about the node and device count of DICENTIS equipment.

- all DICENTIS devices in 1 subnet.
- 1 DICENTIS Audio processor and powering switch for the audio processing.
- 1 Server PC which hosts the DICENTIS services.

A large DICENTIS Conference System consists of:

- up to 1500 DICENTIS devices.
- multiple subnets connected by use of a router/L3 switch.
 - Each subnet can have up to 450 DICENTIS nodes.
 - Refer to the following table for the node count of DICENTIS equipment.
 - The first subnet has:
 - 1 DICENTIS Audio processor and powering switch for the audio processing.
 - 1 Server PC which hosts the DICENTIS services.
 - 1 ARNI-Enterprise to increase the size of the system.
 - All other subnets have 1 ARNI-Standard to increase the size of the system.
 Note: There is no DICENTIS Audio processor and powering switch in the other subnets.

Device	Node count	Device count	IP addresses
DICENTIS Server	0	0	1
DICENTIS meeting application	0	0	0
DICENTIS Audio processor and powering switch	1	1	1
DICENTIS Powering switch	1	1	1
DICENTIS Multimedia device	2	1	2
DICENTIS Discussion device	1	1	1
DICENTIS Discussion device select language	1	1	1
DICENTIS discussion device voting	1	1	1
DICENTIS Discussion device extended	1	1	2
DICENTIS Interpreter desk	1	1	2
DICENTIS Interpreter desk with video	1	1	3
DICENTIS Flush base device 2	1	1	1
DICENTIS Flush language selector	1	1	1
INT-TXO Transmitter OMNEO	1	1	2

Device	Node count	Device count	IP addresses
OMN-DANTEGTW Dante gateway	1	0	1
PRS-40MI4 OMNEO media interface	1	0	1
OMN-ARNIE ARNI-E OMNEO interface	0	1	1
OMN-ARNIS ARNI-S OMNEO interface	0	1	1

Table 3.1: Node and device count of DICENTIS equipment

An ARNI (Audio Routed Network Interface) is used to connect multiple DICENTIS system subnets. If more than one subnet is required, two types of an ARNI must be used.

- OMN-ARNIS (ARNI-S OMNEO interface): The ARNI-S is required for increasing the system size above 450 DICENTIS nodes. It supports up to 450 DICENTIS nodes in its subnet. It also acts as a DHCP server in its subnet.
- OMN-ARNIE (ARNI-E OMNEO interface): The ARNI-E is required for increasing the system size above 450 DICENTIS nodes. It supports up to 450 DICENTIS nodes in its subnet. It also acts as a DHCP server in its subnet. It can connect up to 40 subnets, each with an ARNI-S.

Defining subnets and subnet masks

A subnet is a logical, visible subdivision of an IP network. The number of DICENTIS devices that can be in the same subnet depends on the subnet mask.

A standard class C subnet (255.255.255 or /24) can contain 254 IP addresses. Some DICENTIS devices have 2 IP addresses. For this reason, Bosch advises to use 255.255.252.0 (or /22) as a subnet mask. This allows you to have 1018 IP addresses.

Multi subnet DICENTIS Conference System

The following figure illustrates a typical multi subnet DICENTIS Conference System with a total of 1500 DICENTIS devices.

- The system is divided over four (4) subnets, where two (2) subnets having a maximum of 450 DICENTIS nodes and an OMN-ARNIS are connected.
- The system has one OMN-ARNIE installed in the first subnet with a maximum of 450 DICENTIS nodes connected (Note that only one OMN-ARNIE is allowed within a multiple subnet DICENTIS Conference System).
- Subnet four (4): When using multiple subnets, make sure that all cameras needed to capture video of the seats are all connected to the same subnet.

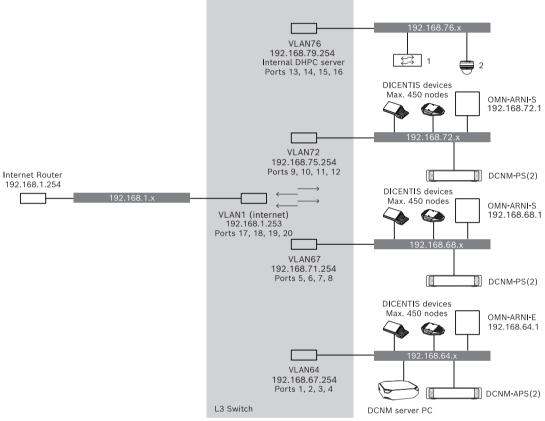


Figure 3.3: Typical DICENTIS Conference System with multiple subnets

- 1: External video switcher.
- **2**: Dome camera.

Refer to

- Typical system setup, page 10

System installation design and planning 4 Before you start to install system devices and connect system cabling, you should make a system design and planning: Familiarize yourself with the product and system capabilities. Make a cable (connection) plan: Calculate the system network cable length. Calculate the system power consumption. Calculate the required power capacity of the system. Notice! The DICENTIS Conference System uses the RSTP protocol when redundant cabling mode is enabled. If the DICENTIS Conference System needs to be connected with the locally present network, please consult the local IT department before continuing with the installation design. Notice! Make sure that the cable lengths and power consumptions do not exceed the specifications. Not doing so will result in malfunctioning at any moment of the DICENTIS Conference System and products. Caution! When the relative humidity is below 40%, synthetic materials can cause static discharge and result in malfunctions. 4.1 System capabilities The capability of the DICENTIS Conference System and DICENTIS products depends on: The lengths of the system network cables. The number of connected devices. The system power supply capacity. Cable length System network cables (DCNM-CBxx-I) lengths (2, 5, 10 or 25 m) have a direct effect on the available power supply capacity. The longer the system network cable, the less power supply capacity is available to drive the connected devices. Therefore, choose the lengths of the system network cables carefully. Notice! Custom network cables must never exceed the maximum Ethernet specification of 100m (IEEE 802.3ab). Keep your network hierarchy as flat as possible. This means having as few levels as possible. It is recommended not to exceed 7 levels. See the following example: 1: 1st level = Root switch, 2: 2nd level = switch, 3: 3rd level = switch.

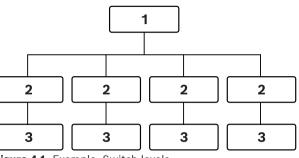


Figure 4.1: Example: Switch-levels

Power supply capacity

The total system network cable length and connected devices determine the required power supply capacity. The power within the DICENTIS Conference System is supplied by:

- The Audio processor and powering switch and the Powering switch, or
- Off-the-shelf PoE Ethernet switches.

Calculation tool

The calculation tool can be used to calculate the total power capacity of the system. This makes the design and planning of the DICENTIS Conference System easier. The calculation tool uses the power consumption of the devices and the system network cable lengths to calculate the needed system power supply capacity.

The calculation tool is on the DVD supplied with the Audio processor and powering switch and is part of the DICENTIS software DCNM.iso file. The DCNM.iso file can be downloaded from the Bosch website at: https://licensing.boschsecurity.com/software

4.2 Hardware requirements

Switches

The following minimum requirements and recommendations apply to switches used in a DICENTIS:

Requirement	Standard	Settings
Gbit Ethernet	IEEE802.3	Switch latency is maximally 10µSec with Gbit. Valid for both copper and/or fiber ports.
Packet forwarding in HW per port >1.2Mpps	n.a.	If SW is responsible for packet switching, this would result in variable latency which is unacceptable.
Quality of Service With strict priority	DiffServ	To make sure PTP synchronization packets and audio packets get priority over control packets. OMNEO uses QoS on IP level to avoid synchronization and audio problems on busy networks. Although the system does work without problems on relatively quiet networks (< 10% network load) it is important to configure your network switches correctly. The used QoS is Differentiated Services or DiffServ, which is part of the Type of Services field (ToS) in the IP header. For more details on <u>DiffServ & IP</u> header, see Wikipedia.

Warning: IEEE802.1p is also used for QoS, but is limited to layer 2. Since OMNEO uses IP communication, this mechanism is not suitable, so make sure the used equipment uses DiffServ QoS!

The table below gives an overview of the used **DSCP values** which need to be configured in the switch:

Data	DSCP dec	DSCP hex	DSCP Label	TOS byte (hex)	Switch Priority queue
PTP sync, delay req	56	0x38	CS7	0xE0	Highest
PTP follow- up, delay response, audio	46	0x2E	EF	0xB8	High
(reserved)	8	0x08	CS1	0x20	Low
Control	0	0x00	Best effort	0x00	None

Warning: Please check thoroughly if your switch's highest priority queue is label as #1 or e.g. #8, because this may differ per brand. Unfortunately this is not consistent over the different brands. Setting it wrong is worse than not having priority.

Switches must be configured to support DiffServ (DSCP) quality of service The switch needs to have 4 priority queues for the DiffServ mechanism to work.

Warning: Never use VOIP QoS settings!

Requirement	Standard	Settings
MAC table >1000	n.a.	To avoid the switch starts broadcasting unicast packets because it runs out of space.
Disable EEE	IEEE 802.3az	Most implementations of EEE cause problems because of implementation flaws. A good implementation should work, but does not save energy since the PTP synchronization avoids this. Therefore, EEE (green or low power Ethernet) <i>must</i> always be disabled.
Disable RSTP (when no cable loops are used)		Rapid Spanning Tree Protocol (RSTP) is required when (cable) loops are created for redundancy. When no loops are created, RSTP needs to be <i>disabled</i> for optimal operation. When enabled, it can cause slow connections to the switch.
Possibility to create VLANS	n.a.	VLAN separation is recommended instead of IGMP snooping, because most switches are unable to handle the multicast changes in the system. Filtering multicast data may be necessary for some devices, such as 100 Mb devices (Sony cameras, TVOne, AMX, and others).
IGMPv3 IGMPv2 snooping in hardware		IGMPv3 or IGMPv2 snooping. To optimize bandwidth usage, IGMP snooping can be used. This is useful in systems with >10 multicast streams, although not absolutely required. Sufficient performance for handling a large number of IGMP query responses, depends on the number of (directly or indirectly) connected devices to that switch. Hardware support for IGMP snooping is strongly recommended.
Requirements when Redundant wiring is used	Standard	Settings
RSTP	IEEE802.1D-20 04	RSTP is used to allow the creation of loops for redundancy. The switch must support changing the following parameters to the listed values: - Hello_Time = 9 seconds - Forwarding_delay = 30 seconds - Max_age = 22 seconds
Diagnostics		
Link Layer discovery	IEEE 802.1AB	For network diagnoses using Network Docent.
SNMP	<u>SNMP</u>	For network diagnoses using Network Docent.

Routers

The following minimal requirements apply to routers:

- 1 Gbit or higher Ethernet ports.
- Supports PIM-DM or Bidirectional PIM.
- Performs IP routing in hardware (i.e. a 'layer 3 switch') to minimize the routing delay.
- Packet forwarding rate > 1,000,000 packets per second per port (e.g. 8 Mpps for an 8-port router).
- Non-blocking backplane per switching port, i.e. 2 Gbit per port (e.g. 16 Gbps for an 8-port router).
- MAC address table of at least 1000 addresses per directly connected subnet.

	Power supply capacity calculation plan				
	How to start				
í	Notice! It is advisable to use the power calculation tool. The calculation tool is on the DVD supplied with the Audio processor and powering switch and is also part of the DICENTIS software DCNM.iso file, which can be downloaded from the Bosch website at: <u>https:// licensing.boschsecurity.com/software</u>				
	 Decide how to supply power to the DICENTIS Using the Audio processor and powering Using one or more PoE Ethernet switches If you want to use PoE Ethernet switches, con switches, page 25. 	switch and one or more Powering switches. S.			
	Refer to-Calculation using DCNM-APS2 or DCNM-I-Installation material and tools, page 31-Calculation using PoE switches, page 25	PS2, page 21			
4.3.1	Calculation using DCNM-APS2 or DC	NM-PS2			
\frown	Notice! If you want to use customized cables, or a more accurate power supply capacity ca plan is needed, you should use the power calculation tool.				
(i)	-				
(i)	-	culation tool.			
<u>(i)</u>	plan is needed, you should use the power cal To calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device	culation tool.			
<u>(i)</u>	plan is needed, you should use the power cal To calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device 3. Count each system network cable of the	culation tool. es are installed. same length.			
<u>(i)</u>	plan is needed, you should use the power calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device 3. Count each system network cable of the Device type	culation tool. es are installed. same length. Power consumption (Watts)			
(i)	plan is needed, you should use the power calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device 3. Count each system network cable of the Device type DCNM-D	es are installed. same length. Power consumption (Watts) 3.10			
(i)	plan is needed, you should use the power calculate the total power supply capacity: Count all DICENTIS devices. Know the exact location where the device Count each system network cable of the Device type DCNM-D DCNM-DSL	es are installed. same length. Power consumption (Watts) 3.10 3.60			
(<u>i</u>)	 plan is needed, you should use the power calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device 3. Count each system network cable of the Device type DCNM-D DCNM-DSL DCNM-DVT 	es are installed. same length. Power consumption (Watts) 3.10 3.60 3.70			
(<u>i</u>)	plan is needed, you should use the power calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device 3. Count each system network cable of the Device type DCNM-D DCNM-DSL DCNM-DVT DCNM-DE	es are installed. same length. Power consumption (Watts) 3.10 3.60 3.70 5.00			
(<u>i</u>)	plan is needed, you should use the power calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device 3. Count each system network cable of the Device type DCNM-D DCNM-DSL DCNM-DVT DCNM-DE DCNM-MMD	es are installed. same length. Power consumption (Watts) 3.10 3.60 3.70 5.00 11.30			
(<u>i</u>)	plan is needed, you should use the power call To calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device 3. Count each system network cable of the Device type DCNM-D DCNM-DSL DCNM-DVT DCNM-DE DCNM-MMD	es are installed. same length. Power consumption (Watts) 3.10 3.60 3.70 5.00 11.30 12.00			
(i)	plan is needed, you should use the power call To calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device 3. Count each system network cable of the Device type DCNM-D DCNM-DSL DCNM-DVT DCNM-DE DCNM-MMD DCNM-IDESK	culation tool. es are installed. same length. Power consumption (Watts) 3.10 3.60 3.70 5.00 11.30 12.00 15.00			
(<u>i</u>)	plan is needed, you should use the power call To calculate the total power supply capacity: 1. Count all DICENTIS devices. 2. Know the exact location where the device 3. Count each system network cable of the Device type DCNM-D DCNM-DSL DCNM-DVT DCNM-DE DCNM-MMD DCNM-IDESK DCNM-IDESKVID	culation tool. es are installed. same length. Power consumption (Watts) 3.10 3.60 3.70 5.00 11.30 12.00 15.00 18.00			

Device type	Power consumption (Watts)
DCNM-FSL	2.6*
INT-TXO	10
DCNM-CB02-I	1.19
DCNM-CB05-I	2.43
DCNM-CB10-I	4.50
DCNM-CB25-I	10.71

 Table 4.2: Power consumption (Watts)

Notice!

*The DCNM-FSL is powered by PoE and not via the DCNM-APS or DCNM-PS. See *Calculation using PoE switches, page 25* for more information.

Ordering number	Cable lengths	
	m	ft
DCNM-CB02-I	2	6.56
DCNM-CB05-I	5	16.40
DCNM-CB10-I	10	32.81
DCNM-CB25-I	25	82.02

Table 4.3: Cable types and lengths

Rear view

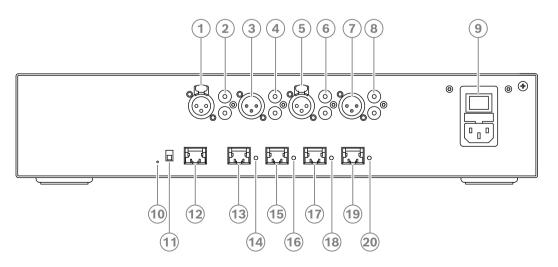


Figure 4.2: Audio processor and powering switch

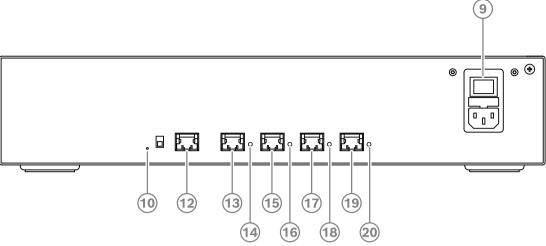


Figure 4.3: Powering switch

Description			
XLR line outputs 1 and 2.			
RCA line outputs 1 and 2			
XLR line inputs 1 and 2.			
RCA line inputs 1 and 2.			
Mains inlet, mains switch and fuse holder.			
Reset button.			
Ground switch (grounded or floating).			
Socket 1 without power.			
Socket 2 low power.			
Socket 3, 4, 5 high power.			
, 16, 18, 20 Overload LED for sockets 2-5: Green : Power OK. Red : Overload. Remove cable and wait a few seconds for the system to reset the overload.			
Network and Power connector Ma		Max. devices	
	XLR line outputs 1 and 2. RCA line outputs 1 and 2. XLR line inputs 1 and 2. RCA line inputs 1 and 2. Mains inlet, mains switch Reset button. Ground switch (grounded Socket 1 without power. Socket 2 low power. Socket 3, 4, 5 high powe Overload LED for sockets Green : Power OK. Red : Overload. Remove of reset the overload.	XLR line outputs 1 and 2. RCA line outputs 1 and 2. XLR line inputs 1 and 2. RCA line inputs 1 and 2. RCA line inputs 1 and 2. Mains inlet, mains switch and fuse holder. Reset button. Ground switch (grounded or floating). Socket 1 without power. Socket 2 low power. Socket 3, 4, 5 high power. Overload LED for sockets 2-5: Green : Power OK. Red : Overload. Remove cable and wait a few secon reset the overload.	

Network and Power connector	Max. power output (W)	Max. devices
Socket 1 (12)	No power capacity	
Socket 2 (13)	15	1
Socket 3 (15)	144	40
Socket 4 (17)	144	40
Socket 5 (19)	144	40

 Table 4.4: Power supply capacity DCNM-APS2 / DCNM-PS2

The following example gives you an indication of the maximum load to each socket of an Audio processor and powering switch or Powering switch.

- Socket 2: 50 m cable + DCNM-MMD2 = 12 W¹
- Socket 3: 10 m cable + DCNM-MMD2 + 9x (2 m cable + DCNM-MMD2) = (4.5 + 12) + 9x(1.19 + 12) = 135.21 W².
- Socket 4: 10 m cable + DCNM-D + 19x (2 m cable +DCNM-D) = (4.5 + 3.1) + 19x(1.19 + 3.1) = 89.11 W².
- Socket 5: 10 m cable + DCNM-DE + 19x (2 m cable + DCNM-DE)
 = (4.5 + 5) + 19x(1.19 + 5) = 127.11 W².

1 For socket 2, the cable power consumption of the cable does not need to be counted if only one device is connected to this output.

² The shortest redundant cable does not need to be counted.

Refer to

- Calculation using PoE switches, page 25

4.3.2 Calculation using PoE switches

Select one or more PoE Ethernet switches to supply power to the DICENTIS devices. Each DICENTIS device must be connected to an individual PoE enabled output of an Ethernet switch.

Notice!

Some PoE Ethernet switches can only supply power to a limited number of ports. Others can supply power to every port, but the total power the Ethernet switch can supply is limited. Please consult the documentation of the PoE Ethernet switch used.

Notice!

Using PoE, DICENTIS devices cannot be daisy-chained connected. Using PoE does not provide redundant cabling.

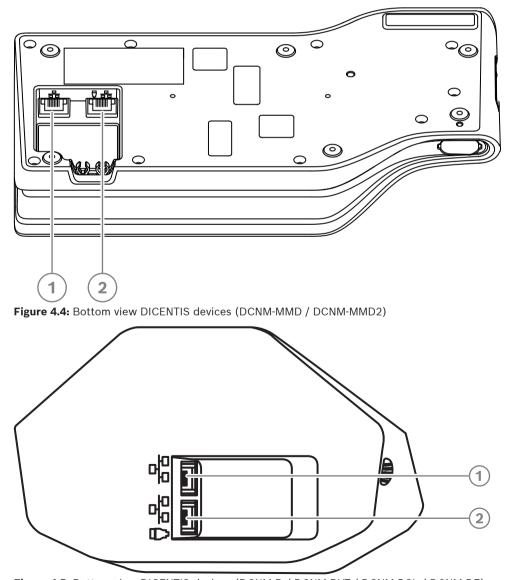


Figure 4.5: Bottom view DICENTIS devices (DCNM-D / DCNM-DVT / DCNM-DSL / DCNM-DE)

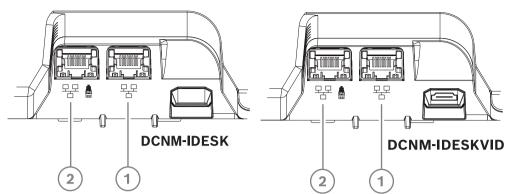


Figure 4.6: Bottom view DICENTIS Interpreter devices (DCNM-IDESK / DCNM-IDESKVID)

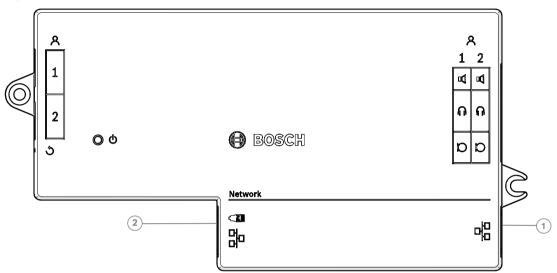


Figure 4.7: Topview view DICENTIS Flush base device (DCNM-FBD2)

ltem	Description
1	Network connector
2	Network / PoE connector

4.4 Redundancy options

DICENTIS Conference Systems can be created with network redundancy. This ensures that the system will continue to work if:

- a network cable is defective or accidentally disconnected.
- one of the components fails.

Different levels of redundancy can be created in the system depending on:

- the type of unit used in the system (DCNM-APS2 / DCNM-PS2)
- the number of redundant components used in the system.
- the amount of redundant network cabling.

The following sections explain the redundancy options that can be used when designing your DICENTIS Conference System. Each option can be combined in the DICENTIS Conference System, providing you observe the redundant cabling limitations. Refer to:

- Redundant cabling for DCNM-APS2/DCNM-PS2 units, page 28.
- Redundant server PC, page 30.

Notice!

Rapid Spanning Tree Protocol (RSTP) must be enabled in the DICENTIS Conference System for these redundancy options to work correctly.

Notice!

Follow these steps when setting up redundancy options for your system: First, set up your system without cable redundancy and RSTP configuration in the system and DICENTIS.

Secondly, configure RSTP in the switches and DICENTIS. Thirdly, enable the cable loops. 4.4.1

Redundant cabling for DCNM-APS2/DCNM-PS2 units

This section describes how to create redundant cabling for DCNM-APS2 / DCNM-PS2 type units. The maximum number of Ethernet devices in the largest possible loop (including the root switch) is 22. In a system with no Ethernet switch(es), the APS is the root switch. The total number of devices allowed in a loop depends on:

- The type of device connected in the loop (for example, DCNM-MMD2 devices consume more power than DCNM-DE devices).
- The length of the loop (cable also consumes power).

The figure shows how to calculate the number of devices in the loop. The grey line shows the largest loop. The # sign shows the way the devices are counted.

In the example below up to 19 (22 - 3 = 19) discussion devices can be connected.

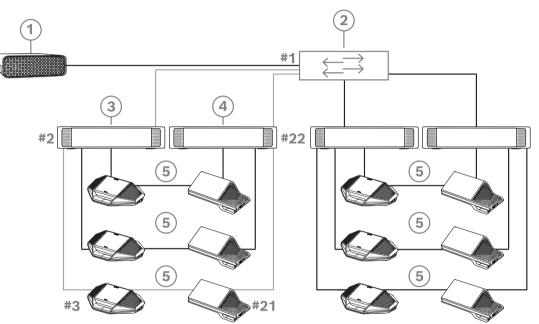


Figure 4.8: DICENTIS discussion devices connected with redundant cabling between DCNM-PS2 / DCNM-APS2 type units

1	DICENTIS system	2	Network switch (with optional redundant power supply)
3	DCNM-APS2	4	DCNM-PS2
5	DICENTIS cabling (redundant loop)		

Maximum number of DICENTIS devices in a string:

- The max age timer should be set to 22 when RSTP is used for cable redundancy to prevent a defective cable or powering switch from influencing the system.
- Each time data hops from one switch to another, the age is increased by one. This timer can be reached or exceeded, because a daisy chain can be used to loop through the DICENTIS devices.
- This timer (or restriction) cannot be reached when there is no cable redundancy. This is because the power limitation will be reached before the max age restriction is reached.
- The timer can be reached when:
 - you use cable redundancy,
 - the system is incorrectly wired.

Cabling possibilities (DCNM-APS2/DCNM- PS2)	Limitations/requirements
Create a redundant loop by connecting the DICENTIS devices in a daisy chain configuration from a high power socket on a DCNM-PS2 / DCNM-APS2 to a high power socket on another DCNM-PS2. The redundant loop between two DCNM-PS2 units is for power and signal. If one of the DCNM-PS2 units fails, the other DCNM-PS2 unit will supply power and signal to the DICENTIS devices in the daisy chain.	 The redundancy is for power and control. If the DCNM-APS2 fails, the devices remain connected, but audio is lost. To enable redundancy: Rapid Spanning Tree Protocol (RSTP) must be enabled in the DICENTIS Conference System. a network switch with redundant power supply, should be connected to the DCNM-PS2 / DCNM-APS2 units, as shown in the previous figure.
You can use any of the high power sockets (3, 4, or 5) on either of the DCNM-PS2 units to create the daisy chain/redundant loop. For example, high power socket 3 on one unit can be connected to high power socket 4 on another unit.	Note : The redundant loop must be connected to another DCNM-PS2 type unit. You cannot use DCNM-PS / DCNM-APS type units to create redundant loops for power.
You can create a redundant loop for signal only, by connecting the DICENTIS devices in a daisy chain configuration to the same DCNM- PS2 or DCNM-APS2, although this is not recommended. The DCNM-PS2 unit is designed to reduce cost of ownership, for example, by allowing a maximum of three redundant loops to be connected between two DCNM-PS2 units.	The redundant loop will protect against cable outages, but not against failure of a DCNM- PS2.

Notice!

Rapid Spanning Tree Protocol (RSTP) must be enabled in the DICENTIS Conference System for these redundancy options to work correctly.

4.4.2 Redundant server PC

System availability can be improved by connecting a redundant DICENTIS server PC and the associated components and cables to the DICENTIS Conference System. The maximum number of Ethernet devices in the largest possible loop (including the root switch) is 22. The total number of devices allowed in a loop depends on:

- The type of device connected in the loop (for example, DCNM-MMD2 devices consume more power than DCNM-DE devices).
- The length of the loop (cable also consumes power).

The figure shows how to calculate the number of devices in the loop. The grey line shows the largest loop. The # sign shows the way the devices are counted.

In the example below up to 17 (22 - 5 = 17) devices can be connected.

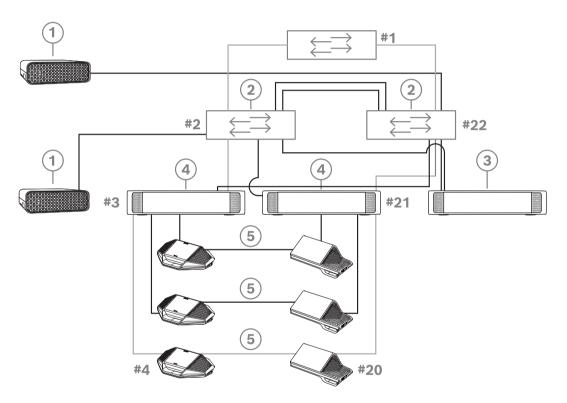


Figure 4.9: Redundant DICENTIS server PC with redundant components and cables

1	DICENTIS system	2	Network switch (with optional redundant power supply)
3	DCNM-APS2	4	DCNM-PS2
5	DICENTIS cabling (redundant loop)		

For this option to work the DICENTIS Conference System has to be run in combination with EverRun Enterprise software from Stratus Technologies. For more information, refer to the Stratus Technologies website.

Other options that can be used for guaranteeing the reliability of the DICENTIS Conference System include:

- Remote SQL servers.

5

Installation material and tools

This section describes installation material such as cables, connectors and tools.

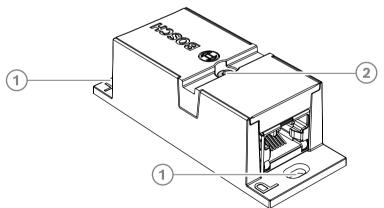
Recommedations

- Always use manufacturer specified installation products, materials and tools.
- In general, use different cable ducts for the system network cables, audio cables and mains supply cables.
- In public areas where people can touch or move above the connectors and cables, use metal protection covers.

Warning!

Do not exceed the bend limitations of system network cables (DCNM-CBxxx): The minimum bend radius of the system network cable is a 35 mm radius.

5.1


DCNM-CBCPLR Cable couplers

Cable couplers can be used:

- to extend cables,
- in a floor pod as break-out box,
- as an interface between DICENTIS cable and "standard" CAT-5E cable combined with a separate power cable,
- to insert power locally to the participant devices,
- to switch the system on by using two cable couplers and a switch.

Cable couplers are delivered in a box that contains 6 cable couplers. They can be used for all types of DICENTIS cables.

Mounting

To secure the DCNM-CBCPLR to a flat surface, insert two 2.5 mm screws in the existing holes on the flaps (1). You can also fix the DCNM-CBCPLR by wrapping a cable tie around the device using the existing recess (2) to prevent side movement.

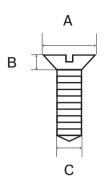
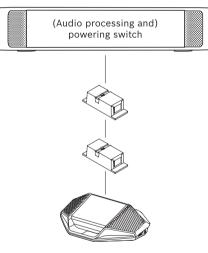


Figure 5.1: Screw max dimensions

	Flat head
А	8 mm
В	2 mm
С	2.5 mm

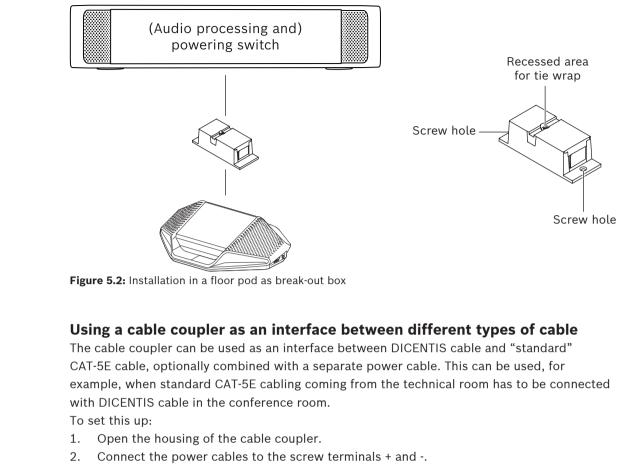

5.1.1

Using a cable coupler to extend a cable

The DICENTIS Cable coupler can be used to extend cables, as it allows you to connect DICENTIS Cable assemblies together. This way, it is possible to connect, for example, three 25 m (DCNM-CB25-I) cables together to form a 75 m cable.

Note:

- The cable length is not allowed to exceed 100 m.
- No more than 2 cable couplers can be used in one trunk.


5.1.2

Using a cable coupler as a break-out box

The DICENTIS Cable coupler can be used in a floor pod as a break-out box, for example, if you want to connect temporary devices like a rostrum microphone. The cable coupler can be fixated using the screw holes (2.5 mm) or via a tie wrap through the recessed area. **Note**:

- The cable length is not allowed to exceed 100 m.
- No more than 2 cable couplers can be used in one trunk.

5.1.3

- 3. Remove the break-out of the housing to guide the power cables through.
- 4. Create a tension release.

Warning!

Risk of electric shock. Exposed power cables are a potential hazard. Make sure all power cables are securely fastened by fixing them with a tie wrap on the inside of the box (see drawing 'Creating a tension relief').

5. Close the housing and fix the screw with torque 0.4 Nm.

Note:

- The cable length is not allowed to exceed 100 m.
- No more than 2 cable couplers can be used in one trunk.

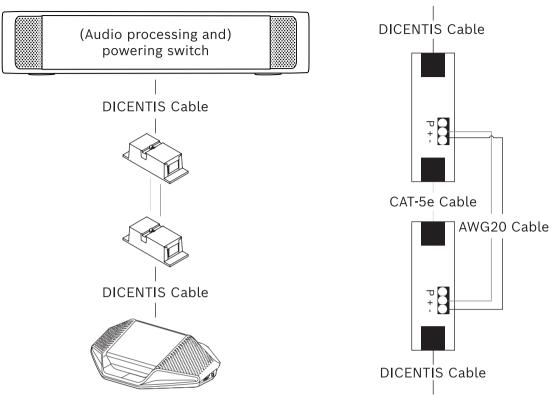
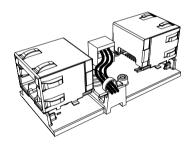



Figure 5.3: Cable coupler used as interface

Figure 5.4: Creating a tension relief, tie wrap prevents the power cables from being pulled out accidentally.

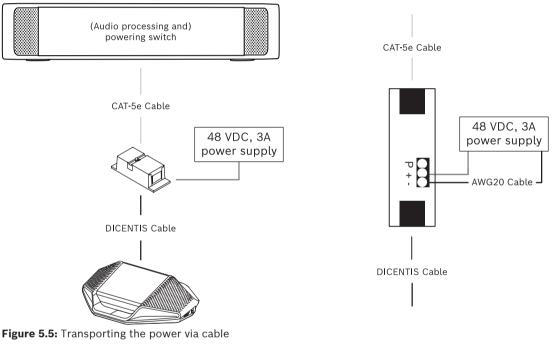
5.1.4

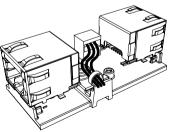
Using a cable coupler to insert power locally

The cable coupler can be used to insert a local power supply, enabling you to place a thirdparty 48 VDC power close to the participant devices.

To set this up:

- 1. Open the housing of the cable coupler.
- 2. Connect the power cables to the screw terminals + and -.
- 3. Remove the break-out of the housing to guide the power cables through.
- 4. Create a tension release.


Warning!


Risk of electric shock. Exposed power cables are a potential hazard. Make sure all power cables are securely fastened by fixing them with a tie wrap on the inside of the box (see drawing 'Creating a tension relief').

5. Close the housing and fix the screw with torque 0.4 Nm.

Note:

- Requirements for the power supply:
 - nominal output of 48 VDC (ranging from 47 49 VDC)
 - the ripple should be less than 200 mV pk-pk
 - maximum output current should not exceed 3.0 A (or limited to 3.0 A, because DICENTIS cables and devices have a maximum rating for this current)
- Advice
 - It is strongly advised that the power supply has its own short circuit protection with a short circuit output current ranging from 4.3 to 5.0 A.
 - When the power supply has an automatic restart after a short circuit, this restart function should have an interval time of 3 to 4 seconds and should have no more than 4 restart attempts.
 - Upon powering off the power supply, the output should be less than 9 V, 1 mA.
- The maximum distance between the (A)PS and the conference device is limited to 100 m due to the Ethernet properties.

Figure 5.6: Creating a tension relief, tie wrap prevents the power cables from being pulled out accidentally.

5.1.5

Using a cable coupler to switch the system on

The DICENTIS system automatically goes into "standby" mode when:

the option to automatically switch off the system after a period of inactivity is configured in the Meeting Application, and

_

- the system is not used for a specific period of time.


You can use the cable coupler in combination with a custom made switch to create a wake-up switch for the system (see following figure). To do this:

- 1. Open the housing of the cable coupler.
- Remove the 0 Ohm resistor of the cable coupler connected to the always powered output. Leave the 0 ohm resistor in the cable coupler which is connected to output 3 of the (A)PS.
- 3. Remove the break-out of the housing to guide the power cables through.
- 4. Connect the wires according the figure below.
- 5. Create a tension release.

Warning!

Risk of electric shock. Exposed power cables are a potential hazard. Make sure all power cables are securely fastened by fixing them with a tie wrap on the inside of the box (see drawing 'Creating a tension relief').

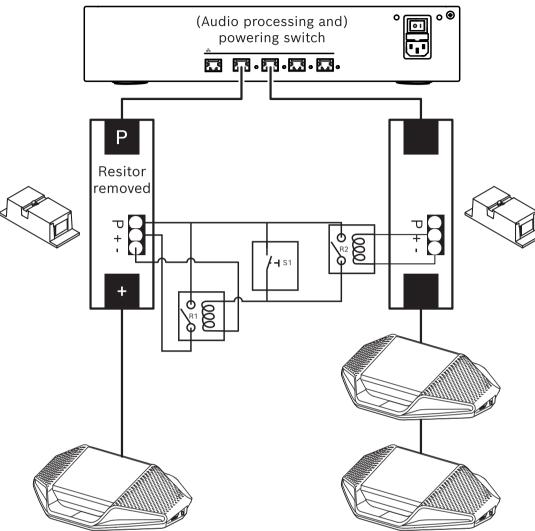

6. Close the housing and fix the screw with torque 0.4 Nm.

Figure 5.7: Creating a tension relief, tie wrap prevents the power cables from being pulled out accidentally.

Note:

- The cable length is not allowed to exceed 100 m.
- No more than 2 cable couplers can be used in one trunk.

Figure 5.8: Using cable couplers and custom made switch to create a wake-up switch The schematic works as follows:

- 1. By pressing S1 (pulse switch), the device connected to the always powered output receives power and powers up.
- 2. The device powers up and is discovered by the services. When a device is discovered, the 3.0A outputs of the (A)PS are enabled and any devices connected to these outputs are also powered up.
- 3. Relay R1 has a timer of 1 minute, so the switch will stay closed for 1 minute after releasing switch S1 or powering down the system.
- 4. When the high power trunks are powered up, the switch of relay R2 will power relay 1 to keep the switch closed.

5.2 DICENTIS System cable assemblies

The DICENTIS System Cable Assemblies, terminated with connectors on both ends, are available in different lengths and are used to connect DICENTIS devices to each other.

Ordering number	Cable lengths	
	m	ft
DCNM-CB02-I	2	6.56
DCNM-CB05-I	5	16.40
DCNM-CB10-I	10	32.81
DCNM-CB25-I	25	82.02

Table 5.5: Cable types and lengths

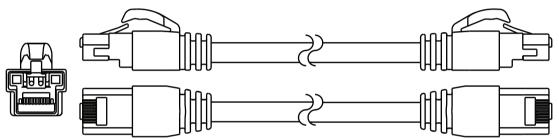


Figure 5.9: DCNM-CBxx-I cable and connector view

5.3 DCNM-CBCON Connectors for DICENTIS cable

The connectors are used to make your own system network cables or to replace a connector. The cable can be used for solid core cable (DCNM-CB02-I, DCNM-CB05-I, DCNM-CB10-I, DCNM-CB25-I, DCNM-CB250-I, DCNM-CB250), as well as stranded core cable (DCNM-CB02, DCNM-CB05, DCNMCB10, DCNM-CB25, DCNM-CB02B, DCNM-CB05B, DCNM-CB10B, DCNM-CB25B, DCNM-CB250B).

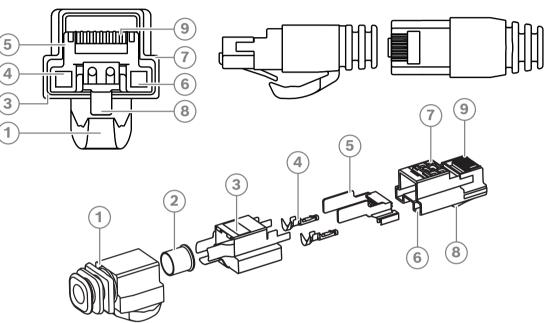
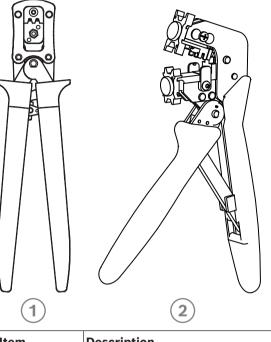


Figure 5.10: DCNM-CBCON Front and exploded view

ltem	Description
1	Strain relief boot
2	Ferrule
3	Plug connector shield
4	Power contacts (Qty: 2)
5	Load bar
6	Power contact cavity (2 places)
7	Housing
8	Locking latch
9	Signal contact cavity (8 Places)


Refer to

- DICENTIS System cable assemblies, page 38
- DCNM-CB250 System installation cable, page 41
- DCNM-CBTK System Network Cable Toolkit, page 40

5.4

DCNM-CBTK System Network Cable Toolkit

The system network cable toolkit is used to connect the *DCNM-CBCON Connectors for DICENTIS cable, page 39* to the *DCNM-CB250 System installation cable, page 41* or *DICENTIS System cable assemblies, page 38*.

\sim	\bigcirc
ltem	Description
1	Power wiring tool.
2	Signal wiring tool.

Table 5.6: Toolkit content

Notice!

Please consult the "custom length for system network cables" section on the DVD, which can be downloaded at: <u>https://licensing.boschsecurity.com/software</u>

Refer to

- DICENTIS System cable assemblies, page 38
- DCNM-CBCON Connectors for DICENTIS cable, page 39
- DCNM-CB250 System installation cable, page 41

5.5	DCNM-CB250 System installation cable
	The system installation cable, without connectors, is available in a length of 250 meters and is used for making your own system network cable. Refer also to the sections <i>DCNM-CBCON Connectors for DICENTIS cable, page 39</i> and <i>DCNM-CBTK System Network Cable Toolkit, page 40</i> .
	The DCNM-CB250-I cable can be used to create cable assemblies and leader cables.
	The DCNM-CB250-CPR complies with EN 50575:2014 + A1:2016 Reaction to fire B2a- S1a,d0,a1. Do not use DCNM-CB250-CPR if you are going to connect and disconnect it often.
í	Notice! The maximum system network cable length is: 100 m / 328,9 ft.
í	Notice! Please consult the "custom length for system network cables" section on the DVD, which can be downloaded at: <u>https://licensing.boschsecurity.com/software</u>
	 Refer to DCNM-CBCON Connectors for DICENTIS cable, page 39 DCNM-CBTK System Network Cable Toolkit, page 40

_

5.6

DCNM-IDESKINT On-air & teleph. DCNM-IDESK

The DCNM-IDESKINT On-air & teleph. DCNM-IDESK is an accessory that is connected to the DICENTIS Interpreter desk. It has 3 functions:

- to control a booth on-air indicator outside the booth,
- to display on the Interpreter desk that the telephone system outside the booth is ringing; and
- to display on the Interpreter desk that a sensor inside the booth detects a too high CO2 level.

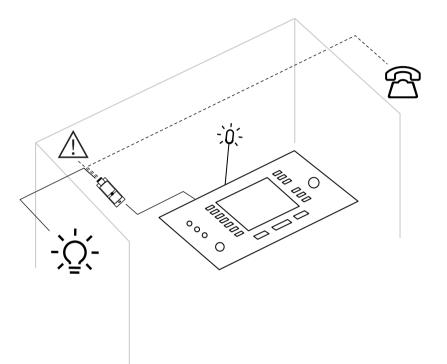


Figure 5.11: Interpreter's booth

Description of the device

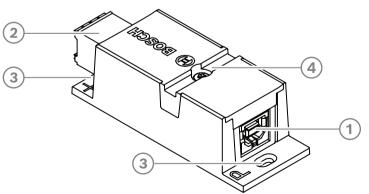


Figure 5.12: DCNM-IDESKINT

1	USB-B connector	Connects the device to the DCNM-IDESK's USB-A input
2	8-pin Phoenix connector	Connects the device to an external booth on-air LED and an external telephone system

3	Screw holes	Used to mount the device on a flat surface
4	Cable tie recess	Used to secure the device, preventing side movement

Mounting

To secure the DCNM-IDESKINT to a flat surface, insert two 2.5 mm screws in the existing holes on the flaps (3). You can also fix the DCNM-IDESKINT by wrapping a cable tie around the device using the existing recess (4) to prevent side movement.

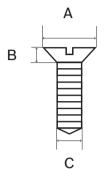


Figure 5.13: Screw max dimensions

	Flat head
А	8 mm
В	2 mm
С	2.5 mm

Connection

USB-B to USB-A

The interface is connected to the USB-A port of one of the DCNM-IDESK devices inside the interpreter's booth. The maximum length of the USB cable is 5 m. **Note:** the USB cable must be purchased separately.

8-pin Phoenix connector

The 8-pin Phoenix connector interfaces with the external telephone system and booth on-air LED. The input of the connector is used for the external telephone system, while the output is used for the external booth on-air LED. See the image and table below for reference.

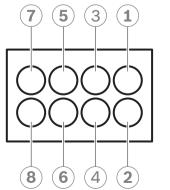


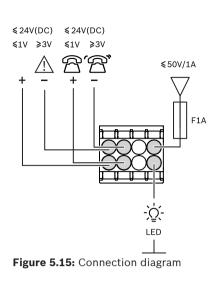
Figure 5.14: 8-pin Phoenix connector

Pin #	Function	Specifications	Description
1	Switch to set the	50 V/1 A potential free	OUTPUT
2	booth on-air LED on/ off	contact Galvanic separated	OUTPUT
3			
4			
5	Input for an external	inactive: < 1 VDC	INPUT Negative (-)
6	telephone system ringing indicator	active: > 3 VDC max.: 24 VDC Galvanic separated	INPUT Positive (+)
7	Input for an external	inactive: < 1 VDC	INPUT Negative (-)
8	system for warning indicator	active: > 3 VDC INPUT Pos max.: 24 VDC Galvanic separated	INPUT Positive(+)

Table 5.7: Connector pinout

Note: the female plug to be used with the 8-pin connector is supplied pre-assembled with the product. You will need to make the wire connections, which only require simple push-in action to lock.

Wiring


The connection to the Phoenix connector has to be made using ferrules. The tables below give more details on the connection.

Conductor cross section max. (solid and flexible)	1.5 mm ²
Conductor cross section flexible, with ferrule without plastic sleeve max.	1.5 mm ²
Conductor cross section flexible, with ferrule with plastic sleeve max.	0.75 mm ²

Table 5.8: Connection data

Ferrules without insulating collar	Cross section: 0.22 mm ² to 1.5 mm ²
(according to DIN 46228-1)	Length: 5 mm to 10 mm

Table 5.9: Specifications for ferrules

6 6.1

Mechanical installation of Central Equipment

Audio processor and powering switch and Powering switch

The Audio processor and powering switch is used:

- to control system audio signals,
- to route audio signals to/from devices,
- to supply power to devices,
- as an Ethernet switch to connect the PC and the participant and interpreting DICENTIS devices.

The Powering switch is used to:

supply power to devices.

Scope of delivery

The Audio processor and powering switch and Powering switch are shipped with the following parts:

- 1x Mains power cord.
- 1x Safety instructions.
- 1x Set of 19 inch mounting brackets.
- 4x bottom feet.
- 1x DVD containing manuals (only with Audio processor and powering switch).

Front view

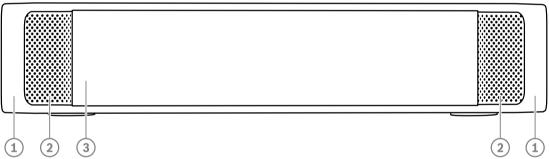
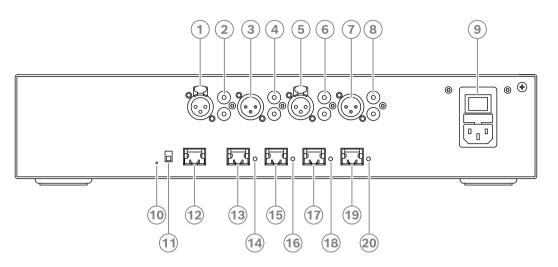



Figure 6.1: Audio processor and powering switch / Powering switch

Item	Description
1	19" mounting brackets.
2	Ventilation inlet.
3	Indication LED:Off: Switched off.Green: Switched on.Amber: Standby.Blinking: Services on the server PC are not running.Alternating green amber: When a software download is required.

Rear view

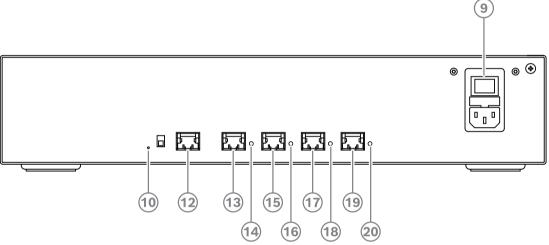


Figure 6.3: Powering switch

Item	Description
1,5	XLR line outputs 1 and 2.
2,6	RCA line outputs 1 and 2.
3, 7	XLR line inputs 1 and 2.
4, 8	RCA line inputs 1 and 2.
9	Mains inlet, mains switch and fuse holder.
10	Reset button.
11	Ground switch (grounded or floating).
12	Socket 1 without power.
13	Socket 2 low power.
15, 17, 19	Socket 3, 4, 5 high power.

ltem	Description
14, 16, 18, 20	Overload LED for sockets 2-5:
	Green: Power OK.
	Red : Overload. Remove cable and wait a few seconds for the system to
	reset the overload.

How to install

- Install the Audio processor and powering switch or Powering switch in a 19 inch device rack system or on a flat surface. Two 19 inch mounting brackets and four bottom feet are supplied with the Audio processor and powering switch and Powering switch. Refer to the following illustration.
- Connect all required cabling.
- Connect the mains supply.

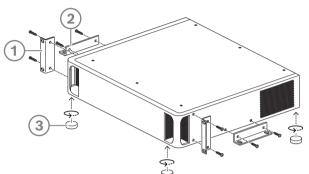


Figure 6.4: 19 inch rack, flat surface and feet mounting

ltem	Description	
1	19 inch rack mounting (bracket)	
2	Flat surface mounting (bracket)	
3	B Feet mounting	

Notice!

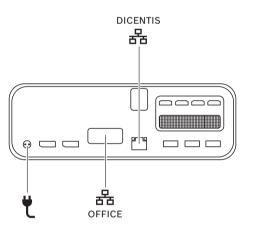
The unit extends 30 mm in front of the 19" mounting brackets when installed in a 19" rack system.

Caution!

Do not obstruct the airflow vents on the front side and rear left and right sides.

6.2 System server

The DICENTIS System server is provided with pre-installed and configured Windows Server[®] for Embedded Systems - Telecommunications (16 Core), pre-installed DICENTIS Conference System software, and pre-configured DHCP server.


Note: please refer to the datasheet for the technical specifications.

Notice!

The DICENTIS System server contains a printed Microsoft End User License Agreement (EULA) that needs to be handed over to the End User.

Notice!

Mounting accessories are available from HP.

	Network port to connect the DICENTIS system.
	Network port to connect to a network other than the DICENTIS network.
ť	Power supply input.

How to install

The DICENTIS System can be mounted under a desk, behind a display or in a rack. To install the system server:

- 1. Connect the DICENTIS System to the DICENTIS system (i.e. DCNM-(A)PS2 or network switch) using a CAT-5E cable.
- 2. Connect the OFFICE network port to non-DICENTIS devices, such as cameras and SDI switches, room control systems or the office network.
- 3. Connect the mains supply.
- 4. Power on the system by pressing the power button.

Note: you can power off the system by pressing the power button for 4 seconds.

Dante gateway

OMNEO offers a professional-grade media networking solution that uses Dante[™] as one of the possible media transmission protocols while providing additional features such as encryption. The OMN-DANTEGTW makes it easier for system designers to take advantage of these unique OMNEO features and manage their network configurations with additional multicast management and RSTP network topologies when combining OMNEO and standard Dante[™] networks.

Audio streams	64 in both directions
Sampling rate	48 kHz
Audio	24-bit
Audio encryption	16 streams in both directions
Mechanical	
Mounting	Mounted in a 19" rack
Dimensions (WxHxD) with mounting brackets Rack unit	483 mm x 44 mm x 400 mm (19 in x 1.75 in x 15.7 in.) 19 in., 1U
Case: Material Color	Steel RAL9017
Frame: Material Color	Zamak RAL9022HR
Weight	6.14 kg

The OMN-DANTEGTW features:

Notice!

In a large system (with over 450 DICENTIS nodes), the OMN-DANTEGTW must be installed in the VLAN where the OMN-ARNI-E is available. In large systems, the OMN-DANTEGTW becomes the clock master and the OMN-ARNI-E can distribute it to the other VLANs / OMN-ARNI-S devices.

Rear panel

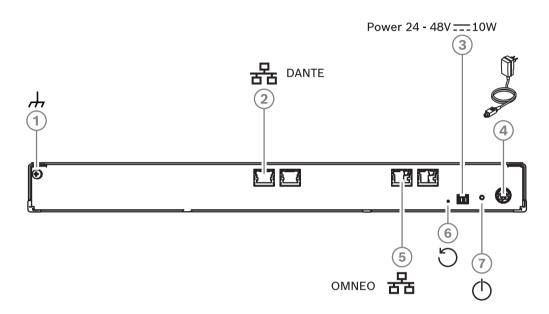


Figure 6.5: OMN-DANTEGTW rear panel description

Item	Description
1	Ground connection.
2	Dante connection.
3	Power input 24-48 VDC 10 W (optional).
4	Power supply.
5	OMNEO connection.
6	Press and hold for over 10 seconds to reset to factory defaults.
7	Power LED.

Network port LED color	Description
Green	1 Gbit/s connection. Blinking indicates activity (traffic). Preferred connection
Orange	100 Mbit/s connection. Blinking indicates activity (traffic). Supported connection, not preferred
Off	No connection or 10 Mbit/s connection. Connection not supported

ወ

ഗ

Front panel

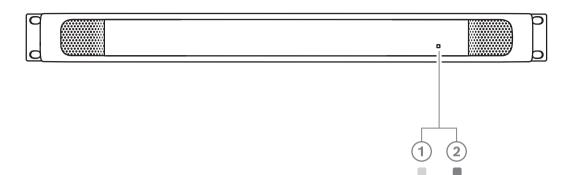


Figure 6.6: OMN-DANTEGTW front panel description

Power LED state	Description	How to solve
Steady yellow (1)	The Dante gateway is still booting/connecting to the network	 Wait until fully booted, this takes about 30 seconds. Make sure at least one of the network connectors at the Dante[™] side has a link indication.
Blinking yellow (1)	The Dante gateway is experiencing a problem	 Connect the OMNEO side to an Ethernet network. The Ethernet connector must show the link indication. If there are multiple Dante gateway's in the same OMNEO network, make sure the Dante[™] side of these gateways is also in the same Dante[™] network. Make sure there is no network connection between the Dante[™] and the OMNEO side. This is never allowed. If there is only a single Dante gateway, use the Dante controller to set the Dante gateway as preferred clock master. If these tips do not solve the problem, the device is broken and needs to be exchanged.
Steady green (2)	The device is fully operational and discoverable at both the Dante [™] and the OMNEO sides	N/A
Alternating yellow/green	The AES70 identify function is active	 Disable the Identify function (e.g. via Docent). Rebooting the device will also cancel this function.

Power LED state	Description	How to solve
OFF	The device has no power	 Check the Ethernet connector LEDs: If they are lighted, power-cycle the Dante gateway to restart it. If the Ethernet LEDs are off, the power supply is probably broken and needs to be exchanged.

How to install

To install the Dante gateway:

- Connect the Dante network port in the OMN-DANTEGTW to a network port in the Dante network.
- Connect the OMNEO network port in the OMN-DANTEGTW to the OMNEO network.
- Connect the mains supply.

7

7.1

Mechanical installation of Contribution Devices

The DICENTIS (tabletop and flush-mounted) devices are used to:

- participate in a meeting or conference.
- monitor and control a meeting or conference (chairperson use, depending on the configuration).

Connecting DICENTIS devices

The DICENTIS Conference System can be quickly and easily configured as a daisy-chain configuration or as a star configuration:

- **Daisy-chain configuration**: Uses dedicated cabling, consisting of CAT-5e cables including two additional power conductors (see *Typical system setup, page 10*).
- Star configuration: Each DICENTIS device is connected with an individual standard CAT-5e cable. An Ethernet switch is also required for providing Power over Ethernet (PoE).

Notice!

When Power over Ethernet is used, DICENTIS devices cannot be daisy-chained.

The star configuration makes use of connectors underneath the devices, ensuring for a neat, tidy system installation, especially advantageous for TV coverage.

To connect the system network cables to the DICENTIS devices (refer to the following figure):

- 1. Insert the system network cable/connector (2).
- 2. Lead the system network cable through the cable guides (3).

Installing DICENTIS devices

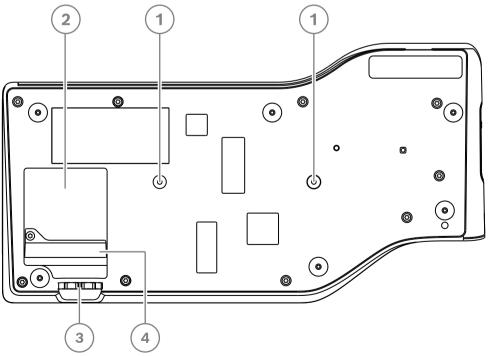


Figure 7.1: Bottom view discussion DICENTIS devices (DCNM-MMD / DCNM-MMD2)

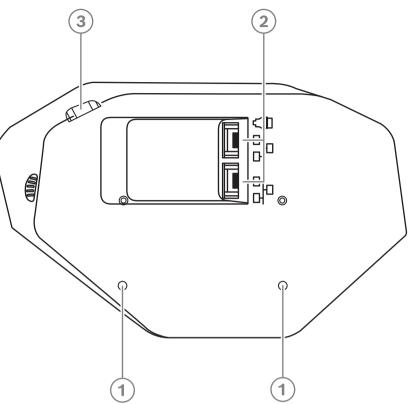


Figure 7.2: Bottom view DICENTIS devices (DCNM-D / DCNM-DVT / DCNM-DSL / DCNM-DE)

ltem	Description	
1	Screw insert for fixed installation.	
2	2x RJ45 connection input/output for system power cable.	
3	Cable guides.	
4	USB connector, for future use (DCNM-MMD / DCNM-MMD2 only).	

Refer to

Typical system setup, page 10

7.2 DICENTIS tabletop devices

DCNM-MMD / DCNM-MMD2

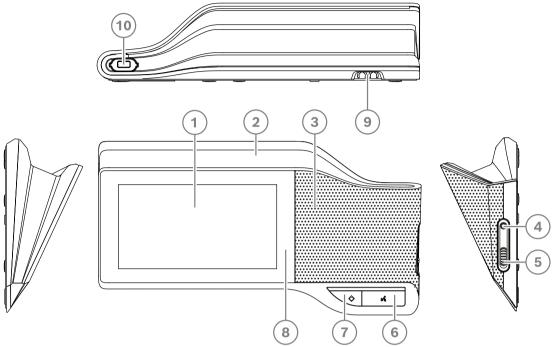
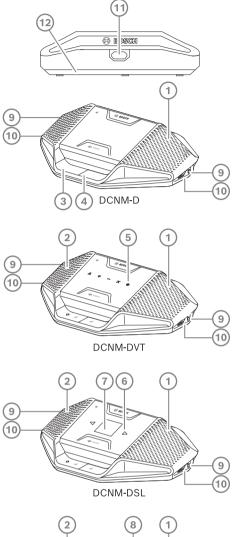


Figure 7.3: Front, top, rear and side views

Item	Description
1	7" capacitive touch screen.
2	LED strip.
3	Two-way loudspeaker.
4	3.5 mm stereo jack for headphone or headset with integrated microphone.
5	Headphone volume control.
6	Microphone request button.
7	Chairperson priority or microphone mute button.
8	Near Field Communication (NFC) reader (DCNM-MMD2 only).
9	Cable guides.
10	Microphone input connector.


- DCNM-MMD2 is compliant with the Radio Equipment Directive (RED) 2014/53/EU.

Operating frequency is 13.56 MHz. Maximum field strength is 8.05 dBµA/m @ 3m.

Warning!

This equipment is compliant with Class A of CISPR 32. In a residential environment this equipment may cause radio interference. This equipment is intended for environment Class A.

DCNM-D / DCNM-DVT / DCNM-DSL / DCNM-DE

DCNM-DE **Figure 7.4:** Front, top, rear and side views

ltem	Description
1	Two-way loudspeaker.
2	Near Field Communication (NFC) reader.
3	Chairperson priority button, microphone mute button, or microphone request button for second participant.
4	Microphone request button.
5	Voting buttons.

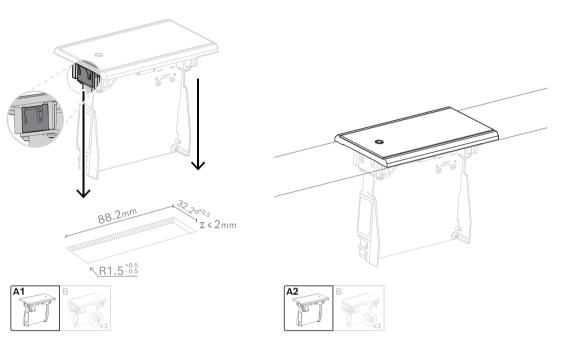
	I
\geq	

Item	Description
6	Language selection buttons.
7	Language display.
8	4.3" capacitive touch screen.
9	3.5 mm stereo jack for headphone.
10	Headphone volume control.
11	Microphone input connector.
12	Cable guides.

 DCNM-DE, DCNM-DVT and DCNM-DSL are compliant with the Radio Equipment Directive (RED) 2014/53/EU.

- Operating frequency is 13.56 MHz. Maximum field strength is -8.4 dBµA/m @ 10m.

Refer to


- DICENTIS System cable assemblies, page 38
- DCNM-CB250 System installation cable, page 41

7.3 DICENTIS flush-mounted devices

The flush-mounted devices create individual participant positions. They are ideal for use in permanent installations, because they offer great flexibility due to their modular set-up. You can select different flush-mounted devices depending on the functionalities you require.

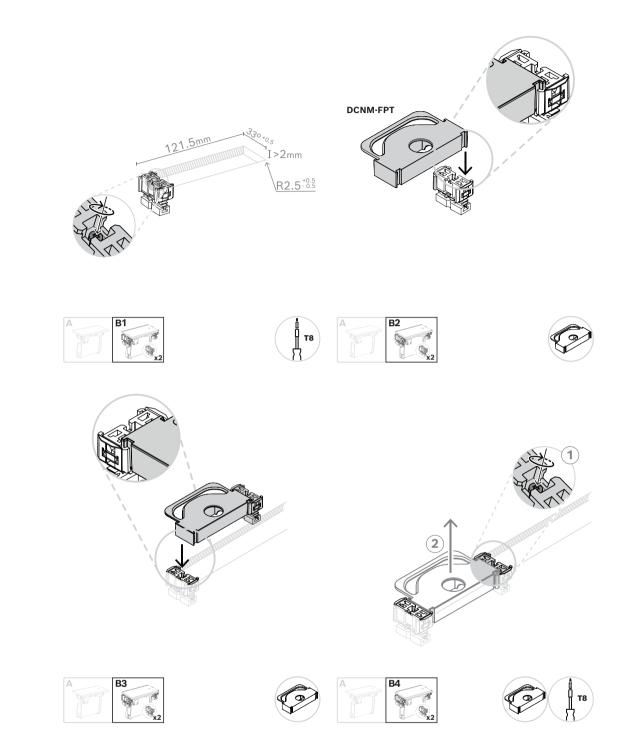
Snap mounting

Use the snap-mounting method to install flush-mounted devices in panels with a thickness of up to 2 mm. The snap-mounting method uses the click-to-fit mechanism of the flush-mounted devices. Simply 'click' the flush-mounted devices in the recess.

Click-to-fit mechanism

Note: Refer to the figure for the dimensions of a recess for the snap-mounting method.

The length (x) of a recess depends on the number-size factor (NSF) of the flush-mounted device that must be installed in the recess. To calculate the length of a recess:


- Get the number-size factor (NSF) of the flush-mounted device.
- Use the NSF to get the length (x) of the recess from the table.

Total NSF	x (mm)
1	38.2
2	88.2

Table 7.10: Lengths, snap-mounting method

Block-mounting

Use the block-mounting method to install the flush-mounted devices in surfaces with a thickness > 2 mm. The block-mounting method uses the DCNM-FEC Flush end caps, the DCN-FCOUP Couple Pieces and the DCNM-FPT Flush positioning tools.

