FCC Test Report

Report No.: AGC02862191002FE03

FCC ID : UU8-NTL2000

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: I-Translator

BRAND NAME : LEXIBOOK

MODEL NAME : NTL2000

APPLICANT : Lexibook America

DATE OF ISSUE : Nov. 14, 2019

STANDARD(S) : FCC Part 15.247

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 61

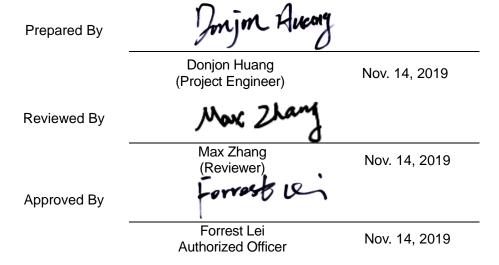
REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Nov. 14, 2019	Valid	Initial Release

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3. RECEIVER INPUT BANDWIDTH	7
2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	7
2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	
2.6. RELATED SUBMITTAL(S) / GRANT (S)	
2.7. TEST METHODOLOGY	8
2.8. SPECIAL ACCESSORIES	8
2.9. EQUIPMENT MODIFICATIONS	8
3. MEASUREMENT UNCERTAINTY	9
4. DESCRIPTION OF TEST MODES	10
5. SYSTEM TEST CONFIGURATION	11
5.1. CONFIGURATION OF EUT SYSTEM	
5.2 EQUIPMENT USED IN TESTED SYSTEM	11
5.3. SUMMARY OF TEST RESULTS	11
6. TEST FACILITY	
7. PEAK OUTPUT POWER	
7.1. MEASUREMENT PROCEDURE	
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3. LIMITS AND MEASUREMENT RESULT	
8. 20DB BANDWIDTH	
8.1. MEASUREMENT PROCEDURE	
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3. LIMITS AND MEASUREMENT RESULTS	20
9. CONDUCTED SPURIOUS EMISSION	27
9.1. MEASUREMENT PROCEDURE	
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3. MEASUREMENT EQUIPMENT USED	
9.4. LIMITS AND MEASUREMENT RESULT	
10. RADIATED EMISSION	37

10.1. MEASUREMENT PROCEDURE	37
10.2. TEST SETUP	39
10.3. LIMITS AND MEASUREMENT RESULT	40
10.4. TEST RESULT	40
11. NUMBER OF HOPPING FREQUENCY	50
11.1. MEASUREMENT PROCEDURE	50
11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	50
11.3. MEASUREMENT EQUIPMENT USED	50
11.4. LIMITS AND MEASUREMENT RESULT	50
12. TIME OF OCCUPANCY (DWELL TIME)	51
12.1. MEASUREMENT PROCEDURE	51
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	51
12.3. MEASUREMENT EQUIPMENT USED	51
12.4. LIMITS AND MEASUREMENT RESULT	51
13. FREQUENCY SEPARATION	55
13.1. MEASUREMENT PROCEDURE	55
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	55
13.3. MEASUREMENT EQUIPMENT USED	55
13.4. LIMITS AND MEASUREMENT RESULT	
14. FCC LINE CONDUCTED EMISSION TEST	56
14.1. LIMITS OF LINE CONDUCTED EMISSION TEST	
14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	
14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	57
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	58
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	60


Page 5 of 61

1. VERIFICATION OF CONFORMITY

Applicant	Lexibook America			
Address	C/O NATXIS PRAMEX INTERNATIONAL -NORTH AMERICA 1251 avenue of the Americas, NewYork, United States.			
Manufacturer	Lexibook America			
Address	C/O NATXIS PRAMEX INTERNATIONAL -NORTH AMERICA 1251 avenue of the Americas, NewYork, United States.			
Factory	Lexibook America			
Address	C/O NATXIS PRAMEX INTERNATIONAL -NORTH AMERICA 1251 avenue of the Americas, NewYork, United States.			
Product Designation	I-Translator			
Brand Name	LEXIBOOK			
Test Model	NTL2000			
Date of test	Oct. 30, 2019~Nov. 14, 2019			
Deviation	No any deviation from the test method.			
Condition of Test Sample	Normal			
Test Result	Pass			
Report Template	AGCRT-US-BR/RF			

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC PART 15.247.

Page 6 of 61

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "I-Translator". It is designed by way of utilizing the GFSK, Pi/4 DQPSK and 8DPSK technology to achieve the system operation.

A major technical description of EUT is described as following

7. major toormisan accompliant of Levi to accompa ac tonorming			
Operation Frequency	2.402 GHz to 2.480GHz		
RF Output Power	2.430dBm(Max)		
Bluetooth Version	V 4.0		
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps		
Number of channels	79		
Hardware Version	S630A-V3.0		
Software Version	V3.2.2		
Antenna Designation	PIFA Antenna		
Antenna Gain	2dBi		
Power Supply	DC 5V by adapter.		

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency	
	0	2402MHZ	
	1	2403MHZ	
	:	:	
	38	2440 MHZ	
2402~2480MHZ	39	2441 MHZ	
	40	2442 MHZ	
	:	:	
	77	2479 MHZ	
	78	2480 MHZ	

Page 7 of 61

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ,In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection.
- 2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits), 4LSB's (4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

Page 8 of 61

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: UU8-NTL2000** filing to comply with the FCC PART 15.247 requirements.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 9 of 61

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, Uc = ±0.8dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth: Uc = ±2 %
- Uncertainty of Dwell Time: Uc = ±2 %
- Uncertainty of Frequency: Uc = ±2 %

Page 10 of 61

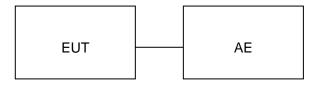
4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
4	Low channel π/4-DQPSK
5	Middle channel π/4-DQPSK
6	High channel π/4-DQPSK
7	Low channel 8DPSK
8	Middle channel 8DPSK
9	High channel 8DPSK
10	Hopping mode GFSK
11	Hopping mode π/4-DQPSK
12	Hopping mode 8DPSK

Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

Page 11 of 61


5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Radiated Emission Configure:

Conducted Emission Configure:

5.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	I-Translator	NTL2000	UU8-NTL2000	EUT
2	USB Cable	N/A	N/A	AE
3	Adapter	HW-050100C2W	DC5.0V 1A	AE
4	Magnetic ring	V18001	N/A	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(1)	Peak Output Power	Compliant
15.247 (a)(1)	20 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.209	Radiated Emission	Compliant
15.247 (a)(1)(iii)	Number of Hopping Frequency	Compliant
15.247 (a)(1)(iii)	Time of Occupancy	Compliant
15.247 (a)(1)	Frequency Separation	Compliant
15.207	Conducted Emission	Compliant

Page 12 of 61

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun. 12, 2019	Jun. 11, 2020
LISN	R&S	ESH2-Z5	100086	Aug. 26, 2019	Aug. 25, 2020

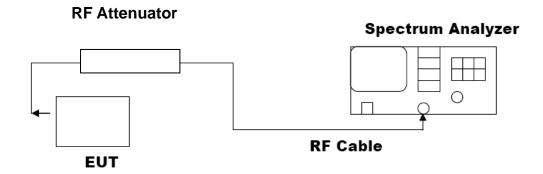
TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun. 11, 2020
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 18, 2019	Dec. 17, 2020
2.4GHz Fliter	EM Electronics	2400-2500MHz	N/A	Feb. 27, 2019	Feb. 26, 2020
Attenuator	ZHINAN	E-002	N/A	Aug. 26, 2019	Aug. 25, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 09, 2019	Sep. 08, 2021
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 15, 2019	Oct. 14, 2020
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 09, 2019	Jan. 08, 2021
Test software	R&S	ES-K1 (Ver. V1.71)	N/A	N/A	N/A
Test software	Tonscend	JS32-RE	N/A	N/A	N/A
Test software	FARA	EZ_EMC (Ver-03A)	N/A	N/A	N/A

Page 13 of 61

7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE


For peak power test:

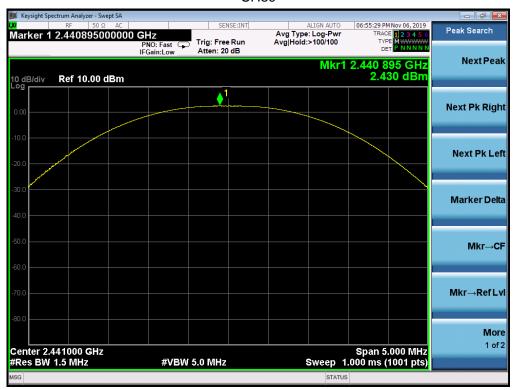
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW ≥RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP

Page 14 of 61


7.3. LIMITS AND MEASUREMENT RESULT

PEAK OUTPUT POWER MEASUREMENT RESULT			
Frequency	FOR GFSK MOUDULATION Frequency Peak Power Applicable Limits		
(GHz)	Peak Power (dBm)	(dBm)	Pass or Fail
2.402	2.251	30	Pass
2.441	2.430	30	Pass
2.480	2.262	30	Pass

CH₀

CH39

CH78

Report No.: AGC02862191002FE03 Page 16 of 61

PEAK OUTPUT POWER MEASUREMENT RESULT FOR II /4-DQPSK MODULATION				
Frequency Peak Power Applicable Limits Pass or F				
2.402	1.981	30	Pass	
2.441	2.190	30	Pass	
2.480	1.997	30	Pass	

CH₀

CH39

CH78

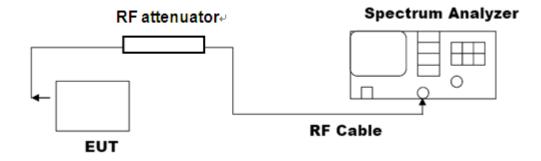
Page 18 of 61

PEAK OUTPUT POWER MEASUREMENT RESULT FOR 8-DPSK MODULATION			
Frequency (GHz)	Pass or Fail		
2.402	1.904	30	Pass
2.441	2.173	30	Pass
2.480	1.986	30	Pass

CH₀

CH39

CH78


Page 20 of 61

8. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel
 The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video
 bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

8.3. LIMITS AND MEASUREMENT RESULTS

MEASUREMENT RESULT FOR GFSK MOUDULATION			
Measurement Result			lt
Applicable Limits	Test Da	ta (MHz)	Criteria
N/A	Low Channel	1.030	PASS
	Middle Channel	1.025	PASS
	High Channel	1.028	PASS

Page 21 of 61

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Page 22 of 61

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 23 of 61

MEASUREMENT RESULT FOR ∏ /4-DQPSK MODULATION			
Measurement Result			lt
Applicable Limits	Test Da	ita (MHz)	Criteria
	Low Channel	1.287	PASS
N/A	Middle Channel	1.288	PASS
	High Channel	1.288	PASS

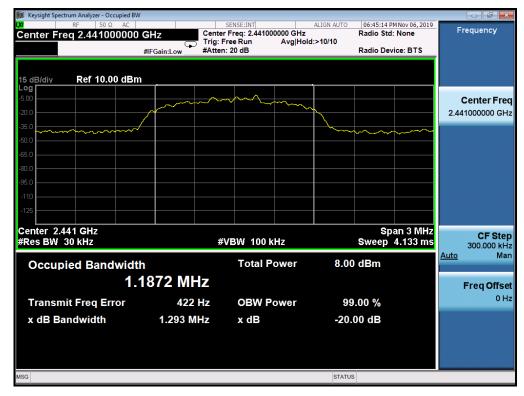
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Page 24 of 61

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 25 of 61


MEASUREMENT RESULT FOR 8-DPSK MODULATION			
Measurement Result			lt
Applicable Limits	Test Da	ta (MHz)	Criteria
	Low Channel	1.291	PASS
N/A	Middle Channel	1.293	PASS
	High Channel	1.294	PASS

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



Page 26 of 61

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 27 of 61

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.

 RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

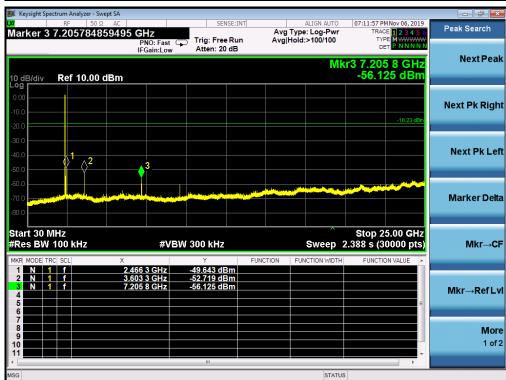
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

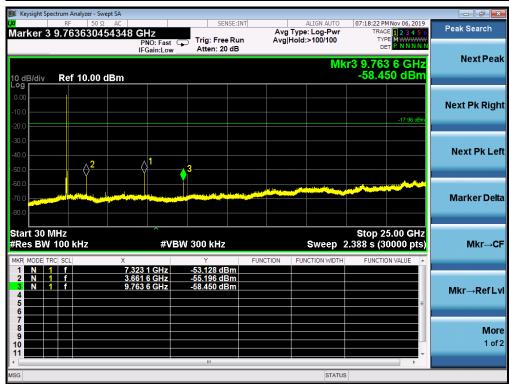
9.4. LIMITS AND MEASUREMENT RESULT


LIMITS AND MEASUREMENT RESULT			
Applicable Limite	Measurement Result		
Applicable Limits	Test Data	Criteria	
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit		
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS	
intentional radiator is operating, the radio frequency	Channel		
power that is produce by the intentional radiator			
shall be at least 20 dB below that in 100KHz			
bandwidth within the band that contains the highest			
level of the desired power.	At least -20dBc than the limit	DACC	
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS	
restricted bands, as defined in §15.205(a), must also			
comply with the radiated emission limits specified			
in§15.209(a))			

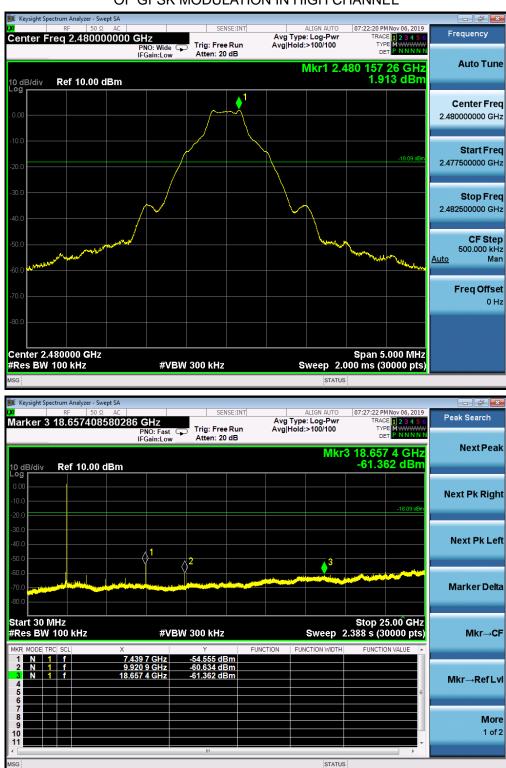
Page 28 of 61

TEST RESULT FOR ENTIRE FREQUENCY RANGE

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE
OF GFSK MODULATION IN LOW CHANNEL

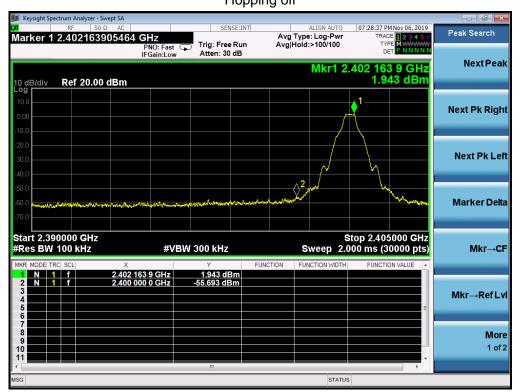


Page 29 of 61


TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN MIDDLE CHANNEL

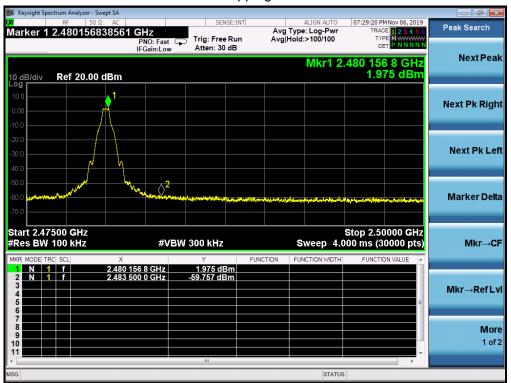
Page 30 of 61

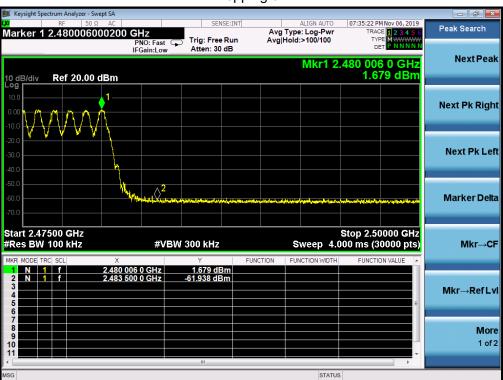
TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN HIGH CHANNEL

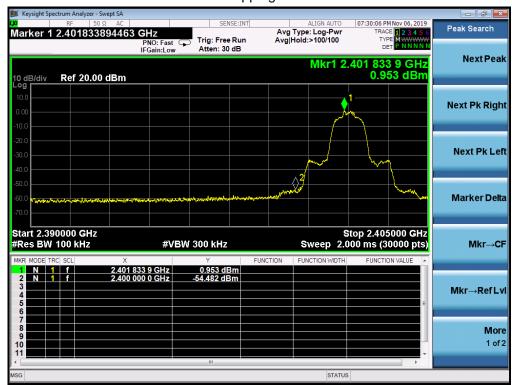


Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit. The GFSK modulation is the worst case and only those data recorded in the report.

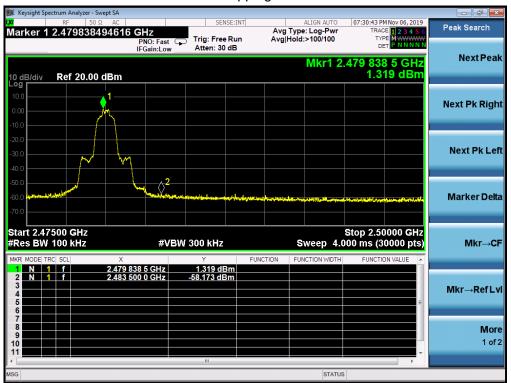
Page 31 of 61

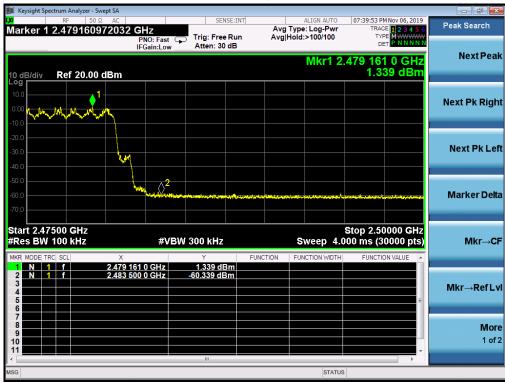

TEST RESULT FOR BAND EDGE


GFSK MODULATION IN LOW CHANNEL Hopping off


GFSK MODULATION IN HIGH CHANNEL Hopping off

Page 33 of 61


π /4-DQPSK MODULATION IN LOW CHANNEL Hopping off



Page 34 of 61

π /4-DQPSK MODULATION IN HIGH CHANNEL Hopping off



8-DPSK MODULATION IN LOW CHANNEL Hopping off

8-DPSK MODULATION IN HIGH CHANNEL Hopping off

Page 37 of 61

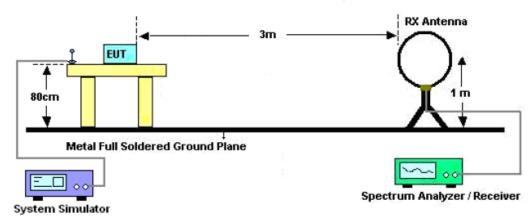
10. RADIATED EMISSION

10.1. MEASUREMENT PROCEDURE

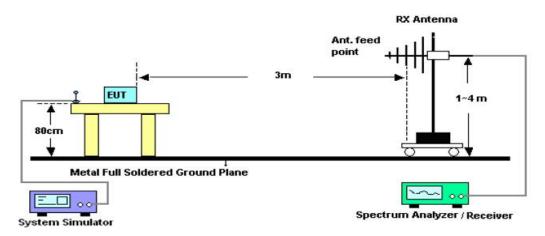
- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

Report No.: AGC02862191002FE03 Page 38 of 61

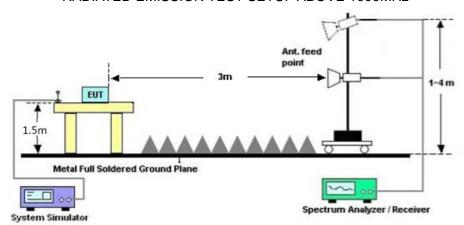
The following table is the setting of spectrum analyzer and receiver.


Spectrum Parameter	Setting			
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP			
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP			
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP			
Start ~Stop Frequency	1GHz~26.5GHz			
Start ~Stop Frequency	1MHz/3MHz for Peak, 1MHz/3MHz for Average			

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP


Page 39 of 61

10.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 40 of 61

10.3. LIMITS AND MEASUREMENT RESULT

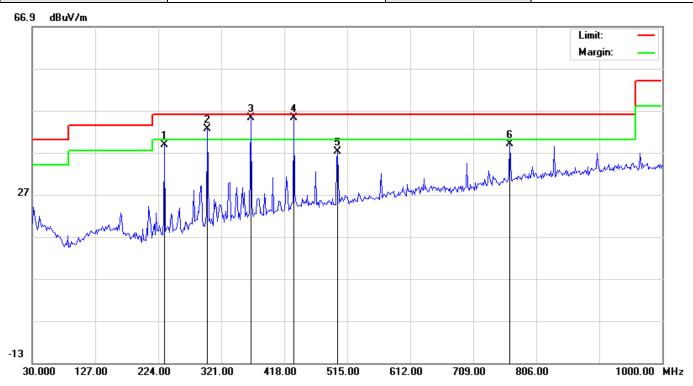
15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

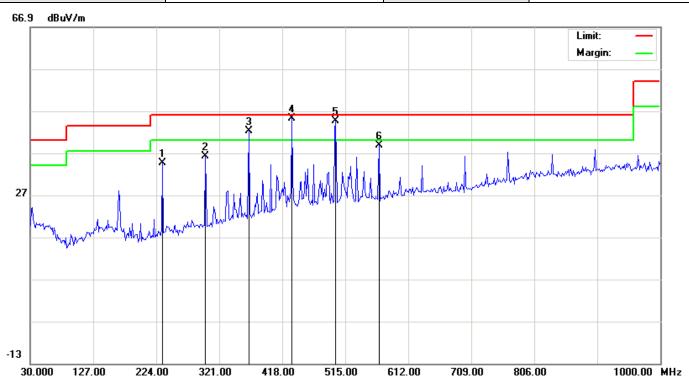
10.4. TEST RESULT


RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

Page 41 of 61

RADIATED EMISSION BELOW 1GHZ


EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		233.7000	20.65	18.21	38.86	46.00	-7.14	peak			
2	Ţ	299.9833	23.20	19.47	42.67	46.00	-3.33	QP			
3	*	366.2667	23.43	21.80	45.23	46.00	-0.77	QP			
4	Ţ	432.5500	21.57	23.63	45.20	46.00	-0.80	QP			
5		500.4500	12.27	25.00	37.27	46.00	-8.73	peak			
6		765.5833	9.40	29.63	39.03	46.00	-6.97	peak		·	

Page 42 of 61

EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		233.7000	16.35	18.21	34.56	46.00	-11.44	peak			
2		299.9833	16.70	19.47	36.17	46.00	-9.83	peak			
3	Ţ	366.2667	20.49	21.80	42.29	46.00	-3.71	QP			
4	*	432.5500	21.62	23.63	45.25	46.00	-0.75	QP			
5	Ţ	500.4500	19.52	25.00	44.52	46.00	-1.48	QP			
6		566.7333	12.45	26.30	38.75	46.00	-7.25	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 4 is the worst case and recorded in the report.

Page 43 of 61

RADIATED EMISSION ABOVE 1GHZ

EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type	
4804.022	48.05	0.08	48.13	74.00	-25.87	peak	
4804.022	40.13	0.08	40.21	54.00	-13.79	AVG	
7206.033	39.11	2.21	41.32	74.00	-32.68	peak	
7206.033	36.46	2.21	38.67	54.00	-15.33	AVG	
emark:							

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type	
4804.022	49.16	0.08	49.24	74.00	-24.76	peak	
4804.022	40.47	0.08	40.55	54.00	-13.45	AVG	
7206.033	41.11	2.21	43.32	74.00	-30.68	peak	
7206.033	35.21	2.21	37.42	54.00	-16.58	AVG	
emark:							

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Page 44 of 61

EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type	
4882.022	47.02	0.14	47.16	74.00	-26.84	peak	
4882.022	42.80	0.14	42.94	54.00	-11.07	AVG	
7323.033	42.06	2.36	44.42	74.00	-29.58	peak	
7323.033	38.12	2.36	40.48	54.00	-13.52	AVG	
Remark:							
Factor = Anter	nna Factor + Cabl	e Loss – Pre-a	mplifier.				

EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4882.022	48.19	0.14	48.33	74.00	-25.67	peak
4882.022	45.08	0.14	45.22	54.00	-8.78	AVG
7323.033	40.32	2.36	42.68	74.00	-31.33	peak
7323.033	37.83	2.36	40.19	54.00	-13.81	AVG
						<u> </u>

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Page 45 of 61

EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4960.022	43.10	0.22	43.32	74.00	-30.68	peak
4960.022	42.33	0.22	42.55	54.00	-11.45	AVG
7440.033	40.15	2.64	42.79	74.00	-31.21	peak
7440.033	36.02	2.64	38.66	54.00	-15.34	AVG
temark:						
actor = Anter	nna Factor + Cabl	e Loss – Pre-	amplifier			

EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

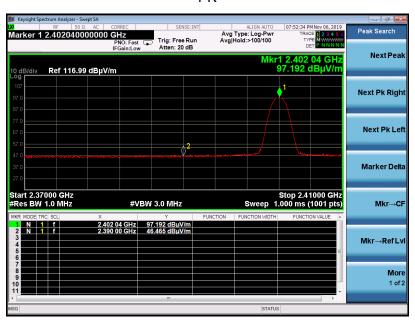
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type	
4960.022	45.14	0.22	45.36	74.00	-28.64	peak	
4960.022	40.13	0.22	40.35	54.00	-13.65	AVG	
7440.033	39.36	2.64	42.00	74.00	-32.00	peak	
7440.033	37.33	2.64	39.97	54.00	-14.03	AVG	
Remark:							
Factor = Anter	nna Factor + Cabl	<u>e Loss – Pre</u> -	-amplifier.				

RESULT: PASS

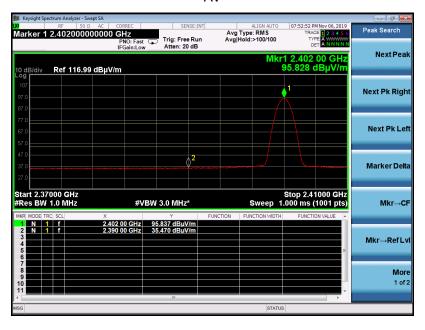
Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

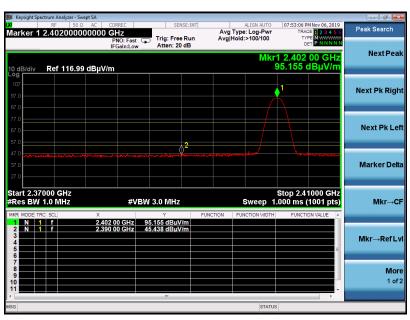

All test modes had been tested. The GFSK modulation is the worst case and recorded in the report.

Page 46 of 61

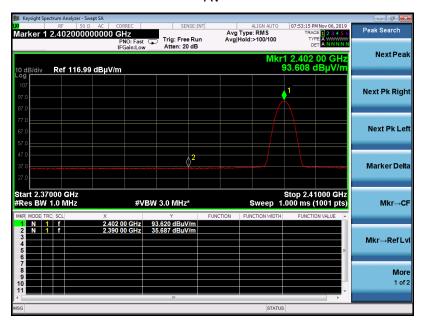

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

PΚ



ΑV

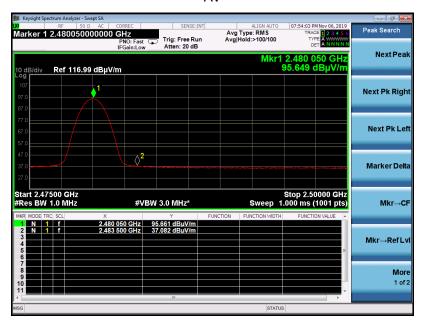


EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

PΚ



ΑV



EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

PΚ

ΑV

Page 49 of 61

EUT	I-Translator	Model Name	NTL2000
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

PΚ

ΑV

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F. All test modes had been pre-tested. The GFSK modulation is the worst case and recorded in the report.

Page 50 of 61

11. NUMBER OF HOPPING FREQUENCY

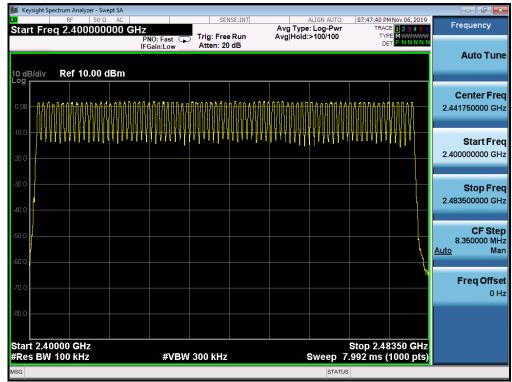
11.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW > RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
- 4. Allow the trace to stabilize.

11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2


11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

11.4. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS

Note: The GFSK modulation is the worst case and recorded in the report.

Page 51 of 61

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Zero span, centered on a hopping channel.
- 2. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 4. Detector function: Peak. Trace: Max hold.
- 5. Use the marker-delta function to determine the transmit time per hop.
- 6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

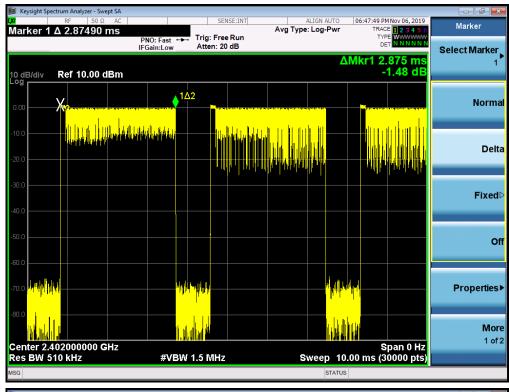
7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

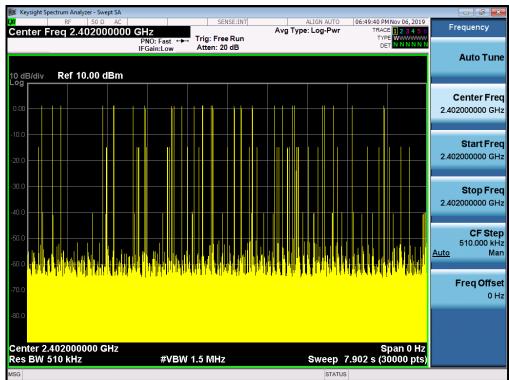
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

12.3. MEASUREMENT EQUIPMENT USED

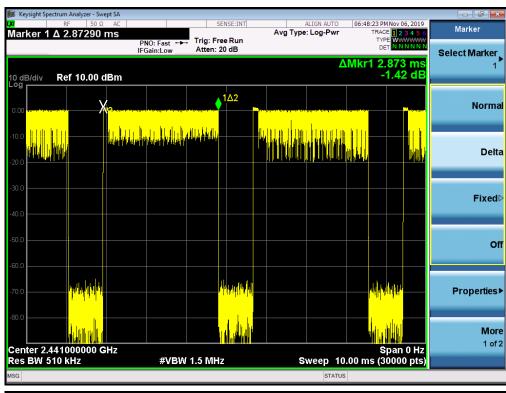
The same as described in section 6

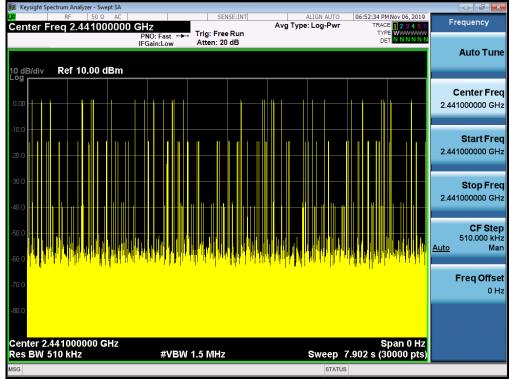

12.4. LIMITS AND MEASUREMENT RESULT


Channel	Time of Pulse for DH5 (ms)	Number of hops in the period specified in the requirements	Sweep Time (ms)	Limit (ms)
Low	2.875	26*4	299.00	400
Middle	2.873	30*4	344.76	400
High	2.875	26*4	299.00	400

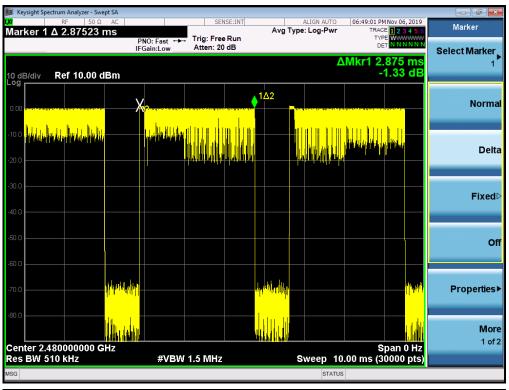
Note: The 8-DPSK modulation is the worst case and recorded in the report.

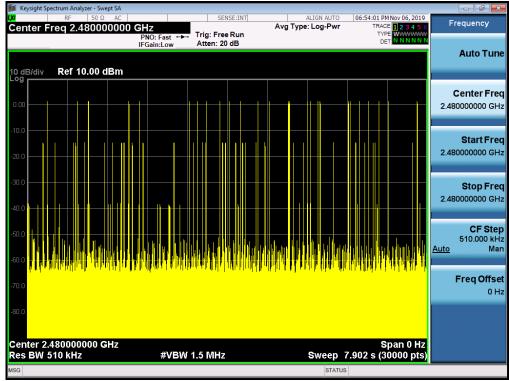
Page 52 of 61


TEST PLOT OF LOW CHANNEL



Page 53 of 61


TEST PLOT OF MIDDLE CHANNEL



Page 54 of 61

TEST PLOT OF HIGH CHANNEL

Page 55 of 61

13. FREQUENCY SEPARATION

13.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Wide enough to capture the peaks of two adjacent channels.
- 2. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3. Video (or average) bandwidth (VBW) ≥ RBW.
- 4. Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

13.4. LIMITS AND MEASUREMENT RESULT

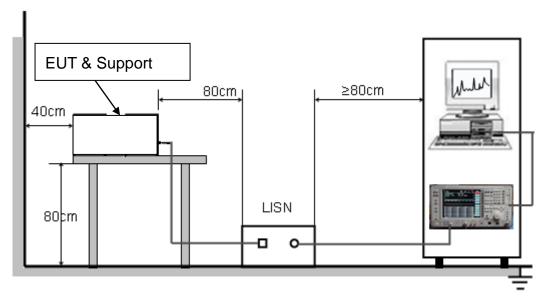
CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT
	KHz	KHz	Dage
CH01-CH02	1001	>=25 KHz or 2/3 20 dB BW	Pass

TEST PLOT FOR FREQUENCY SEPARATION

Note: The 8-DPSK modulation is the worst case and recorded in the report.

Page 56 of 61

14. FCC LINE CONDUCTED EMISSION TEST


14.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Francos	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

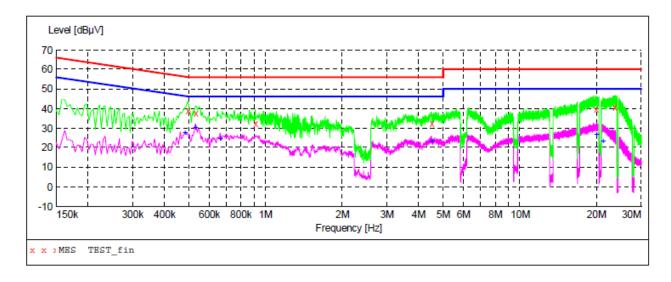
Page 57 of 61

14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

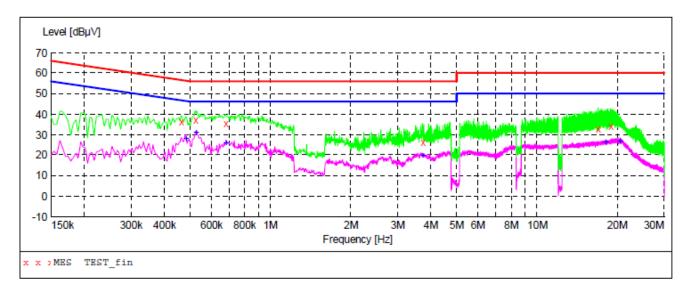
- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

Page 58 of 61

14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT: "TEST_fin"


2019/10/31	20:42						
Frequenc MH	4	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.49400	0 38.90	11.0	56	17.2	QP	L1	FLO
0.53000	0 37.70	10.9	56	18.3	QP	L1	FLO
0.91000	0 32.20	11.0	56	23.8	QP	L1	FLO
4.49400	0 32.40	11.4	56	23.6	QP	L1	FLO
19.84200	0 39.80	12.6	60	20.2	QP	L1	FLO
23.53400	0 40.70	12.9	60	19.3	QP	L1	FLO

MEASUREMENT RESULT: "TEST_fin2"

20	019/10/31 20	:42						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.482000	27.30	10.9	46	19.0	AV	L1	FLO
	0.530000	30.30	10.9	46	15.7	AV	L1	FLO
	0.662000	24.60	10.3	46	21.4	AV	L1	FLO
	4.494000	23.30	11.4	46	22.7	AV	L1	FLO
	20.006000	26.80	12.7	50	23.2	AV	L1	FLO
	21.242000	23.30	12.8	50	26.7		L1	FLO

Page 59 of 61

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT: "TEST_fin"

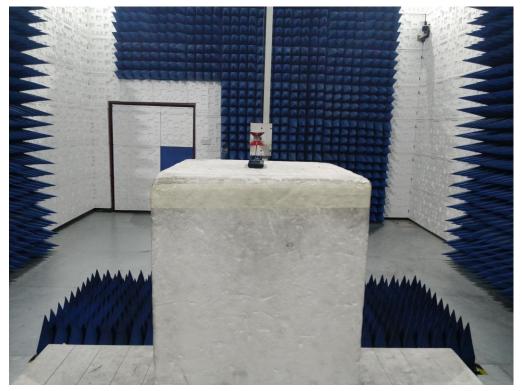
20	19/10/31 20	:46						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.462000	36.40	10.7	57	20.3	QP	N	FLO
	0.522000	37.10	10.9	56	18.9	QP	N	FLO
	0.678000	35.50	10.3	56	20.5	QP	N	FLO
	3.722000	26.30	11.4	56	29.7	QP	N	FLO
	16.898000	32.70	12.4	60	27.3	QP	N	FLO
	18.886000	33.90	12.6	60	26.1	OP	N	FLO

MEASUREMENT RESULT: "TEST_fin2"

2019/10/31 20 Frequency MHz	Level dBuV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.482000	28.00	10.9	46	18.3	AV	N	FLO
0.526000	31.10	10.9	46	14.9	AV	N	FLO
0.682000	25.80	10.2	46	20.2	AV	N	FLO
3.722000	19.80	11.4	46	26.2	AV	N	FLO
18.114000	26.10	12.5	50	23.9	AV	N	FLO
20.478000	26.70	12.7	50	23.3	AV	N	FLO


RESULT: PASS

Note: All the test modes had been tested, the mode 1 was the worst case. Only the data of the worst case would be record in this test report.


Page 60 of 61

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHZ

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

CONDUCTED EMISSION TEST SETUP

----END OF REPORT----