

Test of WNI Global KymaStar 802.11a 5.8 GHz

To: FCC 47 CFR Part15.247

Test Report Serial No.: WNIG01-A6 Rev A

TEST REPORT
FROM
MiCOMLabs

Test of WNI Global KymaStar 802.11a 5.8 GHz
to
To FCC 47 CFR Part15.247

Test Report Serial No.: WNIG01-A6 Rev A

This report supersedes: None

Manufacturer: WNI Global
2146 Bering Drive
San Jose
CA 95131, USA

Product Function: 802.11a Wireless Access Point

Copy No: pdf **Issue Date:** 14th August 2007

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
440 Boulder Court, Suite 200
Pleasanton, CA 94566 USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

CERTIFICATE #2381.01

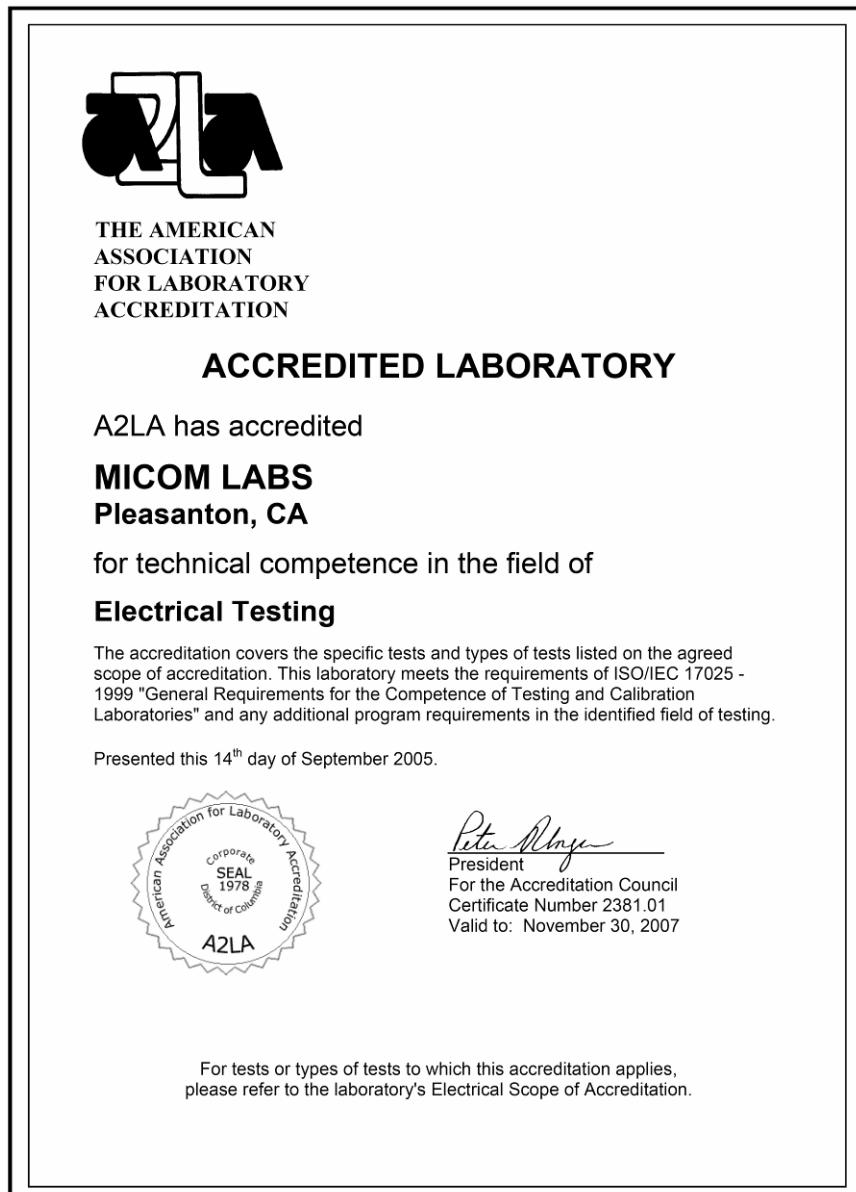
MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 3 of 62

This page has been left intentionally blank

TABLE OF CONTENTS

COVER PAGE	1
TITLE PAGE	2
ACCREDITATION & LISTINGS.....	5
1. TEST RESULT CERTIFICATE	8
2. REFERENCES AND MEASUREMENT UNCERTAINTY	9
2.1. Normative References	9
2.2. Test and Uncertainty Procedures	9
3. PRODUCT DETAILS AND TEST CONFIGURATIONS	10
3.1. Technical Details	10
3.2. Scope of Test Program.....	11
3.3. Equipment Model(s) and Serial Number(s)	14
3.4. Antenna Details	14
3.5. Cabling and I/O Ports	14
3.6. Test Configurations.....	15
3.7. Equipment Modifications.....	15
3.8. Deviations from the Test Standard	15
3.9. Subcontracted Testing or Third Party Data	15
4. TEST SUMMARY	16
5. TEST RESULTS	18
5.1. Device Characteristics	18
5.1.1. <i>6 dB and 99 % Bandwidth</i>	18
5.1.2. <i>Peak Output Power</i>	23
5.1.3. <i>Peak Power Spectral Density</i>	28
5.1.4. <i>Maximum Permissible Exposure</i>	33
5.1.5. <i>Conducted Spurious Emissions</i>	34
5.1.6. <i>Radiated Emissions</i>	44
5.1.7. <i>AC Wireline Conducted Emissions (150 kHz – 30 MHz)</i>	55
6. PHOTOGRAPHS.....	58
6.1. Radiated Spurious Emissions	58
6.2. AC Wireline Emissions (150 kHz - 30 MHz)	59
6.3. General Measurement Test Set-Up	60
7. TEST EQUIPMENT DETAILS.....	61


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 5 of 62

ACCREDITATION & LISTINGS

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 6 of 62

LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC) Listing #: 102167

RECOGNITION

APEC MRA (Asia-Pacific Economic Community Mutual Recognition Agreement)

Conformity Assessment Body (CAB) – MiCOM Labs

Test data generated by MiCOM Labs is accepted in the following countries under the APEC MRA.

Country	Recognition Body	Phase	CAB Identification No.
Australia	Australian Communications and Media Authority (ACMA)	I	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	I	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	I	
Singapore	Infocomm Development Authority (IDA)	I	
Taiwan	Directorate General of Telecommunications (DGT) Bureau of Standards, Metrology and Inspection (BSMI)	I	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 7 of 62

DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft		
Rev A	14 th August 2007	First issue.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

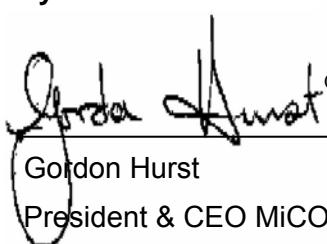
Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 8 of 62

1. TEST RESULT CERTIFICATE

Manufacturer:	WNI Global 2146 Bering Drive San Jose CA 95131, USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566, USA
EUT:	Wireless Access Point	Telephone:	+1 925 462 0304
Model:	KymaStar	Fax:	+1 925 462 0306
S/N:	AR3210H07100003 & ATH2050H07190001		
Test Date(s):	27th April to 27th July 2007	Website:	www.micomlabs.com

STANDARD(S)	TEST RESULTS
FCC 47 CFR Part15.247	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.


Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs,

Gordon Hurst
President & CEO MiCOM Labs, Inc.
CERTIFICATE #2381.01

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 9 of 62

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	Feb 2006	Code of Federal Regulations
(ii)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(iii)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(iv)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(v)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(vi)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(vii)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

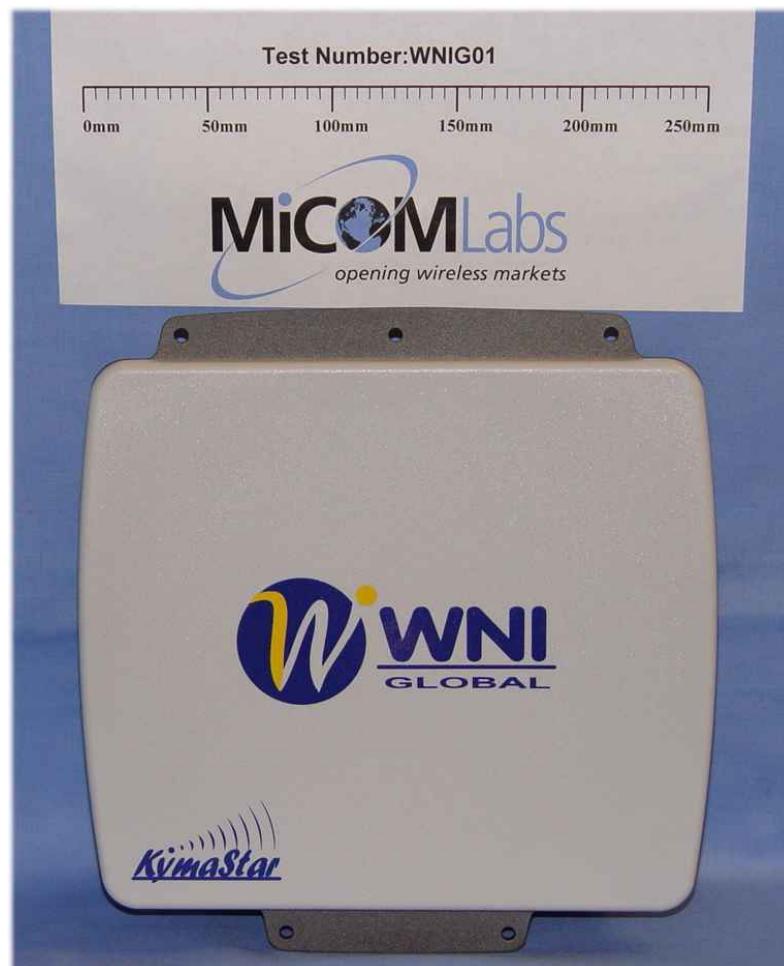
Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 10 of 62

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the WNI Global KymaStar 802.11a 5.8 GHz to FCC Part 15.247.
Applicant:	As Manufacturer
Manufacturer:	WNI Global 2146 Bering Drive San Jose CA 95131, USA
Laboratory performing the tests:	MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, California 94566 USA
Test report reference number:	WNIG01-A6 Rev A
Date EUT received:	26 TH April 2007
Standard(s) applied:	FCC 47 CFR Part15.247
Dates of test (from - to):	27th April to 27th July 2007
No of Units Tested:	1
Type of Equipment:	802.11a Wireless Access Point
Manufacturers Trade Name:	Wireless Access Point
Model:	KymaStar KS5X-2315-EXT
Software Revision	1.1.4.0
Location for use:	Outdoor
Declared Frequency Range(s):	5725 - 5850 MHz
Type of Modulation:	Per 802.11 – OFDM
Declared Nominal Output Power:	802.11a: +23 dBm (peak power)
EUT Modes of Operation:	802.11a
Transmit/Receive Operation:	Time Division Duplex
Rated Input Voltage and Current:	Power Over Ethernet (POE) +24 Vdc 1.25 A
Operating Temperature Range:	Declared range -20 to +55°C
ITU Emission Designator:	802.11a – 23M5W7D
Frequency Stability:	±20 ppm max
Equipment Dimensions:	10.2" x 9.8" x 3.0" (259mm X 250mm X 75mm)
Weight:	4 lbs (1.8kgs)
Primary function of equipment:	Wireless Access Point

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 11 of 62

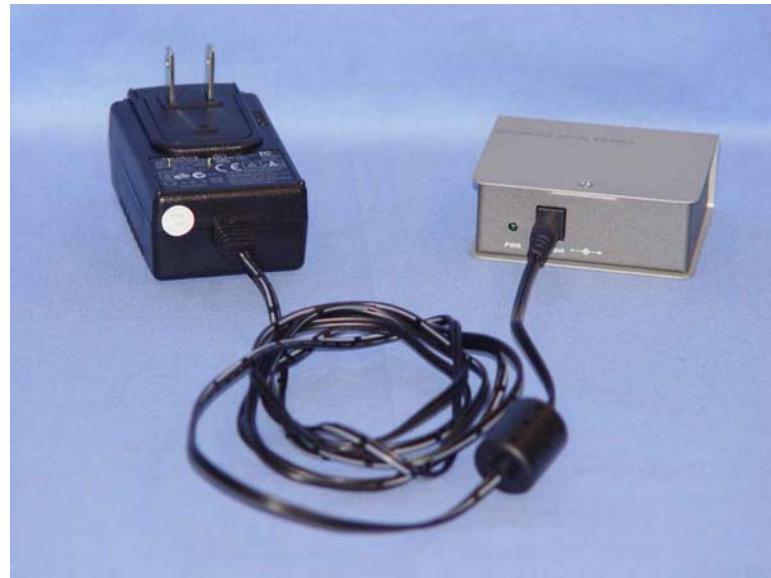
3.2. Scope of Test Program

The scope of the test program was to test the WNI Global KymaStar KS5X-2315-EXT in the frequency range 5725 – 5850 MHz for compliance against FCC 47 CFR Part 15.247.

WNI Global KymaStar Wireless Access Point

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 12 of 62


**WNI Global
KymaStar Wireless Access Point- Label**

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

**WNI Global
KymaStar Wireless Access Point- Power Supply and POE**

**WNI Global
KymaStar Wireless Access Point- Power Supply Label**

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 14 of 62

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Access Point	WNI Global	KymaStar	AR3210H07100003, ATH2050H07190001
EUT	Power Supply	Technics	TESA1-240075	None
EUT	Power Over LAN Hub		None	None
Support	Laptop PC	IBM	Thinkpad	None

3.4. Antenna Details

1. 5725-5850 MHz

- 5.8 GHz Parabolic Antenna Gain: 34.5 dBi

Manufactured by mWAVE Industries, LLC. Model RP4-56-N

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. POE 10/100 Ethernet
2. N-Type connector for external antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.6. Test Configurations

Testing was performed to determine the highest power level versus bit rate. 6 MB/s for 802.11a was found to provide the highest power levels. This data rates was used to exercise the product throughout the entire test program.

Matrix of Channel test configurations.

Operational Mode (802.11)	Frequencies (MHz)	'a' Mode Test Data Rate
a	5,745 5,785 5,825	6 Mb/s

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. Radiated Emission Non-Compliance

The equipment (S/N AR3210H071000003) had trouble with a radiated emission (7,660.087 MHz) which failed by +7.65 dB. This frequency fell within the Restricted Bands and as such subject to 54 dBuV/m average limit. This emission was fixed by adding a filter and a subsequent unit (S/N ATH2050H07190001) was used to retest spurious emissions above 1 GHz.

The replacement unit complied with the spurious emission limits.

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 16 of 62

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the **FCC CFR47 Part 15.247**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2)	6 dB and 99 % Bandwidths	≥500 kHz	Conducted	Complies	5.1.1
15.247(b)(3) 15.31(e)	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies	5.1.2
15.247(e)	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	5.1.3
15.247(i)	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.4
15.247(d) 15.205 / 15.209	Spurious Emissions (30MHz - 26 GHz b/g and 30 MHz – 40 GHz a)	The radiated emission in any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density	Conducted	Complies	5.1.5

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 17 of 62

List of Measurements (continued)

The following table represents the list of measurements required under the **FCC CFR47 Part 15.247**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 / 15.209	Radiated Emissions	Restricted Bands	Radiated	Complies	5.1.6
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.6.1
	Radiated Band Edge	Band edge results		Complies	5.1.6.2
15.205 / 15.209	Radiated Spurious Emissions	Emissions <1 GHz (30M-1 GHz)	Radiated	Complies	5.1.6.3
15.207	AC Wireline Conducted Emissions 150 kHz–30 MHz	Conducted Emissions	Conducted	Complies	5.1.7

Note 1: Test results reported in this document relate only to the items tested

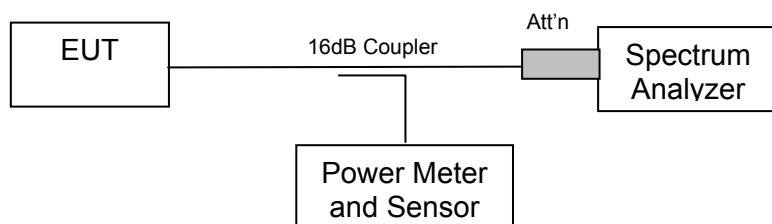
Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Appendix A - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5. TEST RESULTS

5.1. Device Characteristics


5.1.1. 6 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.247(a)(2)

Test Procedure

The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Test Measurement Set up

Measurement set up for 6 dB and 99 % bandwidth test

Measurement Results for 6 dB & 99% Bandwidth

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

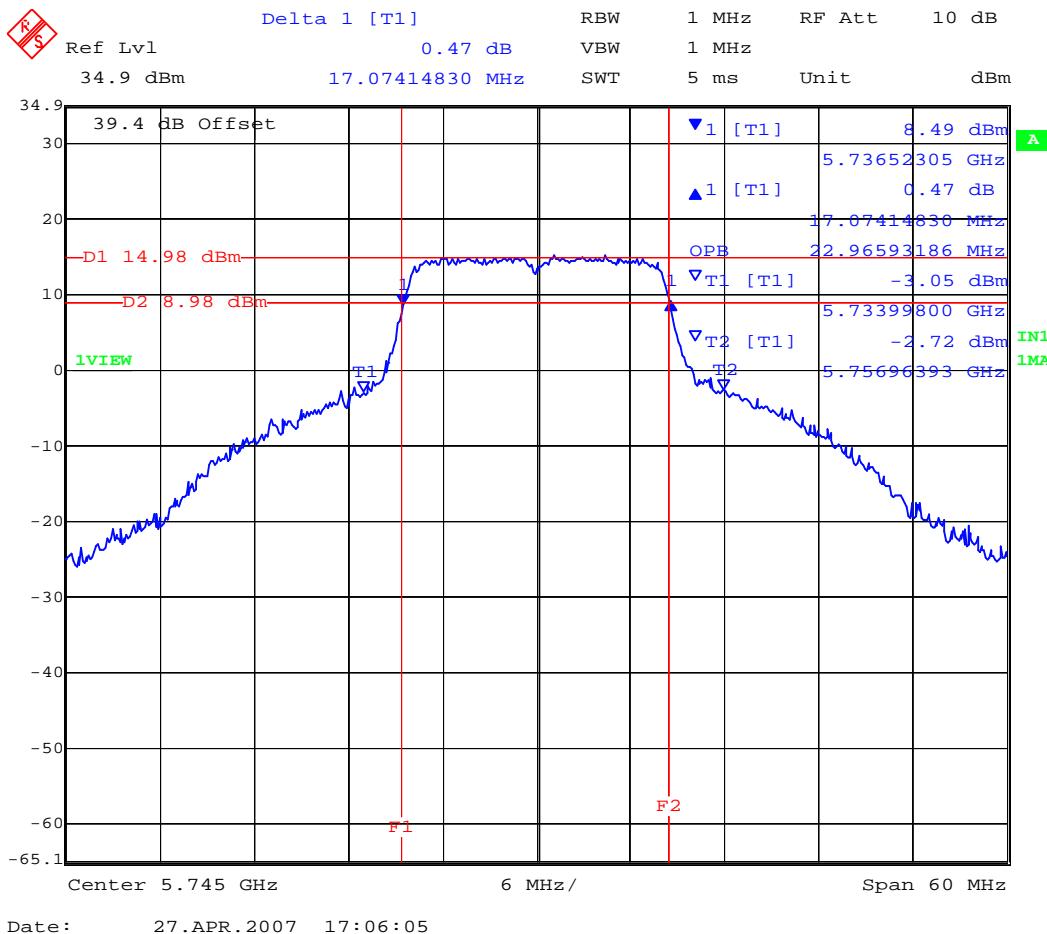
Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

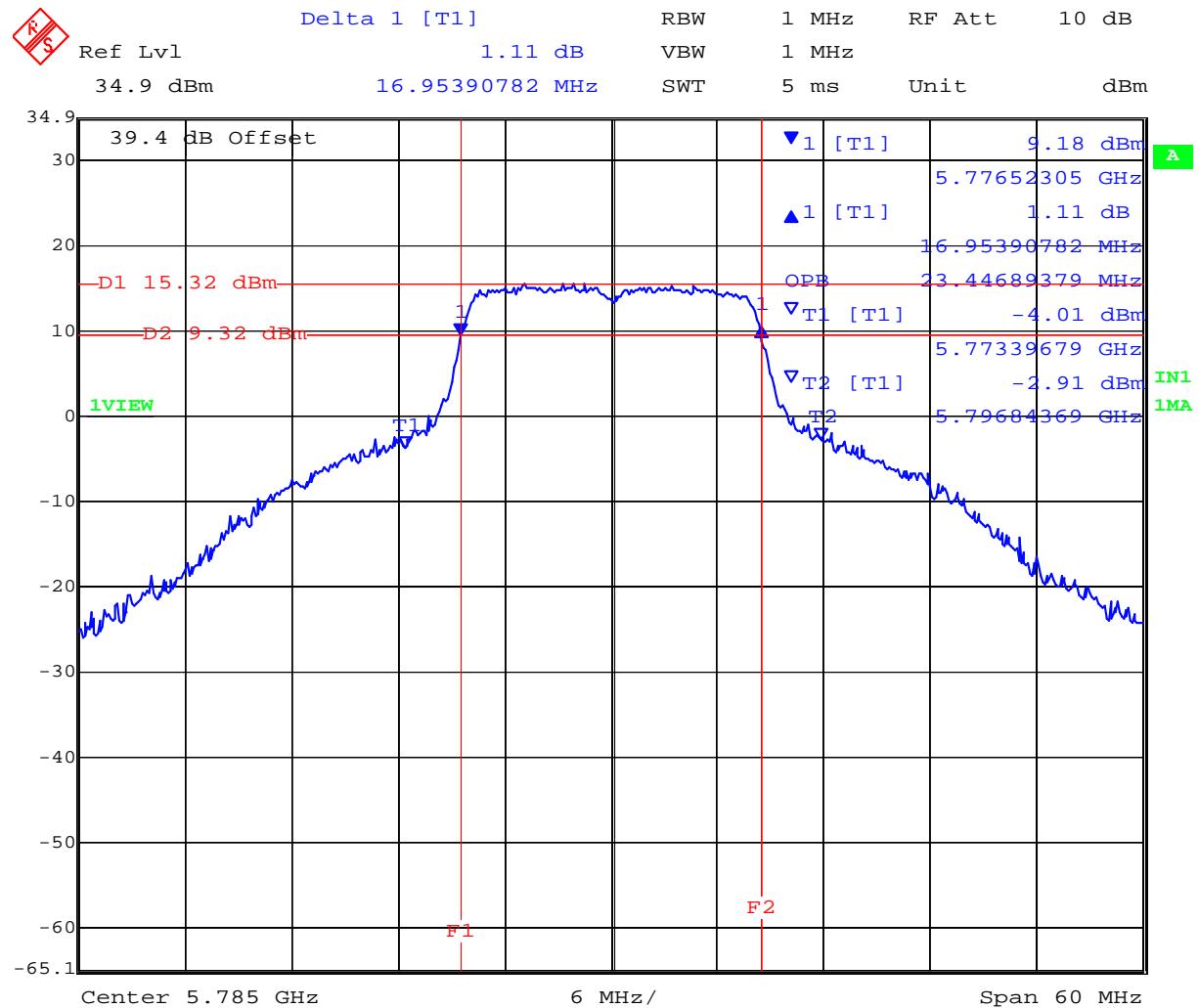
Power: Maximum

Measurement Results for 6 dB and 99 % Operational Bandwidth(s)


Ambient conditions.

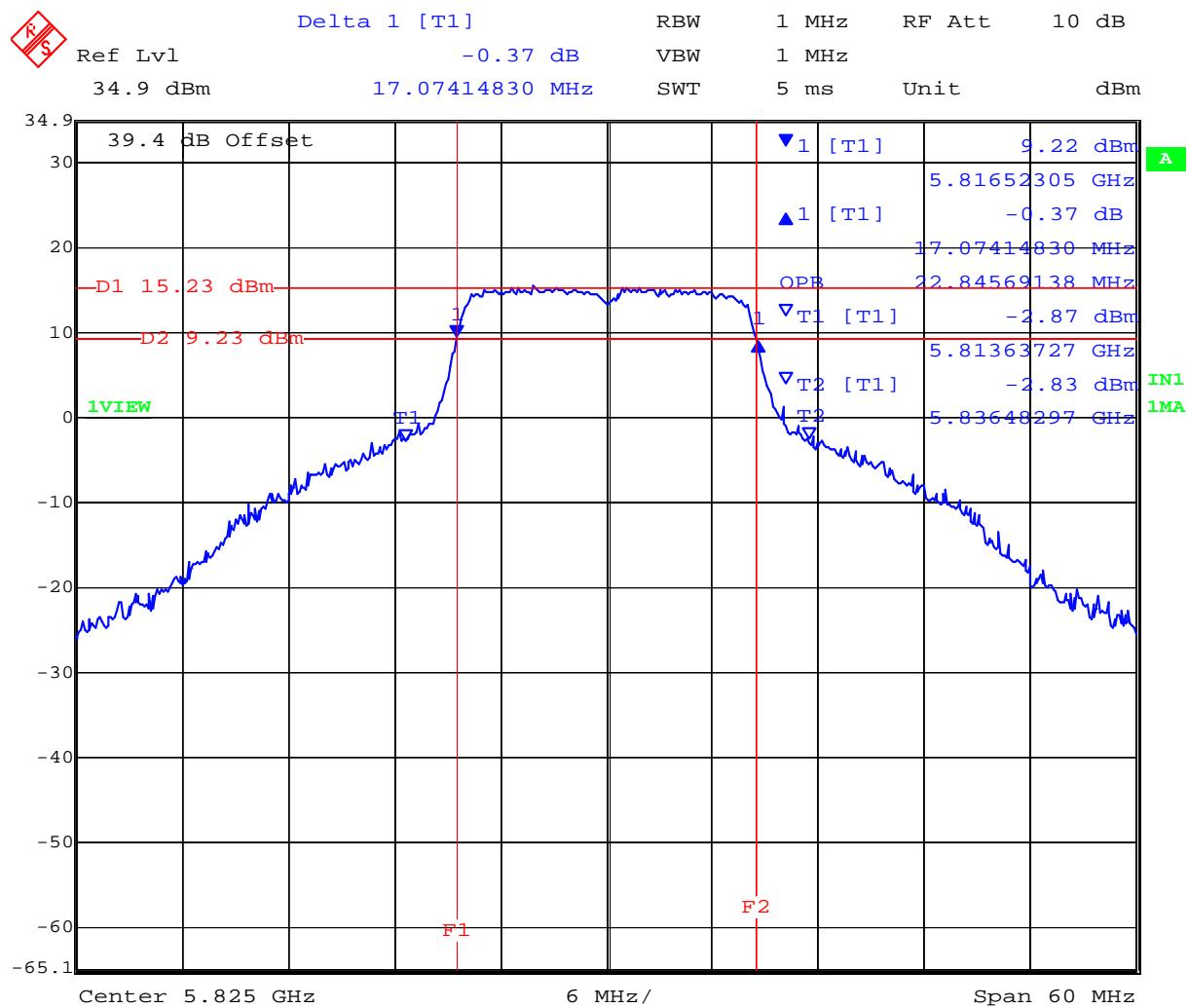
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS – 802.11a - 6 Mb/s


Center Frequency (MHz)	6 dB Bandwidth (MHz)	99 % BW (MHz)
5,745	17.074	22.966
5,785	16.954	23.447
5,825	17.074	22.846

5,745 MHz 802.11a 6 dB Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5,785 MHz 802.11a 6 dB Bandwidth

Date: 27.APR.2007 19:18:51

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5,825 MHz 802.11a 6 dB Bandwidth

Date: 27.APR.2007 17:03:20

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 22 of 62

Specification

Limits

§15.247 (a)(2) & RSS-210 §A8.2(1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

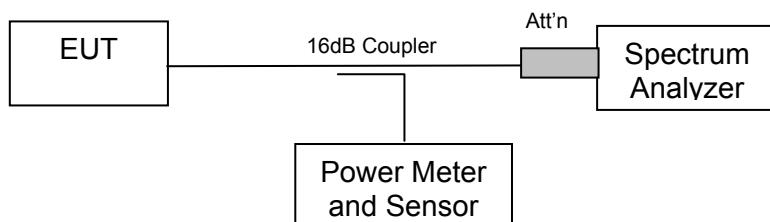
Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0193, 0252, 0313, 0314, 0223, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.2. Peak Output Power

FCC, Part 15 Subpart C §15.247(b)(3), §15.31(e)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The resolution filter bandwidth was set to 3 dB, peak detector selected and the analyzer built-in power function was used to measure peak power over the 99 % bandwidth.

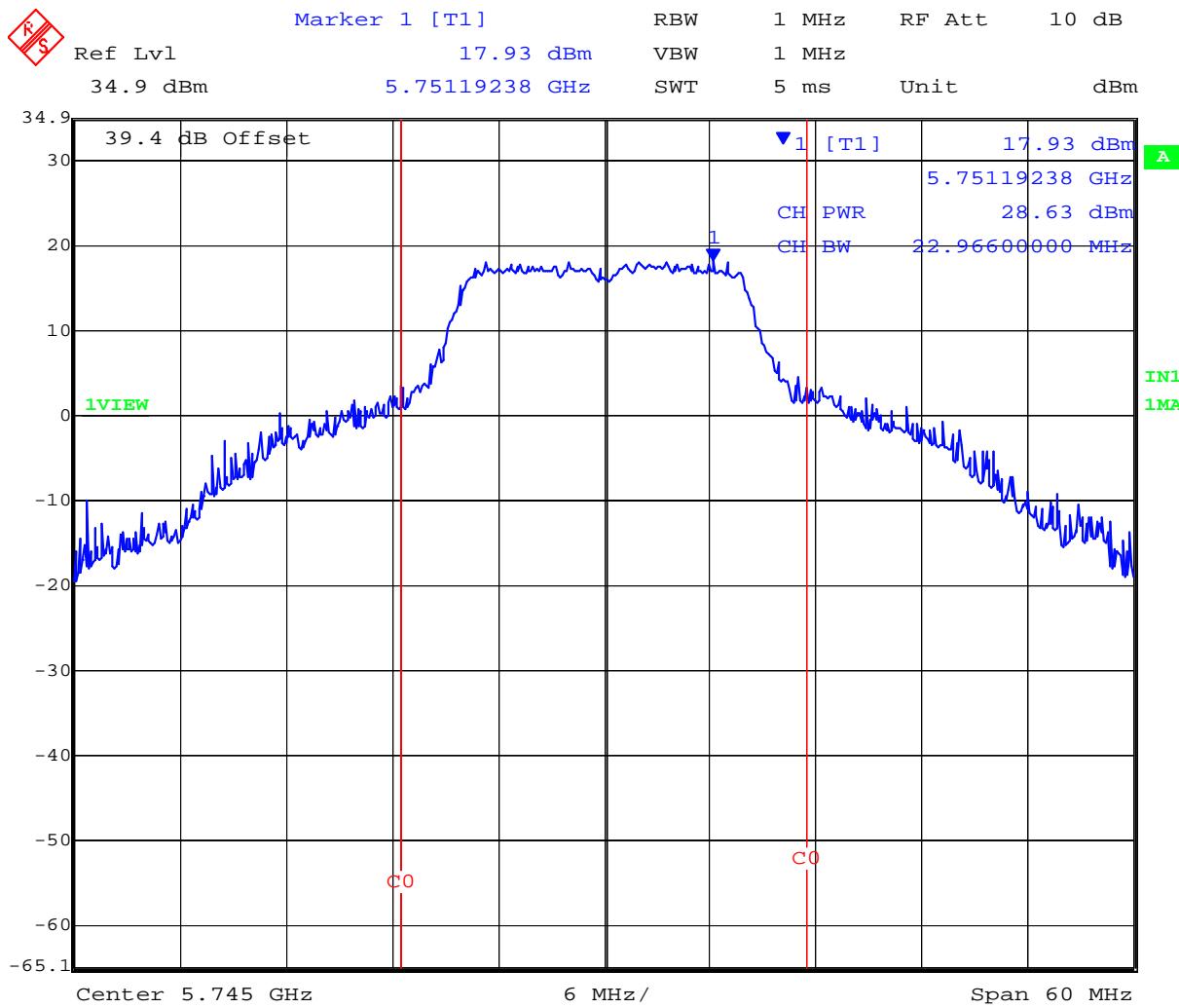
Test Measurement Set up

Measurement set up for Transmitter Peak Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

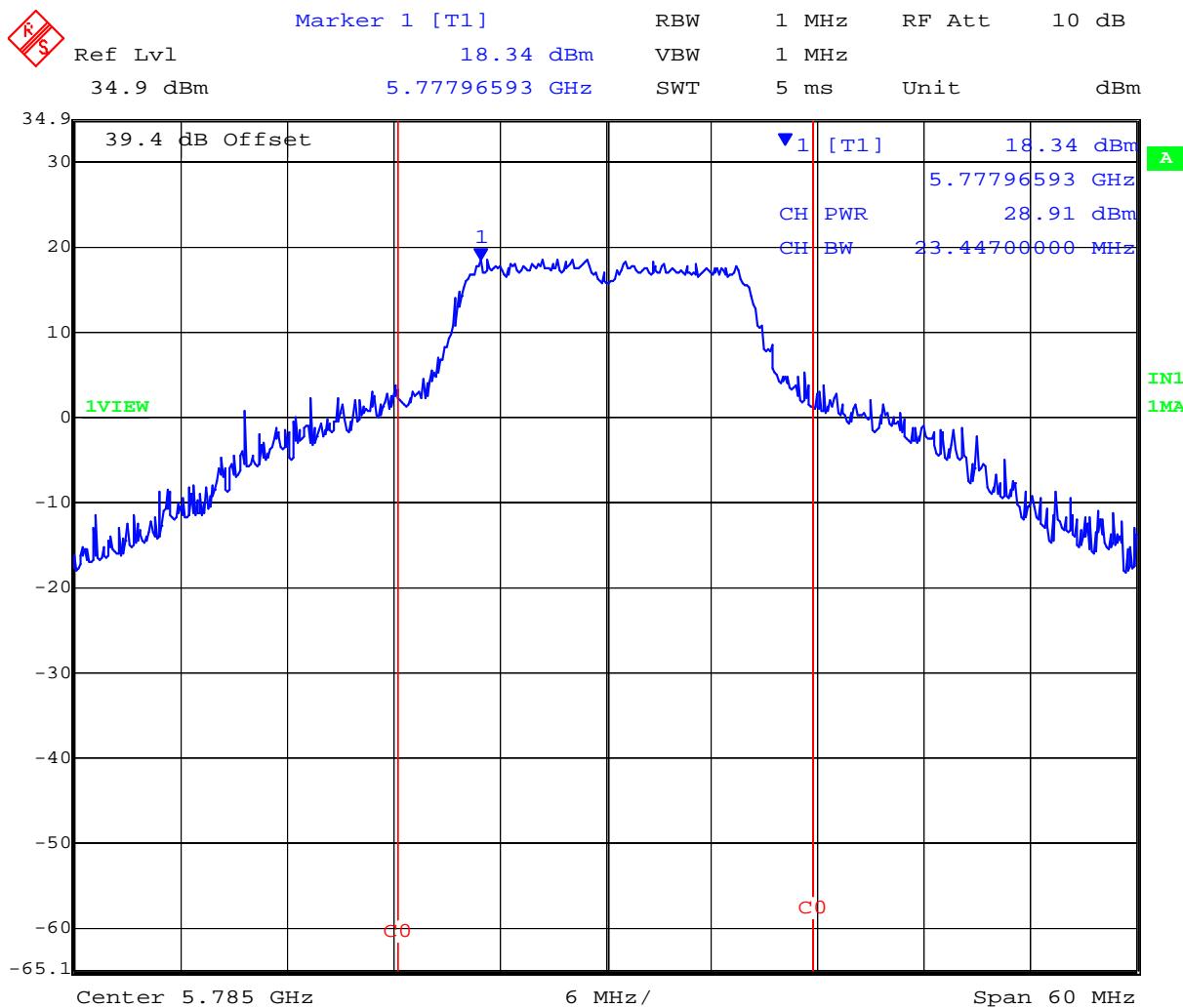
(5.8 GHz) Maximum Antenna Gain = +34.5 dBi


15.247 c) Operation with directional antenna gains greater than 6 dBi.

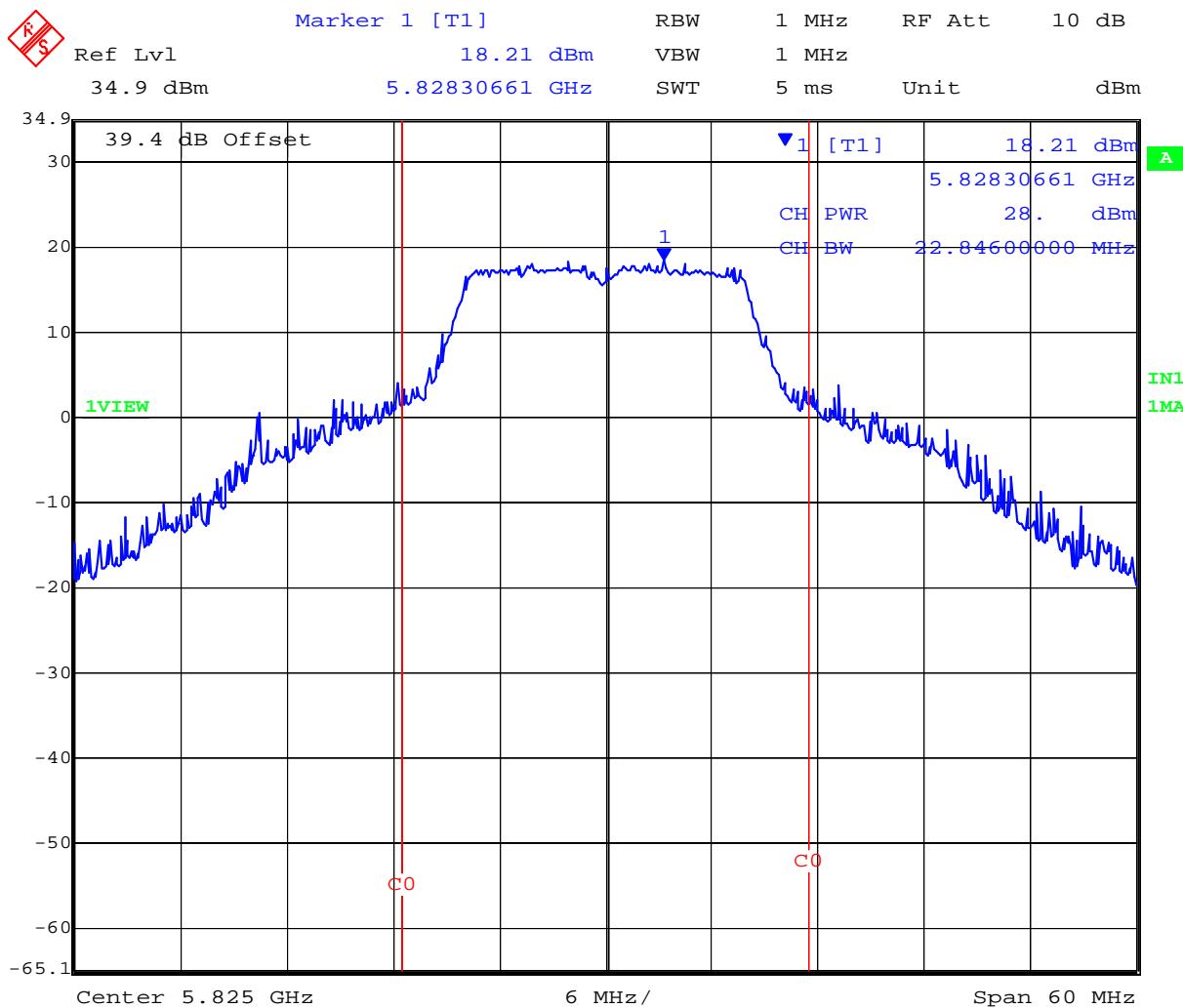
(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

TABLE OF RESULTS – 802.11a – 6 Mb/s

Center Frequency (MHz)	99% Measurement Bandwidth (MHz)	Peak Power (dBm)
5,745	22.966	+28.63
5,785	23.447	+28.91
5,825	22.846	+28.65


5,745 MHz 802.11a Peak Power (dBm)

Date: 27.APR.2007 17:38:34


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5,785 MHz 802.11a Peak Power (dBm)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5,825 MHz 802.11a Peak Power (dBm)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 27 of 62

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

(b)(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

§15.247 c) Operation with directional antenna gains greater than 6 dBi.

(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

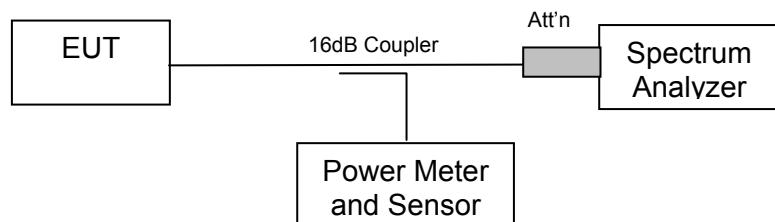
Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0223, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.247(e)

Test Procedure

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time \geq span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth.

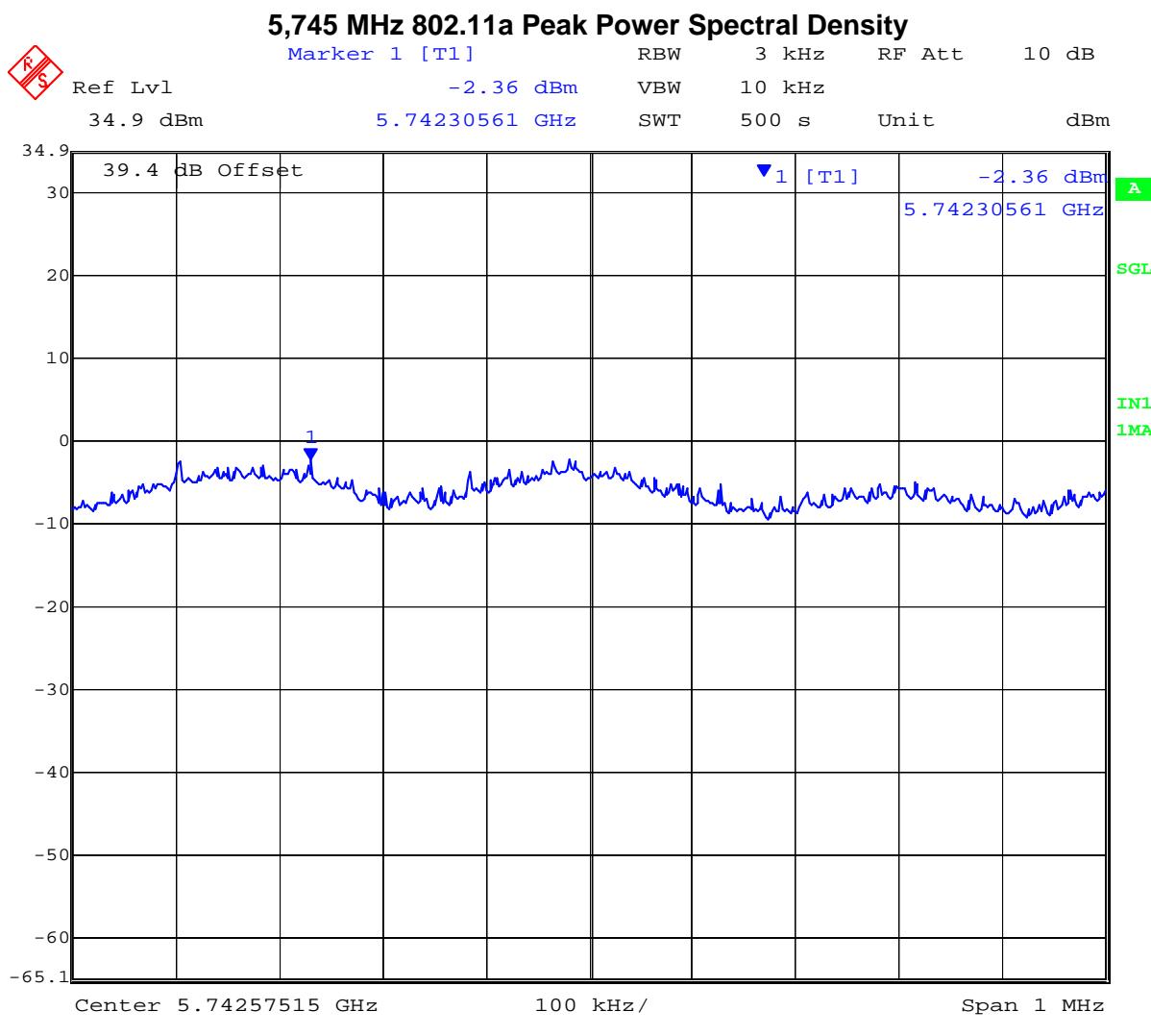
Test Measurement Set up

Measurement set up for Peak Power Spectral Density

Measurement Results for Peak Power Spectral Density

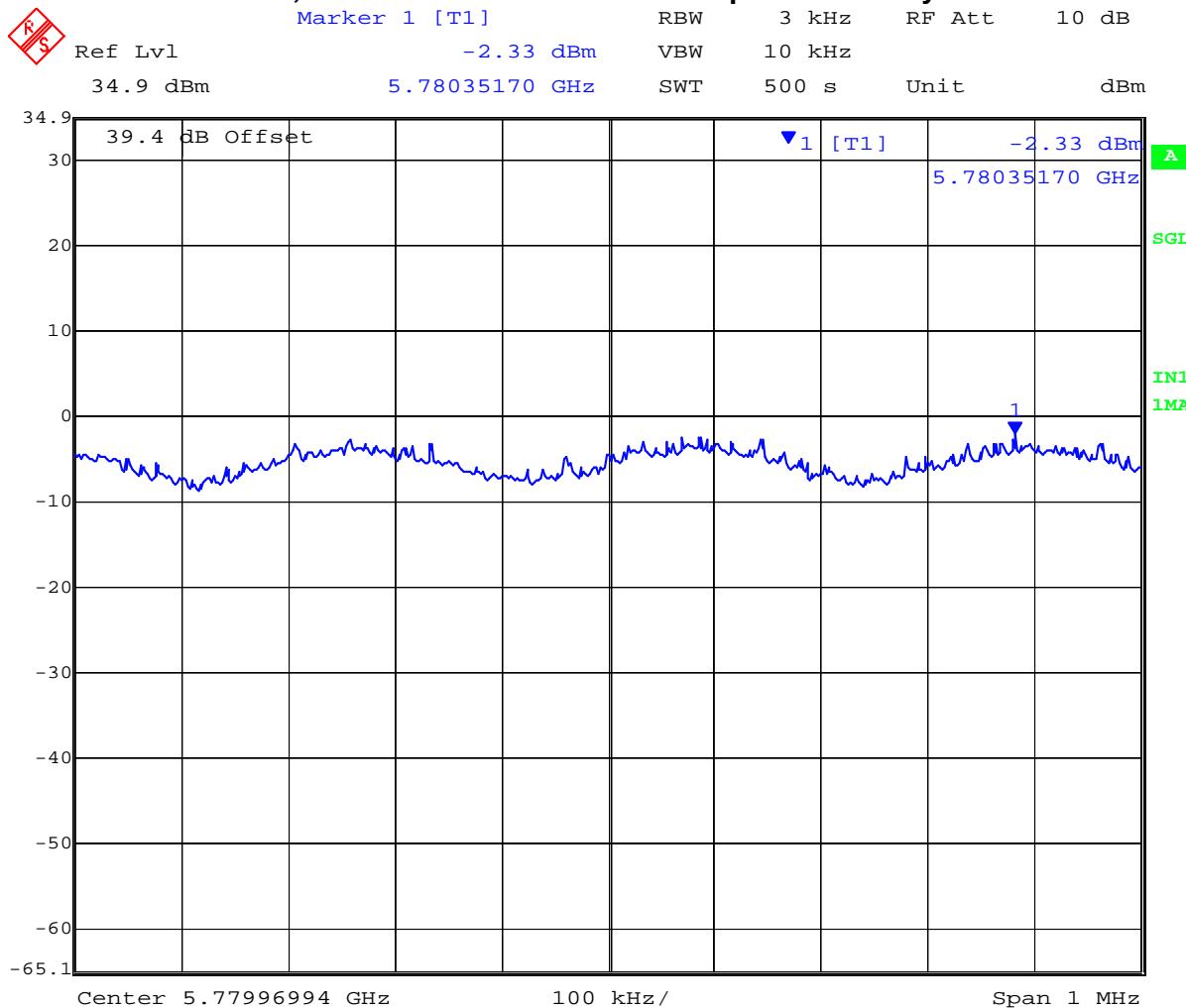
Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar


Radio Parameters

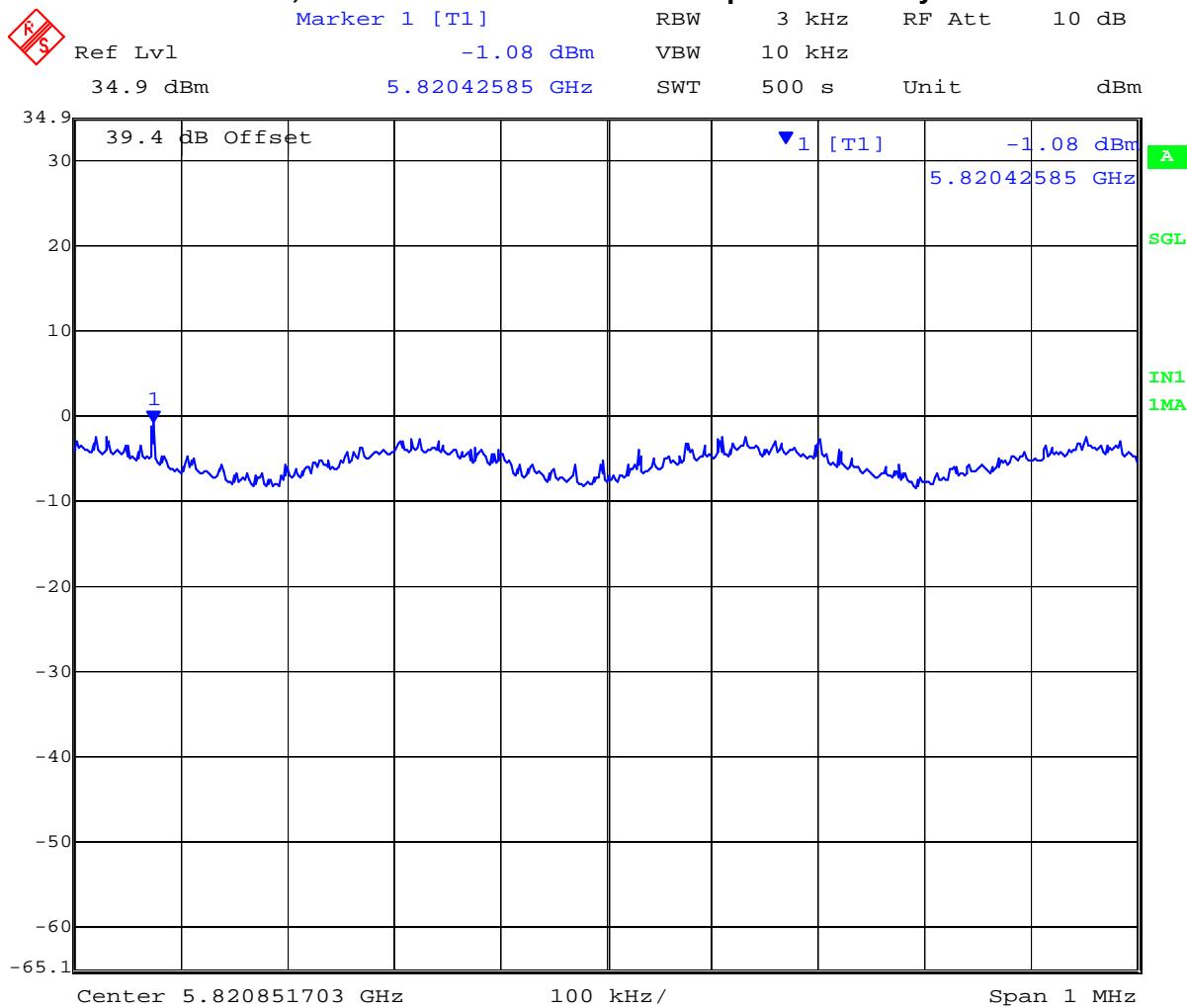
Duty Cycle: 100%

Output: Modulated Carrier


TABLE OF RESULTS – 802.11a – 6Mbit/s

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dBm)
5,745	5,742.30561	-2.36	+8	-10.36
5,785	5,780.35170	-2.33	+8	-10.33
5,825	5,820.42585	-1.08	+8	-11.08

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5,785 MHz 802.11a Peak Power Spectral Density

Date: 27.APR.2007 18:34:44

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5,825 MHz 802.11a Peak Power Spectral Density

Date: 27.APR.2007 17:55:13

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 32 of 62

Specification

Peak Power Spectral Density Limits

§15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0223, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 33 of 62

5.1.4. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i)

Calculations for Maximum Permissible Exposure Levels

$$\text{Power Density} = P_d \text{ (mW/cm}^2\text{)} = \text{EIRP}/(4\pi d^2)$$

$$\text{EIRP} = P * G$$

$$P = \text{Peak output power (mW)}$$

$$G = \text{Antenna numeric gain (numeric)}$$

$$d = \text{Separation distance (cm)}$$

$$\text{Numeric Gain} = 10 ^ {(G \text{ (dBi)})/10}$$

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Freq. Band (GHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit (cm)
5.8	34.5	2818.4	+28.91	778.1	418.0

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

Limit S = 1mW / cm² from 1.310 Table 1

Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.5. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(d); 15.205; 15.209

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions.

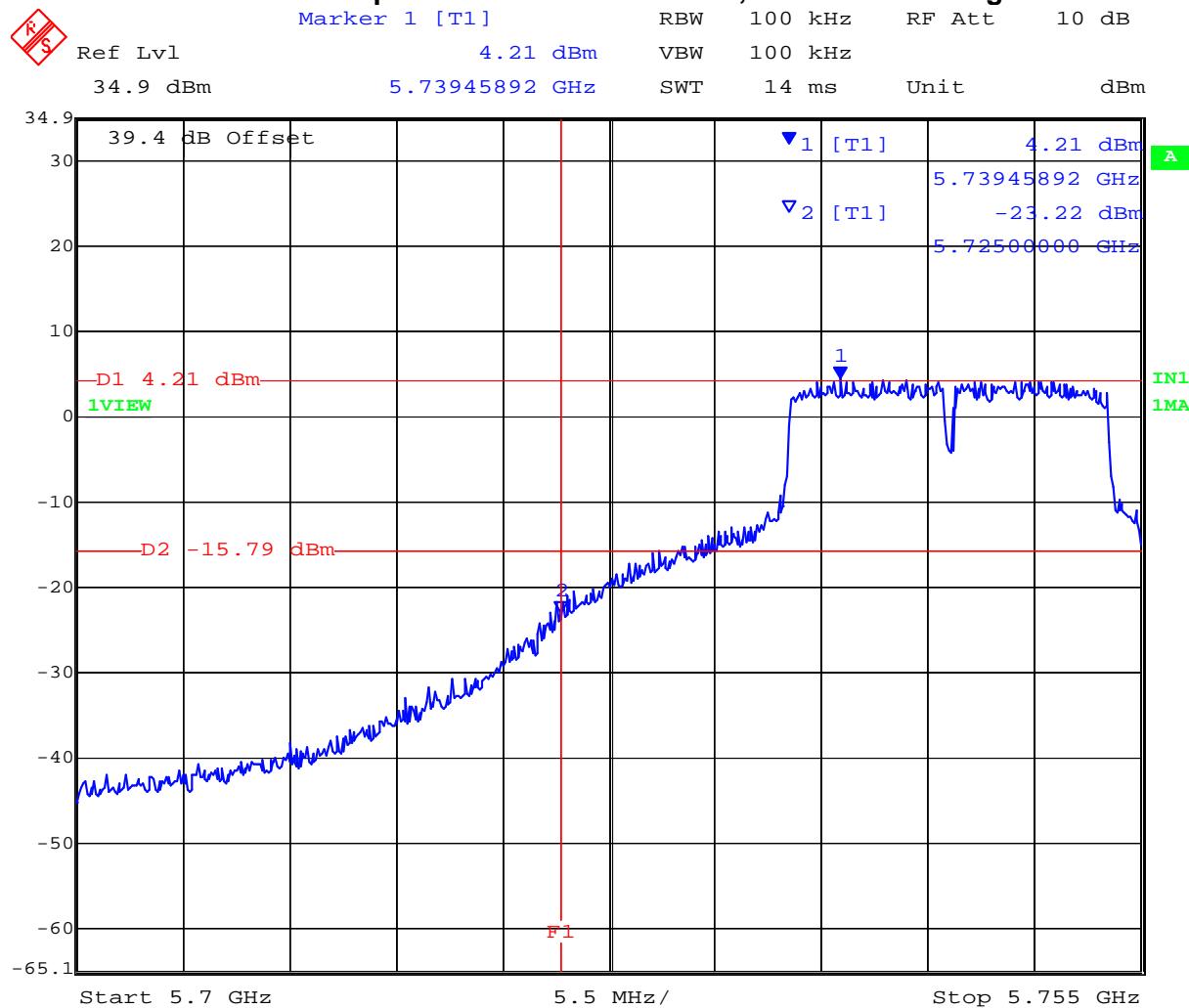
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Conducted Band-Edge Results

Measurements were performed with the transmitter tuned to the channel closest to the band-edge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

TABLE OF RESULTS – 802.11a – 6Mbit/s

Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (20 dB below peak of fundamental)	Amplitude @ Band edge (dBm)	Margin (dB)
5,745	5,725	-15.79	-23.22	-7.43
5,825	5,850	-15.36	-30.55	-15.19


Conducted Spurious Emissions at the 5,725 MHz Band Edge

Date: 27.APR.2007 19:31:00

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Conducted Spurious Emissions at the 5,850 MHz Band Edge

Date: 27.APR.2007 19:33:56

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

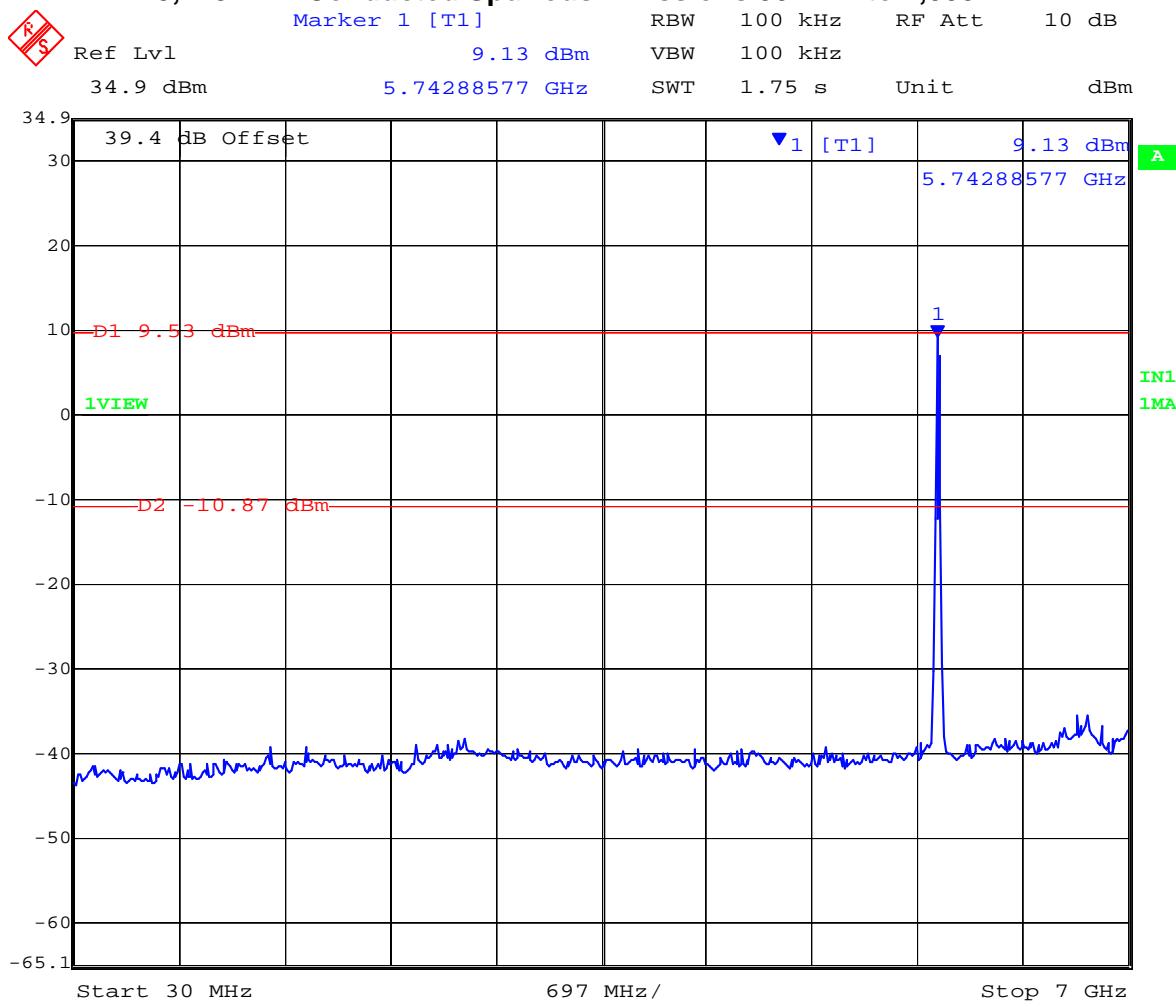
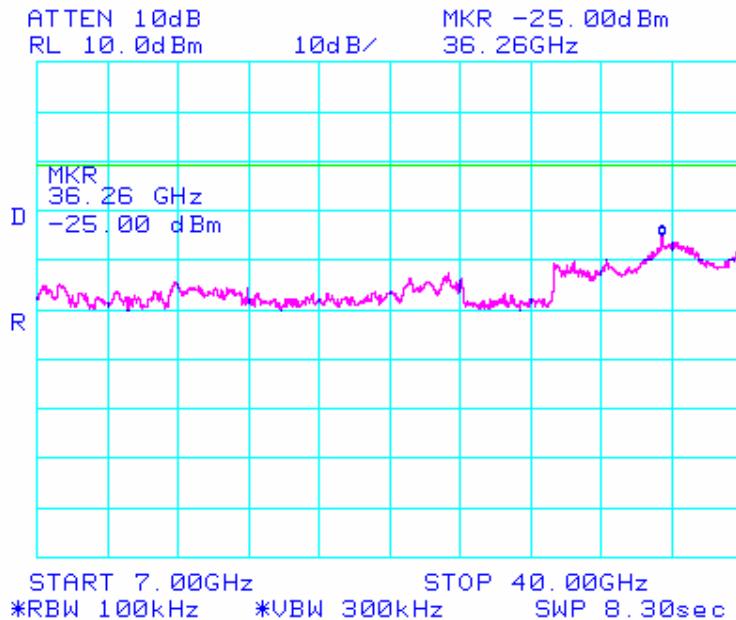

Spurious Emissions (30 - 40,000 MHz)

TABLE OF RESULTS – 802.11a – 6 Mbit/s

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
5,745	30	7,000	-35.00	-10.87	-24.13
5,745	7,000	40,000	-25.00	-10.87	-14.13

802.11a – 6 Mbit/s

5,745 MHz Conducted Spurious Emissions 30 MHz to 7,000 MHz



Date: 27.APR.2007 19:40:21

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

802.11a – 6 Mbit/s

5,745 MHz Conducted Spurious Emissions 7,000 MHz to 40,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

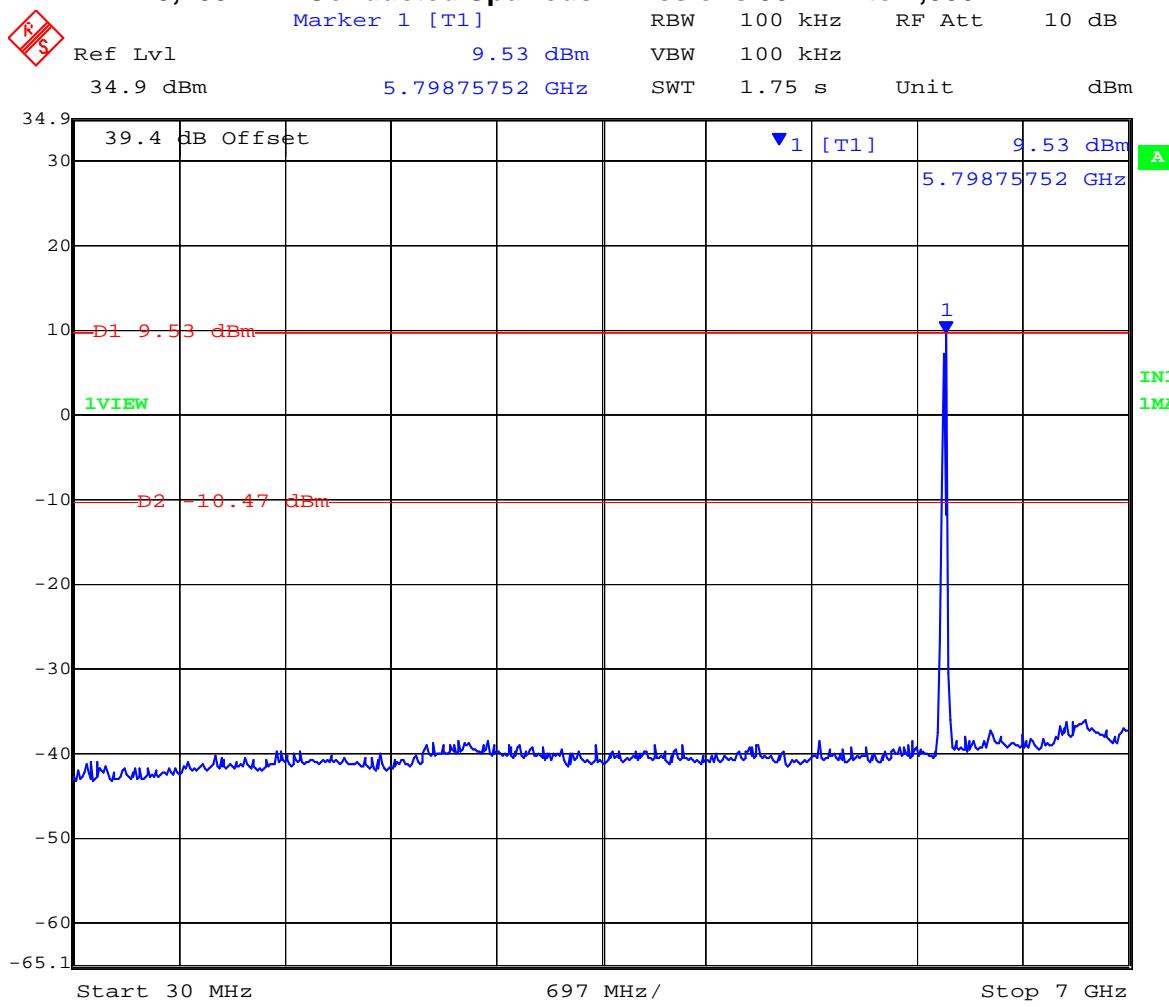
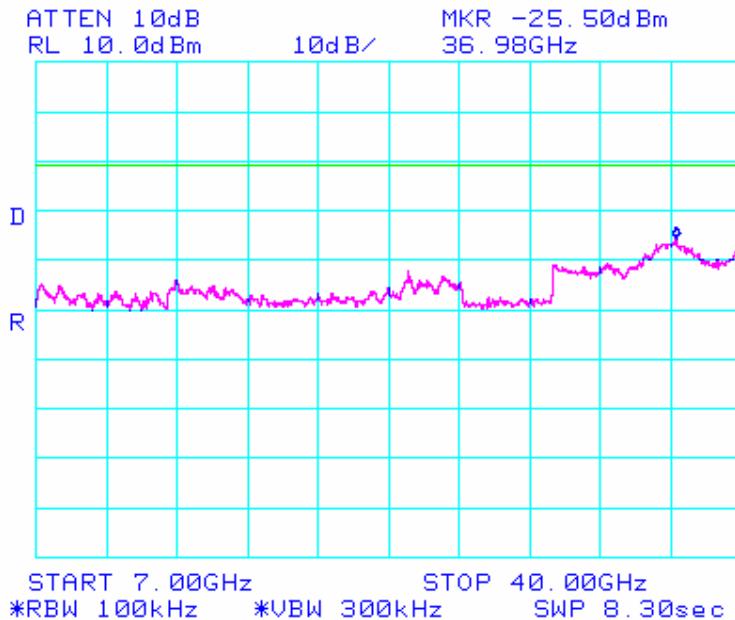

Spurious Emissions (30 - 40,000 MHz)

TABLE OF RESULTS – 802.11a – 6 Mbit/s

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
5,785	30	7,000	-36.00	-10.47	-25.53
5,785	7,000	40,000	-25.50	-10.47	-15.03

802.11a – 6 Mbit/s

5,785 MHz Conducted Spurious Emissions 30 MHz to 7,000 MHz



Date: 27.APR.2007 19:38:54

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

802.11a – 6 Mbit/s

5,785 MHz Conducted Spurious Emissions 7,000 MHz to 40,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

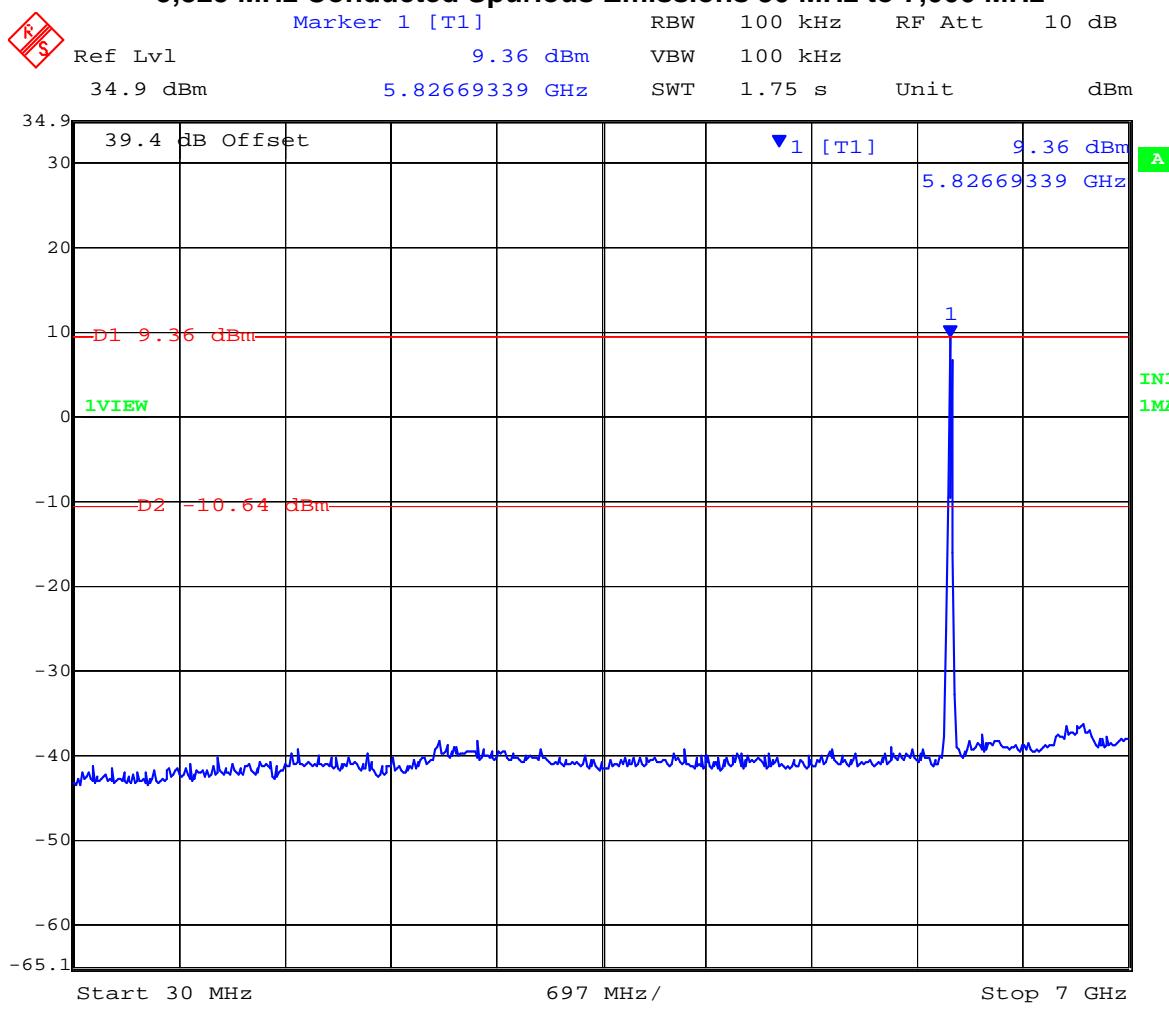
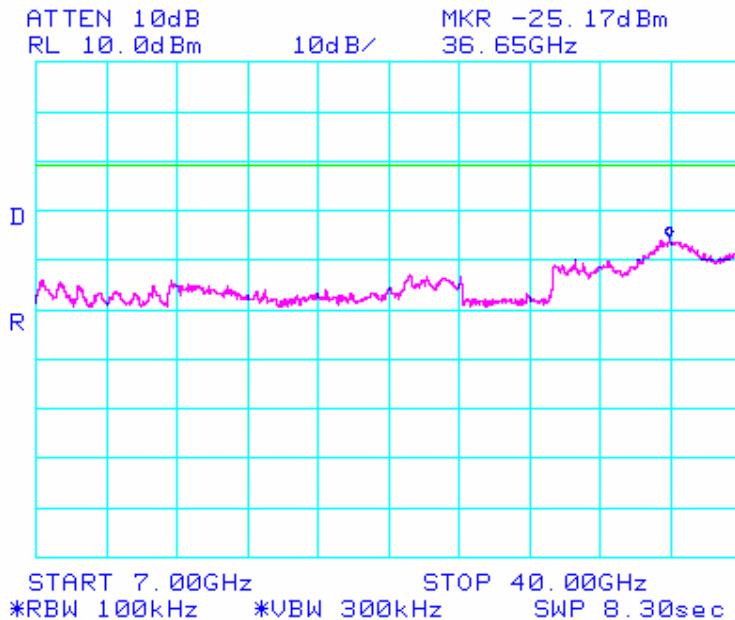

Spurious Emissions (30 - 40,000 MHz)

TABLE OF RESULTS – 802.11a – 6 Mbit/s

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
5,825	30	7,000	-36.00	-10.64	-25.36
5,825	7,000	40,000	-25.17	-10.64	-14.53

802.11a – 6 Mbit/s

5,825 MHz Conducted Spurious Emissions 30 MHz to 7,000 MHz



Date: 27.APR.2007 19:36:28

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

802.11a – 6 Mbit/s

5,825 MHz Conducted Spurious Emissions 7,000 MHz to 40,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 43 of 62

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
2,400 MHz	2,483.5 MHz	≥ 20 dB

§15.247(d) and In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

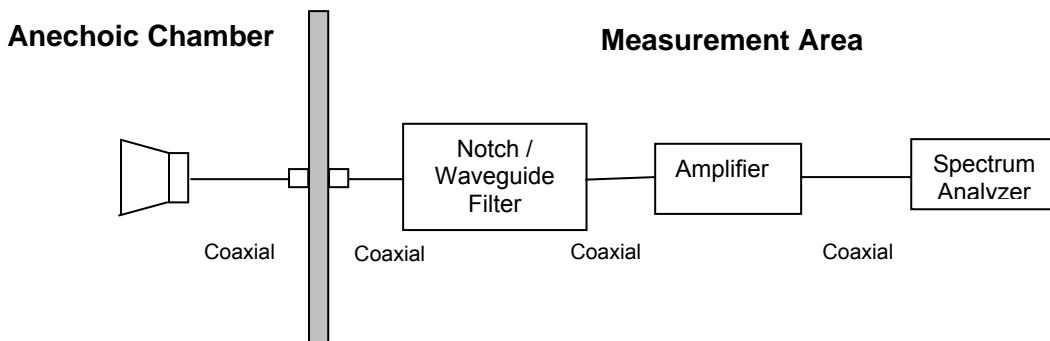
Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0088, 0158, 0193, 0252, 0313, 0314, 0223, 0116, 0117.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.6. Radiated Emissions

5.1.6.1. Transmitter Radiated Spurious Emissions (above 1 GHz)


FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 45 of 62

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

Ambient conditions.

Temperature: 17 to 23°C

Relative humidity: 31 to 57 %

Pressure: 999 to 1012 mbar

Radio Parameters

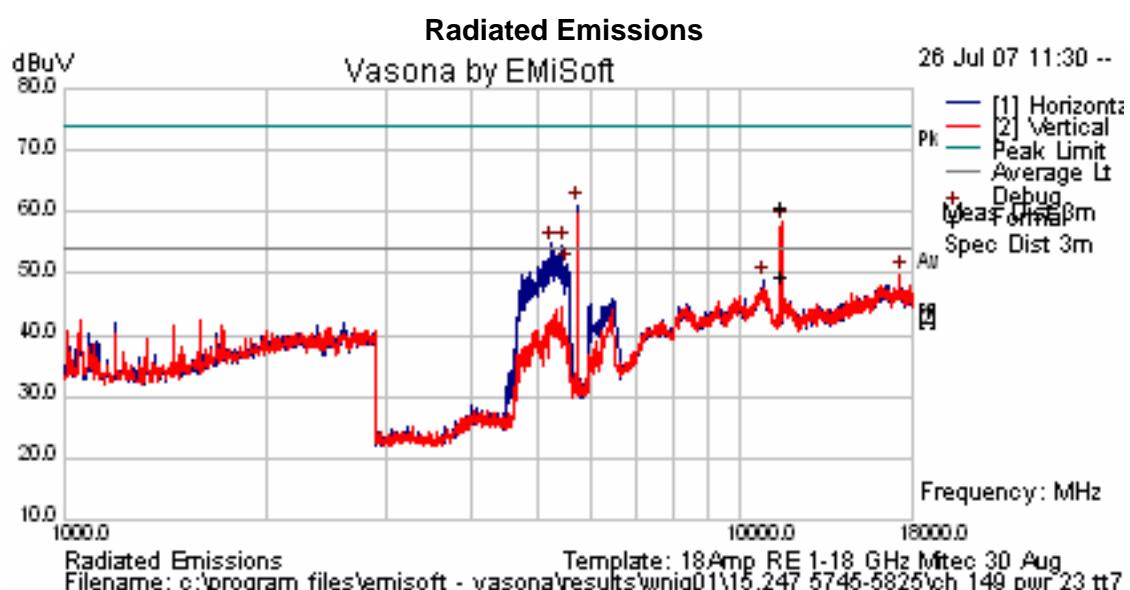
Duty Cycle: 100%

Output: Modulated Carrier

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Radiated Spurious Emissions above 1 GHz

Test Setup - 802.11a – 6Mb/s


TABLE OF RESULTS – 802.11a – 6 Mb/s Channel 149 (5,745) with 34.5 dBi Antenna,

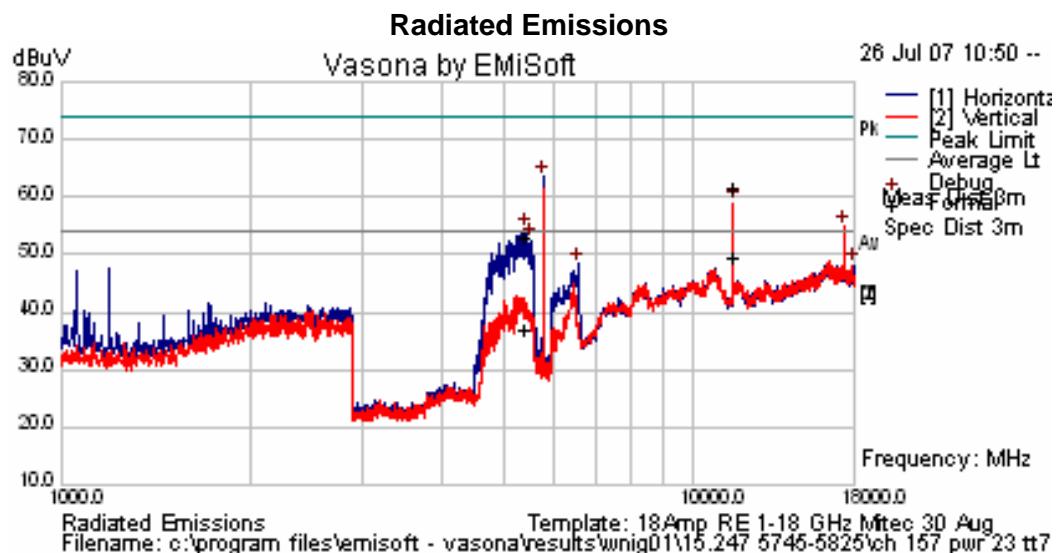
Peak

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Peak Limit (dB μ V/m)	Margin (dB)
11489.670	V	53.45	+5.47	58.92	74	-15.08
4879.708	H	57.28	-4.65	52.63	74	-21.37
5380.167	H	57.05	-4.00	53.05	74	-20.95
17233.580	V	39.17	+8.61	47.78	74	-26.22

Average

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)
11489.670	V	41.86	+5.47	47.33	54	-6.67
4879.708	H	38.83	-4.65	34.18	54	-19.82
5380.167	H	41.57	-4.00	37.57	54	-16.43
17233.580	V	36.15	+8.61	44.76	54	-9.24

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


TABLE OF RESULTS – 802.11a – 6 Mb/s Channel 157 (5,785) with 34.5 dBi Antenna

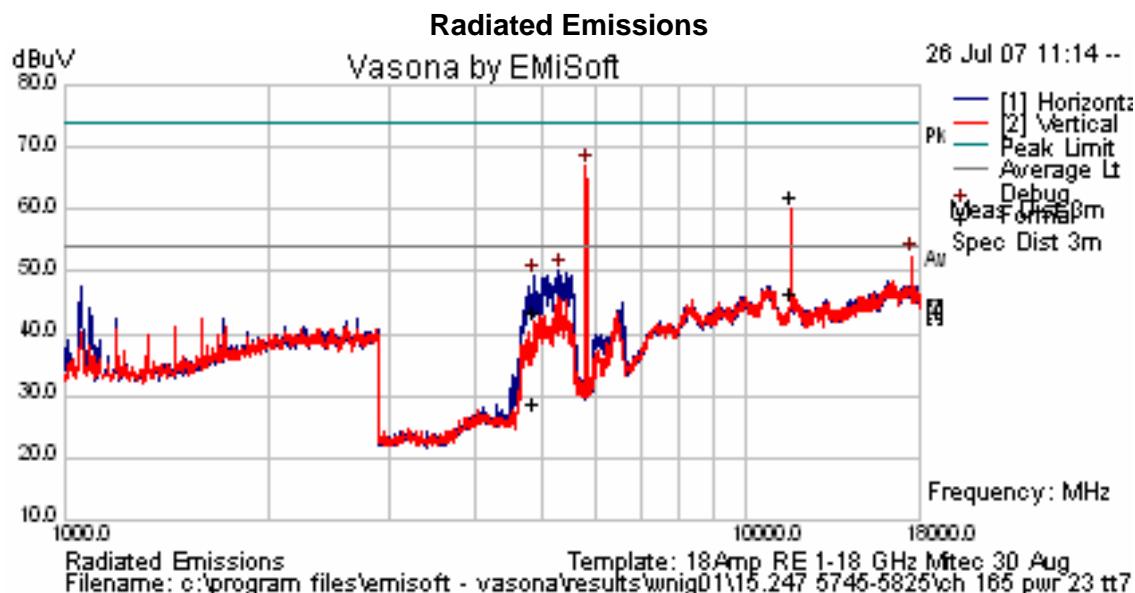
Peak

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Peak Limit (dB μ V/m)	Margin (dB)
5426.417	H	54.86	-3.80	51.06	74	-22.94
11572.000	V	53.97	+5.63	59.60	74	-14.40
17366.670	V	44.17	+10.62	54.79	74	-19.21

Average

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)
5426.417	H	38.60	-3.80	34.80	54	-19.20
11572.000	V	41.79	+5.63	47.42	54	-6.58
17366.670	V	40.17	+10.62	50.79	54	-3.21

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


TABLE OF RESULTS – 802.11a – 6 Mb/s Channel 165 (5,825) with 34.5 dBi Antenna

Peak

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Peak Limit (dB μ V/m)	Margin (dB)
4866.917	V	45.97	-4.64	41.33	74	-32.67
11647.93	V	54.06	+5.79	59.85	74	-14.15
17483.33	V	42.00	+10.58	52.58	74	-21.42

Average

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)
4866.917	V	31.40	-4.64	26.76	54	-27.24
11647.93	V	38.6	+5.79	44.39	54	-9.61
17483.33	V	38.87	+10.58	49.45	54	-4.55

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 49 of 62

Specification Limits

FCC §15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 50 of 62

Laboratory Measurement Uncertainty for Radiated Emissions

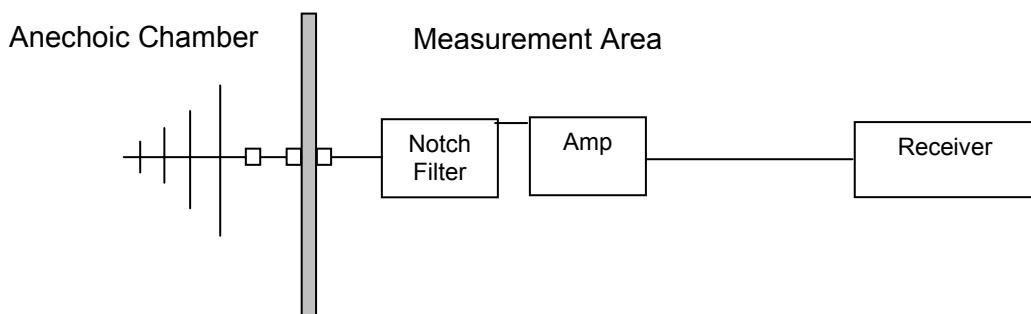
Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.6.2. Radiated Spurious Emissions (30M-1 GHz)


FCC, Part 15 Subpart C §15.205/ §15.209

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 52 of 62

For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$

Measurement Results for Spurious Emissions (30 MHz – 1 GHz)

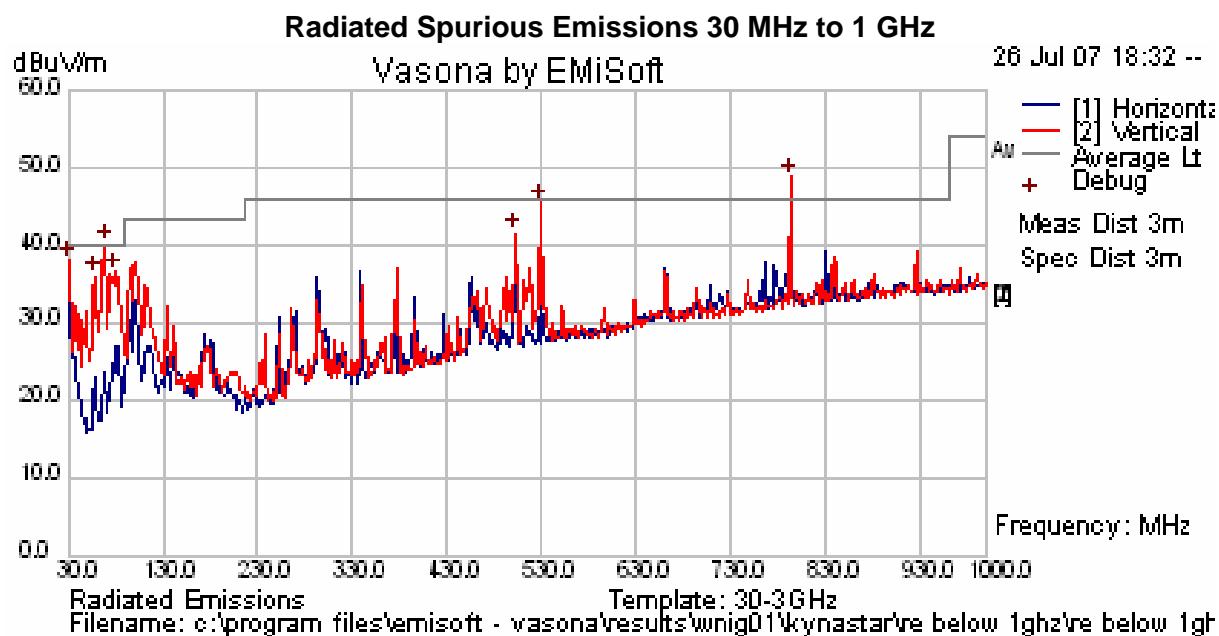
Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EUT parameters.

Transmitter operation: 802.11a

Data Rate(s): 6 Mb/s


Frequency: 5745 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS

Test Configuration - POE Converter,

Freq. (MHz)	Peak (dBuV/m)	QP (dBuV/m)	QP Lmt (dBuV/m)	QP Margin (dB)	Angle (deg)	Height (cm)	Polarity
68.997	40.16	37.92	40	-2.08	347	152	V
793.130	48.90	43.90	46	-2.10	110	334	H
529.824	45.47	43.30	46	-2.70	270	366	V
30.000	38.04	36.80	40	-3.20	72	98	V
83.379	36.70	35.10	40	-4.90	56	98	V
500.208	41.68	39.76	46	-6.24	231	104	V

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 54 of 62

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

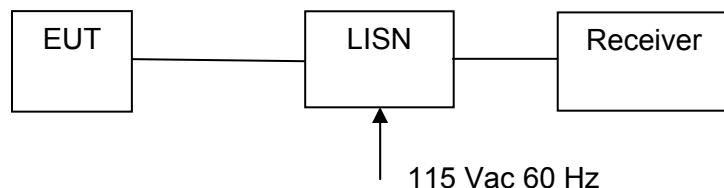
Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.7. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

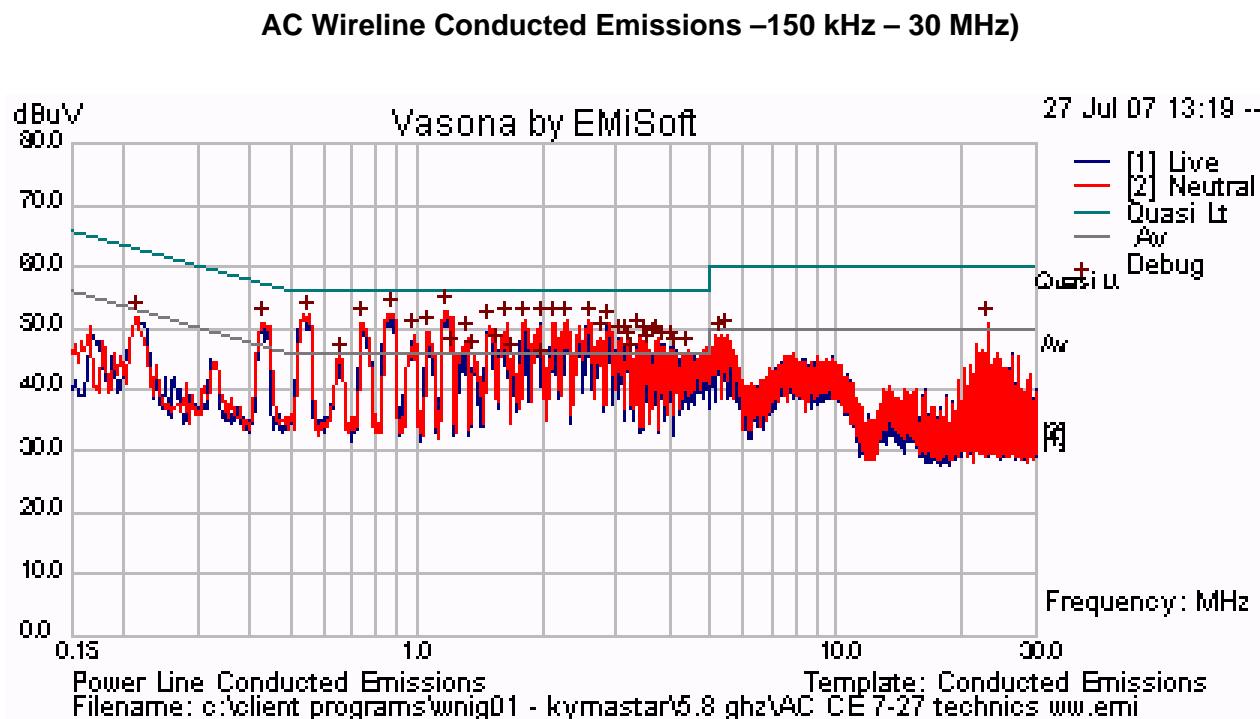
Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 56 of 62

TABLE OF RESULTS —

Freq (MHz)	LIne	Peak (dB μ V)	QP (dB μ V)	QP Limit (dB μ V)	QP Margin (dB)	Ave. (dB μ V)	Ave. Limit (dB μ V)	Ave. Margin (dB)
0.429	Neutral	50.88	49.82	57.28	-7.46	45.22	47.28	-2.05
23.128	Neutral	50.96	48.93	60	-11.07	46.63	50	-3.37
0.867	Neutral	52.41	45.26	56	-10.74	40.66	46	-5.34
0.221	Neutral	51.85	48.48	62.77	-14.29	43.88	52.77	-8.89
0.552	Neutral	52.22	42.3	56	-13.7	37.7	46	-8.30
1.177	Neutral	52.78	38.94	56	-17.06	36.64	46	-9.36

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 57 of 62

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

§15.207 (a) Limit Matrix

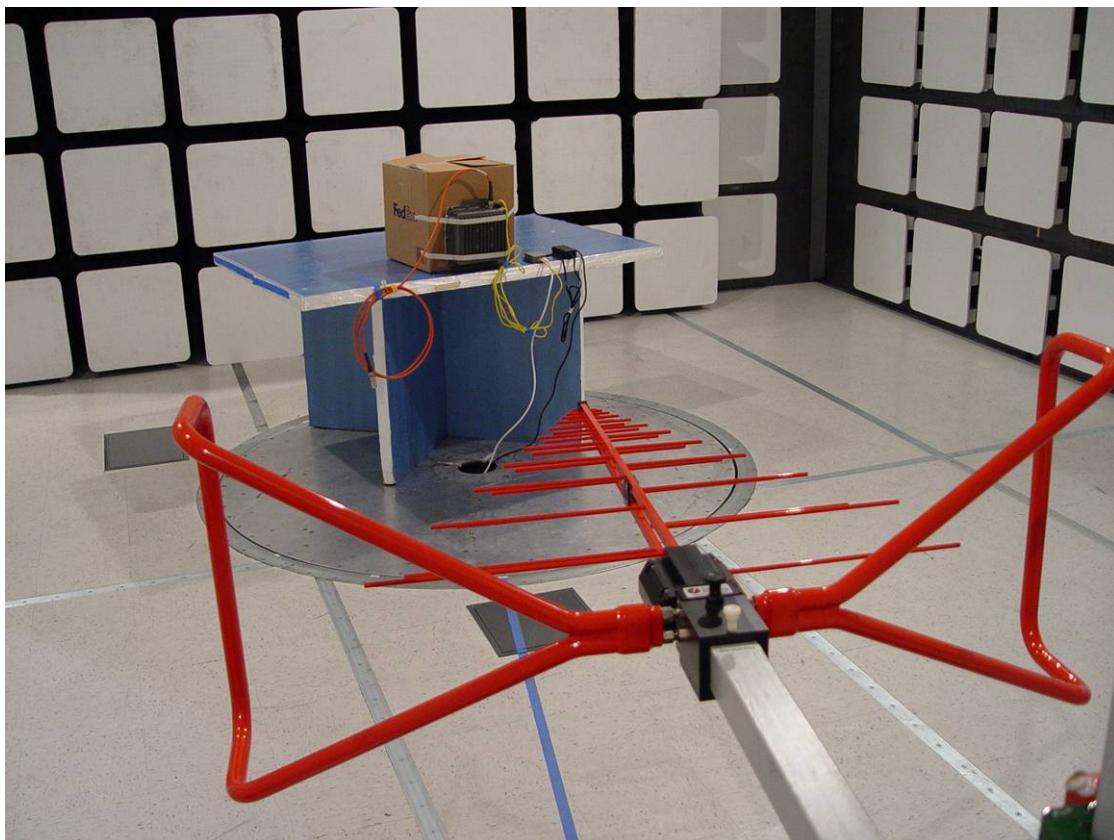
The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	± 2.64 dB
-------------------------	---------------


Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0193, 0190, 0293, 0307

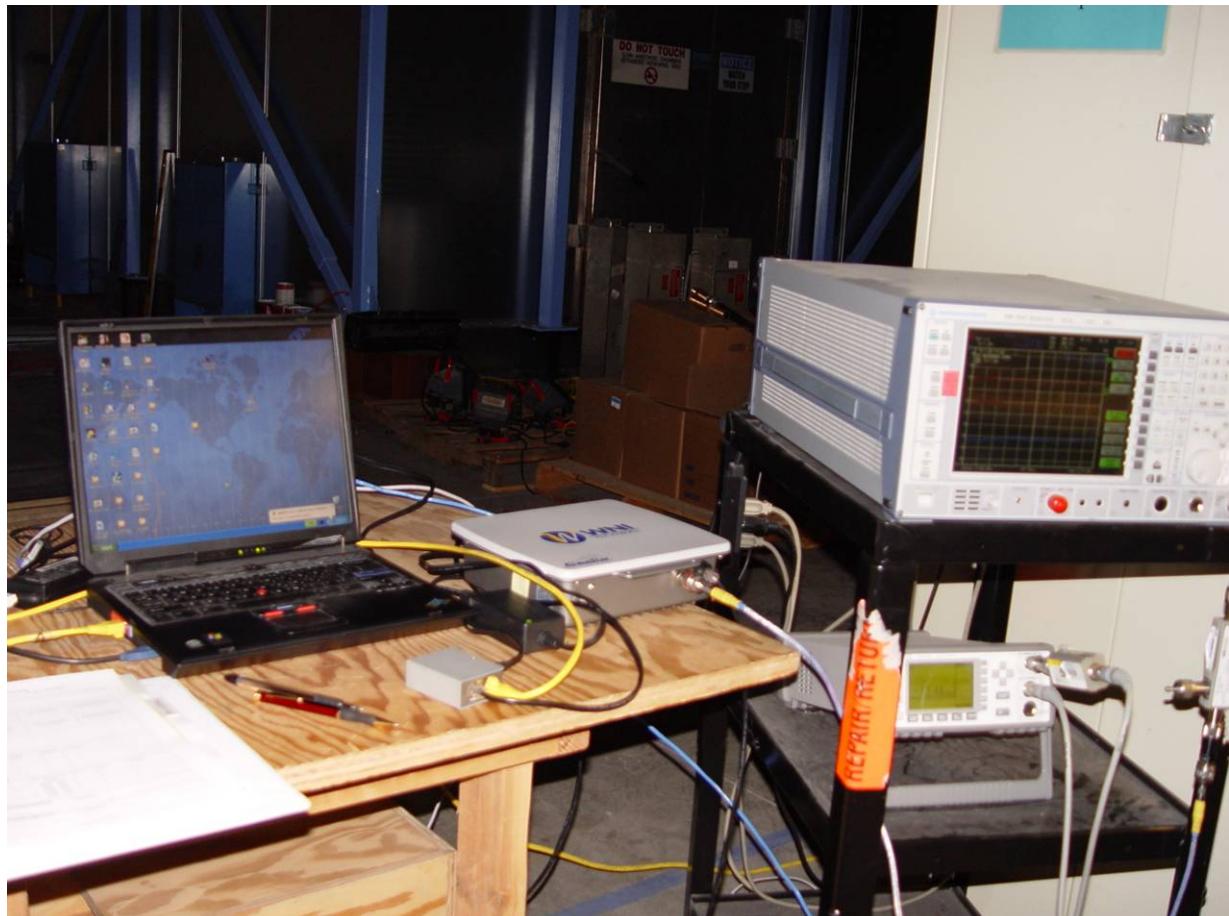
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6. PHOTOGRAPHS

6.1. Radiated Spurious Emissions

All ports had appropriate cables connected

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


6.2. AC Wireline Emissions (150 kHz - 30 MHz)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.3. General Measurement Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WNI Global KymaStar 802.11a 5.8 GHz
To: FCC 47 CFR Part15.247
Serial #: WNIG01-A6 Rev A
Issue Date: 14th August 2007
Page: 61 of 62

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787-3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181-3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0223	Power Meter	Hewlett Packard	EPM 442A	US37480256
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0301	5.6 GHz Notch Filter	Micro-Tronics	RBC50704	001
0302	5.25 GHz Notch Filter	Micro-Tronics	BRC50703	002
0303	5.8 GHz Notch Filter	Micro-Tronics	BRC50705	003
0304	2.4GHzHz Notch Filter	Micro-Tronics	--	001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0335	1-18GHz Horn Antenna	ETS- Lindgren	3117	00066580
0337	Amplifier	MiCOM Labs	--	--
0338	Antenna	Sunol Sciences	JB-3	A052907

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200
Pleasanton, CA 94566, USA
Tel: 1.925.462.0304
Fax: 1.925.462.0306
www.micomlabs.com