

FCC PART 90

TEST REPORT

For

Shenzhen Friendcom Technology Development Co., Ltd.

6/F,17 Building, Guangqian Industrial Park, Longzhu Road, Xili Town, Nanshan Shenzhen, China

FCC ID: UU3FC302U2F

Report Type:		Product Type:		
Original Report		FC-302 Data Radio		
		Candy. C	1	
Test Engineer:	Candy Li	J		
_				
Report Number:	_RSZ160105003-00			
Report Date:	2016-01-14			
	Jimmy Xiao	Jimmy	xiao	
Reviewed By:	•	1000		
Prepared By:				

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	4
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	7
APPLICABLE STANDARD	
RESULT	7
FCC §2.1046 & §90.205 - RF Output Power	8
APPLICABLE STANDARD	8
TEST PROCEDURE	
Test Equipment List and Details Test Data	
FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	
Applicable Standard	
Test Equipment List and Details Test Procedure	
TEST PROCEDURE	
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
Applicable Standard	
Test Equipment List and Details	
Test Procedure	17
TEST DATA	17
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	19
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure Test Data	
FCC §2.1055 & §90.213- FREQUENCY STABILITY	
Applicable Standard Test Equipment List and Details	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	

FCC PART 90

Page 2 of 23

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Shenzhen Friendcom Technology Development Co., Ltd.'s product, model number: FC-302 U2 (FCC ID: UU3FC302U2F) or the "EUT" in this report was a FC-302 Data Radio, which was measured approximately: 117 mm (L) × 63 mm (W) × 32 mm (H), rated input voltage: DC 12 V.

* All measurement and test data in this report was gathered from production sample serial number: 1601021 (Assigned by Applicant). The EUT supplied by the applicant was received on 2016-01-05.

Objective

This test report is prepared on behalf of *Shenzhen Friendcom Technology Development Co., Ltd.* in accordance with Part 2 and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC PART 90

Page 3 of 23

SYSTEM TEST CONFIGURATION

Description of Test Configuration

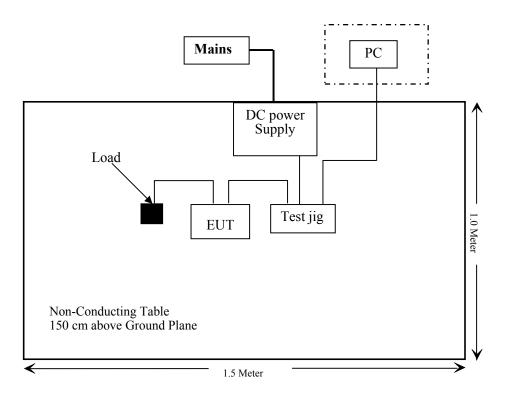
The system was configured for testing in a test mode which has been done in the factory.

EUT Exercise Software

1. FC-302 QuickSet En v0.1.11.exe 2. ComMonitor.exe

Equipment Modifications

No modification was made to the EUT tested.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
GWINSTEK	DC Power Supply	GPS-3030DD	N/A
N/A	50 ohm Load	N/A	N/A
Friendcom	Test jig	FC-302-SetBoard V2	N/A

External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-shielding Detachable AC Power Cable	1.5	DC Power Supply	Mains
Un-shielding Detachable DC Power Cable	1.2	DC Power Supply	Test jig
Un-shielding Detachable RF Cable	0.5	EUT	Load
Un-shielding Detachable RSS 232Cable	0.3	EUT	Test jig
Un-shielding Detachable RS232-to-USB Cable	1.5	Test jip	PC

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307 (b) (1)& §2.1091	Maximum Permissible Exposure(MPE)	Compliance
§2.1046;§90.205	RF Output Power	Compliance*
§2.1047;§90.207	Modulation Characteristic	Compliance*
§2.1049;§90.209; §90.210	Occupied Bandwidth & Emission Mask	Compliance*
§2.1051;§90.210	Spurious Emission at Antenna Terminal Complia	
§2.1053;§90.210	Spurious Radiated Emissions	Compliance
§2.1055;§90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance*

Compliance*: The data of FM referred to FCC ID: UU3FC302U2D granted on 2016-01-04, report No.: RSZ151030001-00, which was tested by Bay Area Compliance Laboratories Corp. (Shenzhen).

Note: The EUT has the same FM modem board as the device of the FCC ID: UU3FC302U2D. Please refer to the attestation letter to get more details.

FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

	Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	$*(180/f^2)$	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain		Conducted Power		Evaluation	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	$(\mathrm{mW/cm}^2)$
470.0125	5.0	3.16	37.5	5623.4	100	0.14	0.31

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 100cm from nearby persons.

Result: Compliance

FCC §2.1046 & §90.205 - RF Output Power

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/WVideo B/W100 kHz300 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2015-08-22	2016-08-22
HP Agilent	RF Communication test set	8920A	3325U00859	2015-06-03	2016-06-03

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

The testing was performed by Candy Li on 2015-12-30.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

Note: For test data of Analog Modulation referred to model number FC-302 U2(FCC ID: UU3FC302U2D), report No.: RSZ151030001-00, issued on 2015-11-19, which was tested by Bay Area Compliance Laboratories Corp. (Shenzhen).

Report No.: RSZ160105003-00

Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	Output Power (dBm)	Output Power (W)	Result	
		450.0125		36.87	4.86	Pass	
		430.0123	High	37.35	5.43	Pass	
Digital-	l	470.0125		36.95	4.95	Pass	
4FSK (19200)		4/0.0125	470.0125		29.91	0.98	Pass
		489.9875	Low	30.17	1.04	Pass	
	10.5		407.90/3	407.70/J	29.97	0.99	Pass
	12.5	450.0125		36.92	4.92	Pass	
		450.0125	High	35.28	3.37	Pass	
Digital-	470.0125			36.90	4.90	Pass	
4FSK (9600)			470.0125	470.0125		29.94	0.99
			Low	30.23	1.05	Pass	
		489.9875		29.85	0.97	Pass	

Note:

For 12.5 kHz:

The rated high power is 5W. The limit of the high output power is 4.0W-6.0W. The rated low power is 1W. The limit of the low output power is 0.8W-1.2W.

FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.

2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.

3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd-3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- 3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.

(4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2015-08-22	2016-08-22
HP	RF Communication Test Set	8920A	3438A05201	2015-06-14	2016-06-13
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K0 3-101746-zn	2015-06-13	2016-06-13

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

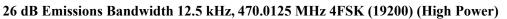
Test Procedure

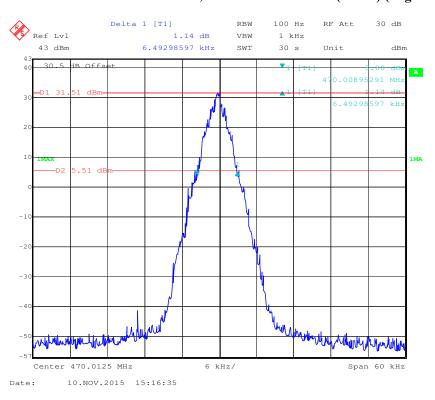
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

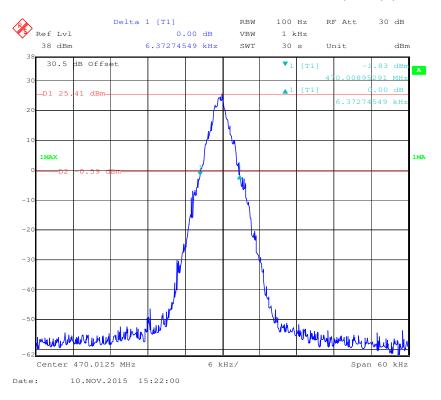
Test Data

Environmental Conditions

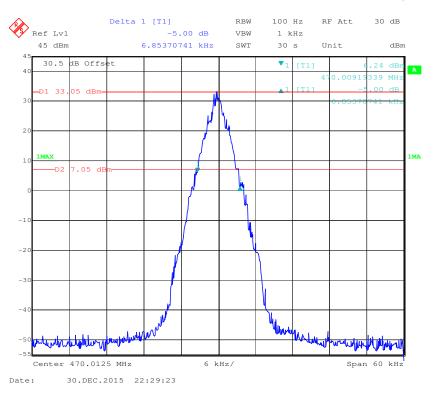

Temperature:	24~25 ℃
Relative Humidity:	45~55 %
ATM Pressure:	100.1~101.0 kPa


The testing was performed by Candy Li on 2015-11-10 and 2015-12-30.

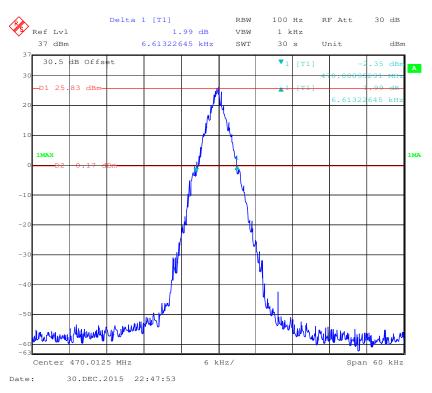
Test Mode: Transmitting


Note: For test data of Analog Modulation referred to model number FC-302 U2(FCC ID: UU3FC302U2D), report No.: RSZ151030001-00, issued on 2015-11-19, which was tested by Bay Area Compliance Laboratories Corp. (Shenzhen).

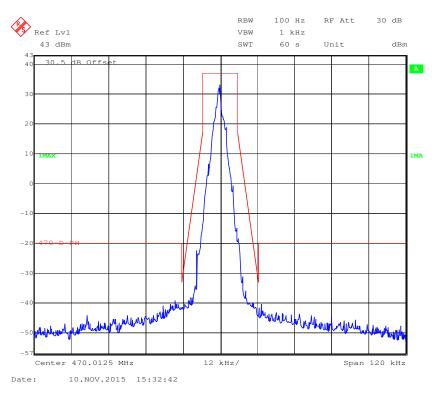
Modulation	Frequency (MHz)	Channel space (kHz)	Power Level	26 dB Emissions Bandwidth (kHz)
Digital-4FSK			High	6.49
(19200)	470.0125	10.5	Low	6.37
Digital-4FSK		12.5	High	6.85
(9600)			Low	6.61

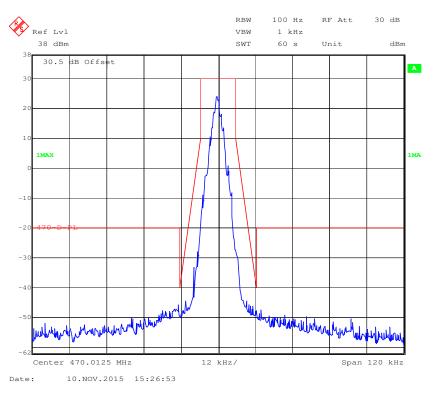



26 dB Emissions Bandwidth 12.5 kHz, 470.0125 MHz 4FSK (19200) (Low Power)

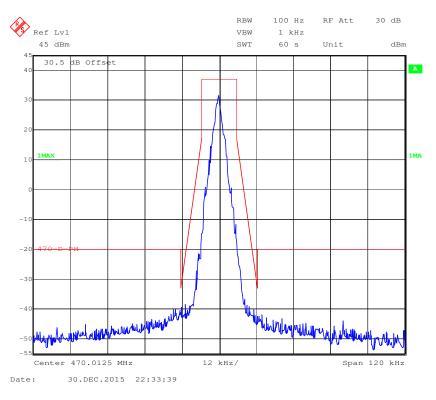


FCC PART 90

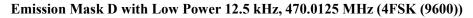

26 dB Emissions Bandwidth 12.5 kHz, 470.0125 MHz 4FSK (9600) (High Power)

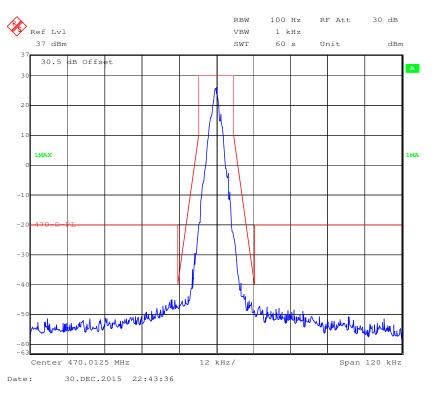

FCC PART 90

Page 13 of 23


Emission Mask D with High Power 12.5 kHz, 470.0125 MHz (4FSK (19200))

Emission Mask D with Low Power 12.5 kHz, 470.0125 MHz (4FSK (19200))




FCC PART 90

Page 14 of 23

Emission Mask D with High Power 12.5 kHz, 470.0125 MHz (4FSK (9600))

FCC PART 90

Page 15 of 23

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from $f_0, 0 \mbox{ dB}.$

2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.

3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.

2)On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd-3 kHz) or $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.

3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.

4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ160105003-00

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2015-08-22	2016-08-22

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz, and 1MHz for above 1GHz. sufficient scans were taken to show any out of band emissions up to 10th harmonic.

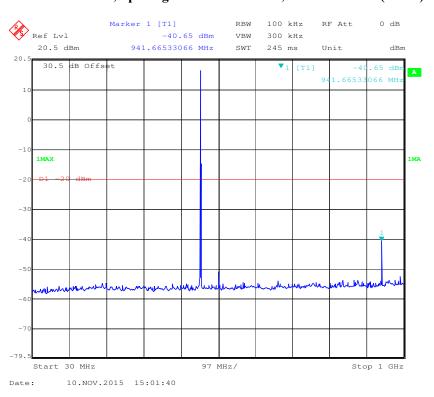
Test Data

Environmental Conditions

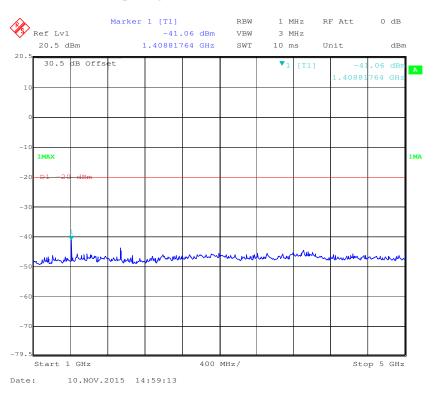
Temperature:	24 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

The testing was performed by Candy Li on 2015-11-10.

Test Mode: Transmitting


Note: For test data of Analog Modulation referred to model number FC-302 U2(FCC ID: UU3FC302U2D), report No.: RSZ151030001-00, issued on 2015-11-19, which was tested by Bay Area Compliance Laboratories Corp. (Shenzhen).

We had pre-tested with the data rate 19200 and 9600. The data rate of 19200 was the worst case.


Please refer to the following plots.

Digital Modulation:

1 GHz – 5GHz, Spacing Channel 12.5 kHz, 470.0125 MHz (4FSK)

FCC PART 90

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2015-11-03	2016-11-03
HP	Amplifier	8447E	1937A01046	2015-05-06	2016-05-05
Sunol Sciences	Broadband Antenna	JB3	A111513	2014-06-18	2017-06-17
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2015-08-22	2016-08-22
Sunol Sciences	Horn Antenna	DRH-118	A052304	2013-12-01	2016-11-30
HP	Synthesized Sweeper	8341B	2624A00116	2015-06-03	2016-06-03
Mini-Circuits	Amplifier	ZVA-183-S+	5969001149	2015-04-23	2016-04-22
A.H. System	Horn Antenna	SAS-200/571	135	2015-02-11	2016-02-10
COM POWER	Dipole Antenna	AD-100	041000	NCR	NCR

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB =50+10 Log_{10} (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Spurious attenuation limit in dB =55+10 Log_{10} (power out in Watts) for EUT with a 6.25 kHz channel bandwidth.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

The testing was performed by Candy Li on 2015-12-31.

Test Mode: Transmitting

We had pre-tested with the data rate 19200 and 9600. The data rate of 19200 was the worst case.

30 MHz – 5 GHz:

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	FCC I	Part 90
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
		Analog	Modulatio	on 470.012	25MHz, C	hannel Sp	acing 12.5k	xHz		
119.24	42.98	221	1.2	Н	-54.0	0.26	0	-54.26	-20	34.26
119.24	43.98	286	1.8	V	-53.0	0.27	0	-53.27	-20	33.27
262.80	45.40	333	2.1	Н	-51.6	0.32	0	-51.92	-20	31.92
262.80	40.24	122	2.0	V	-56.8	0.32	0	-57.12	-20	37.12
940.03	56.26	263	1.6	Н	-40.7	0.70	0	-41.40	-20	21.40
940.03	50.50	236	1.5	V	-46.5	0.70	0	-47.20	-20	27.20
1410.04	47.42	205	1.5	Н	-50.4	1.23	6.40	-45.23	-20	25.23
1410.04	52.76	343	2.4	V	-45.1	1.23	6.40	-39.93	-20	19.93
		Analog	Modulatio	on 470.01	25MHz, C	Channel Sp	acing 6.25k	Hz		
262.80	45.64	235	1.8	Н	-51.4	0.32	0	-51.72	-25	26.72
262.80	39.52	278	2.2	V	-57.5	0.32	0	-57.82	-25	32.82
940.03	55.13	0	2.2	Н	-41.9	0.70	0	-42.60	-25	17.60
940.03	46.18	352	1.8	V	-50.8	0.70	0	-51.50	-25	26.50
1410.04	47.62	248	1.3	Н	-50.2	1.23	6.40	-45.03	-25	20.03
1410.04	51.04	338	2.2	V	-46.8	1.23	6.40	-41.63	-25	16.63

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ160105003-00

	Receiver	Turn	Rx An	itenna		Substitut	ed	Absolute	FCC I	Part 90
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
		Digital Mod	lulation 47	70.0125M	Hz, Chani	nel Spacin	g 12.5kHz	(4FSK)		
262.80	47.71	14	1.3	Н	-49.3	0.32	0	-49.62	-20	29.62
262.80	43.78	275	1.4	V	-53.2	0.32	0	-53.52	-20	33.52
433.52	42.58	341	1.4	Н	-54.4	0.44	0	-54.84	-20	34.84
433.52	39.91	0	2.5	V	-57.1	0.44	0	-57.54	-20	37.54
940.03	58.16	168	1.8	Н	-38.8	0.70	0	-39.50	-20	19.50
940.03	52.56	318	2.0	V	-44.4	0.70	0	-45.10	-20	25.10
1410.04	48.03	215	2.5	Н	-49.8	1.23	6.40	-44.63	-20	24.63
1410.04	51.68	266	1.2	V	-46.2	1.23	6.40	-41.03	-20	21.03

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain Margin = Limit- Absolute Level

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Hewlett-Packard	Frequency Counter	5343A	2232A00827	2013-05-09	2016-05-08
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2015-11-01	2016-11-01
Long Wei	DC Power Supply	TPR-6420D	398363	NCR	NCR

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	24 °C		
Relative Humidity:	49 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Candy Li on 2016-01-26.

Test Mode: Transmitting

Reference Frequency: 470.0125MHz, Limit: ±2.5 ppm, 12.5 kHz								
Test Env	ironment	Frequency Measure with Time Elapsed						
Temperature (℃)	Power Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)					
	Frequency Stability	v versus Input Temper	ature					
50	12.0	470.012412	-0.187					
40	12.0	470.012742	0.515					
30	12.0	470.012364	-0.289					
20	12.0	470.012247	-0.538					
10	12.0	470.012712	0.451					
0	12.0	470.012802	0.643					
-10	12.0	470.012912	0.877					
-20	12.0	470.012245	-0.543					
-30	12.0	470.012614	0.243					
	Frequency Stability versus Input Voltage							
20	10.2	470.012347	-0.326					
20	13.8	470.012267	-0.496					

Data rate 19200

Data rate 9600

Referen	Reference Frequency: 470.0125MHz, Limit: ±2.5 ppm, 12.5 kHz							
Test Env	vironment	Frequency Measure with Time Elapsed						
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)					
	Frequency Stability	y versus Input Temper	ature					
50	12.0	470.012275	-0.479					
40	12.0	470.012164	-0.715					
30	12.0	470.012424	-0.162					
20	12.0	470.012312	-0.400					
10	12.0	470.012547	0.100					
0	12.0	470.012647	0.313					
-10	12.0	470.012147	-0.751					
-20	12.0	470.012267	-0.496					
-30	12.0	470.012451	-0.104					
	Frequency Stability versus Input Voltage							
20	10.2	470.012241	-0.551					
20	13.8	470.012185	-0.670					

***** END OF REPORT *****

FCC PART 90

Page 23 of 23