

RF TEST REPORT

Report No.: SET2019-06537

Product Name: Mobile Computer

FCC ID: UTWXT30WA

IC: 6914A-XT30WA

Model No.: XT30

Applicant: Janam Technologies LLC

Address: 100 Crossways Park West Suite 105 Woodbury, NY 11797

Dates of Testing: 06/01/2019 —06/18/2019

Issued by: CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd.

Building 28/29, East of Shigu, Xili Industrial Zone, Xili Road,

Lab Location:

Nanshan District, Shenzhen, Guangdong, China

This test report consists of 24 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by Compliance Certification Service (Shenzhen) Inc. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to Compliance Certification Service (Shenzhen) Inc. within 20 days since the date when the report is received. It will not be taken into consideration beyond this limit.

	iest Report			
Product Name::	Mobile Computer			
Brand Name:	Janam			
Trade Name::	Janam			
Applicant::	Janam Technologies LLC			
Applicant Address::	100 Crossways Park West Suite 10	5 Woodbury, NY 11797		
Manufacturer::	Janam Technologies LLC.			
	100 Crossways Park West Suite 105 Woodbury, NY 1179			
Test Standards:	47 CFR Part 15 Subpart E 15.407 IC RSS-247(Issue 2, Feb. 2017)			
Test Result::	PASS			
Tested by::	Robin Luo 2019.	06.18		
	Robin Luo, Test Engineer			
Reviewed by::	Chris Jon 2019.	06.18		
	Chris You, Senior Egineer			
Approved by:	Shuangwan Zhang 2019.	06.18		

Shuangwen Zhang, Manager

TABLE OF CONTENTS

RF TEST REF	ORT	
1. GENERAI	LINFORMATION	
1.1. EUT Des	cription	
1.2. Test Stan	dards and Results	
1.3. Test Faci	lity	
2. U-NII DFS	RULE REQUIREMEN	TS
2.1. Working	modes and required test its	ems
2.2. Test limit	s and radar signal paramet	ers
3. TEST PRO	OCEDURE	
3.1. DFS Test	Setup configuration	1
3.2. BVADT	DFS Measurement system:	:1
4. TEST RES	SULTS	
		ENT
	•	
	C	Change History
Issue	Date	Reason for change
1.0	2019.06.18	First edition

1. General Information

1.1. EUT Description

EUT Type	Mobile Computer
Hardware Version	SQ51FW_MB_P0
Software Version	SQ51FW_EN_XX_WEDSR01_D_190527_02
EUT supports Radios application	WLAN5.0GHz 802.11a/n (HT20/40)/ac(VHT20/40/80)
	Master device
Operation	Slaver device with radar detection function
	Slaver device without radar detection function
Hotspot Mode	Not suppport(Client device)
	CCK, DQPSK, DBPSK for DSSS
Modulation Type	256QAM, 64QAM,16QAM, QPSK, BPSK for OFDM
	256QAM for OFDM in 11ac mode only
	802.11a: 54/48/36/24/18/12/9/6 Mbps
Transfer Rate	802.11n : up to 135 Mbps
	802.11ac: up to V9
	Band UNII-1: 5150 ~ 5250MHz
Eraguanay Danga	Band UNII-2a: 5250 ~ 5350MHz
Frequency Range	Band UNII-2c: 5500 ~ 5700MHz
	Band UNII-3: 5725 ~ 5850MHz
	802.11a: 20MHz
Channel Bandwidth	802.11n: 20MHz/40MHz
	802.11ac: 20MHz/40MHz/80MHz
	5150 MHz ~ 5250MHz/5725 MHz ~ 5850MHz:4/5 for
Channel Number	802.11a, 802.11n (HT20), 802.11ac (VHT20), 2 for
Chamiel Number	802.11n (HT40), 802.11ac(VHT40), 1 for 802.11ac
	(VHT80)
Antenna Type	Internal Antenna

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart E for the EUT FCC Certification:

No.	Identity	Document Title	
1	47 CFR Part 15	Dadia Eraguanay Davisas	
	Subpart E § 15.407	Radio Frequency Devices	
IC RSS-247		Digital Transmission Systems (DTSs), Frequency Hopping	
4	(Issue 2, Feb. 2017)	Systems(FHSs) and Licence-Exemp Local Area Network (LE-LAN)	
		Devices	
2	KDB Publication	UNII DFS Compliance Procedures New Rules	
2	905462 D02v02	ONIT DES Comphance Frocedures New Rules	
3	KDB Publication	UNII Clients Without Radar Detection New Rules	
3	905462 D03v01	Omi Chents without Radai Detection new Rules	

Test detailed items/section required by FCC and IC rules results are as below:

No.	FCC Rule	IC Rule	Description	Result
1	15.407	RSS-247 6.3.2(c)	Channel Move Time	PASS
2	15.407	RSS-247 6.3.2(d)	Channel Closing Transmission Time	PASS
3	15.407	RSS-247 6.3.2(e)	Non- Occupancy Period	PASS

1.3. Test Facility

NVLAP Lab Code: 201008-0

CCIC-SET is a third party testing organization accredited by NVLAP according to ISO/IEC 17025. The accreditation certificate number is 201008-0.

FCC- Designation Number: CN5031

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN5031, valid time is until December 31, 2018.

ISED Registration: 11185A-1

CAB identifier: CN0064

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A-1 on Aug. 04, 2016, valid time is until Dec. 31, 2019

2. U-NII DFS Rule Requirements

2.1. Working modes and required test items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

Table 1: Applicability of DFS Requirements prior to use a channel

	Operational Mode				
Requirement	Mostor	Client without radar	Client with radar		
	Master	detection	detection		
Non-Occupancy Period	√	Not required	√		
DFS Detection Threshold	√	Not required	√		
Channel Availability Check Time	√	Not required	Not required		
Uniform Spreading	√	Not required	Not required		
U-NII Detection Bandwidth	√	Not required	√		

Table 2: Applicability of DFS Requirements during normal operation

	Operational Mode			
Requirement	Mostor	Client without radar	Client with radar	
	Master	detection	detection	
DFS Detection Threshold	√	Not required	√	
Channel Closing Transmission Time	√	\checkmark	√	
Channel Move Time	√	√	√	
U-NII Detection Bandwidth	√	Not required	√ ·	

2.2. Test limits and radar signal parameters

DFS Detection thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Note 1 and 2)	
≥ 200 millwatt	-64 dBm	
< 200 millwatt	-62 dBm	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

DFS Response requirement values

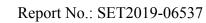
Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds See Note 1.		
	200 milliseconds + an aggregate of 60		
Channel Closing Transmission Time	milliseconds over remaining 10 second period.		
	See Notes 1 and 2.		
U-NII Detection Bandwidth	100% of the UNII transmission power		
U-IVII Detection bandwidth	bandwidth. See Note 3.		

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.


Parameters of DFS test signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short pluse radar test waveforms

Radar Type	Pulse width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A:15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B:15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1µsec, excluding PRI values selected in Test A	Roundup $ \frac{\left(\frac{1}{360}\right)}{\left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{vac}}}\right)} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate	80%	120		

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Long pulse radar test waveform

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

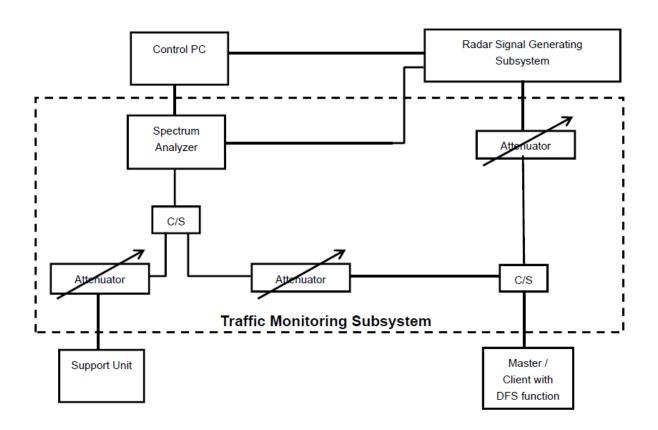
Frequency hopping radar test waveform


Radar Type	Pulse Width (μsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

3. Test Procedure

3.1. DFS Test Setup configuration

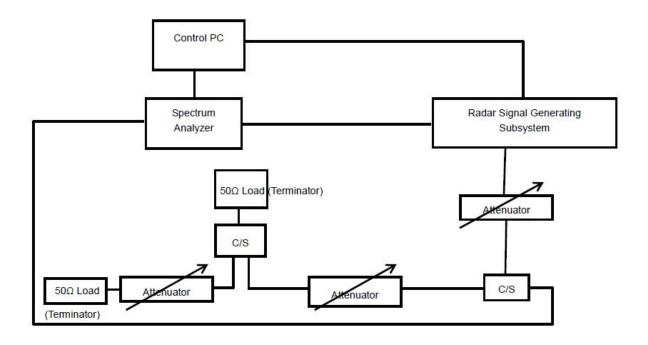
Client without Radar Detection Mode



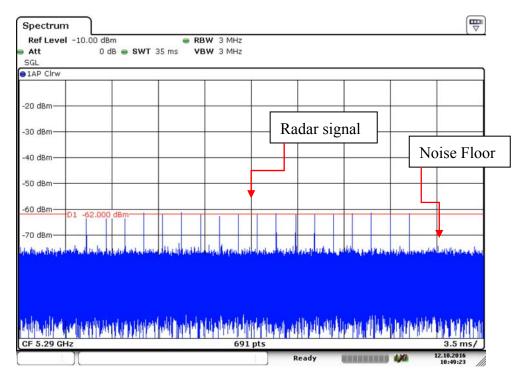
The UUT is a UNII device operating in client mode without radar detection. The radar test signals are injected into the master device.

3.2. BVADT DFS Measurement system:

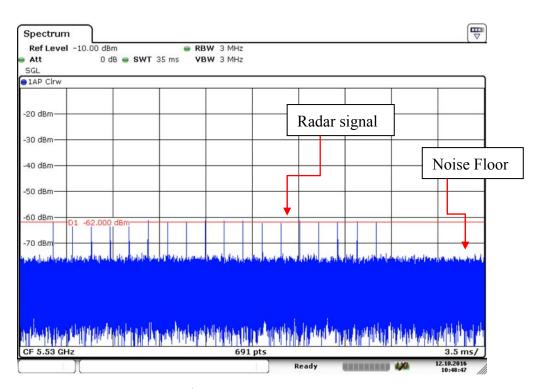
A complete BVADT DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 1, 2. The traffic monitoring subsystem is specified to the type of unit under test (UUT).


The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file (6 1/2Magic Hours) from Master device, the designated MPEG test file and instructions are located at: http://ntiacsd.ntia.doc.gov/dfs/.

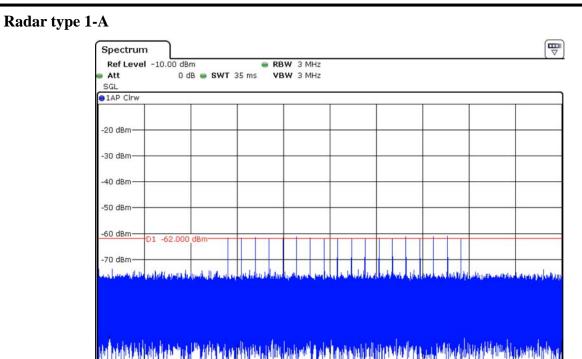
Calibration of DFS detection threshold level:


The measured channel is 5290 MHz and 5530MHz in 80MHz Bandwidth. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time.

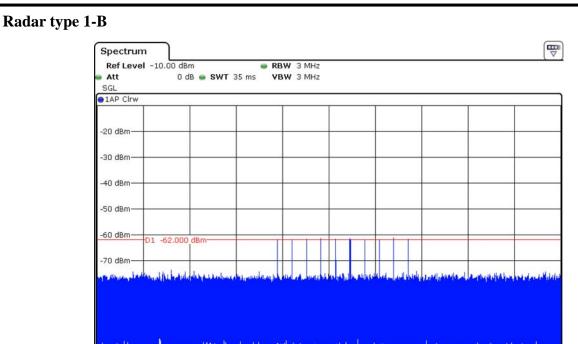
Conducted setup configuration of calibration of DFS detection threshold level

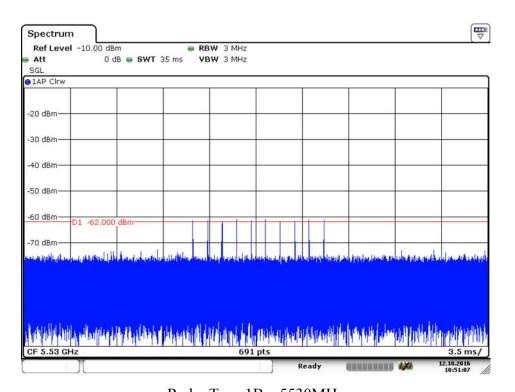


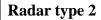
Calibration plots for each of the required radar waveforms Radar type $\boldsymbol{0}$

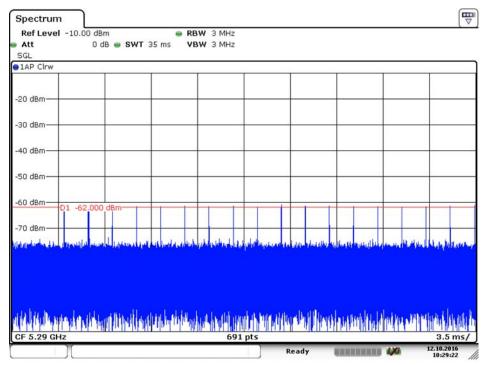

Radar Type 0 – 5290MHz


Radar Type 0 – 5530MHz

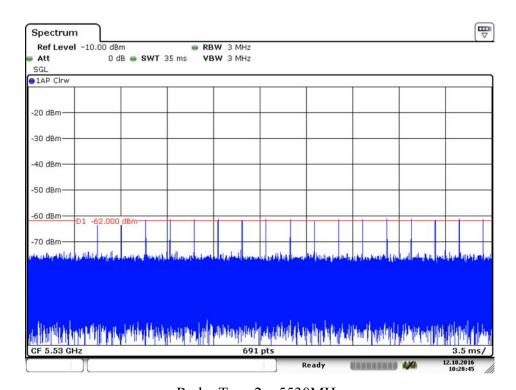

Radar Type 1A – 5290MHz

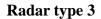

Radar Type 1A – 5530MHz

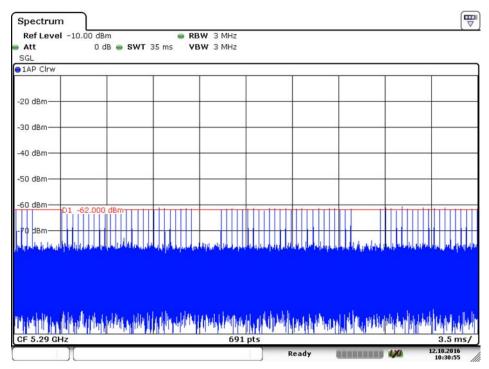

Radar Type 1B – 5290MHz



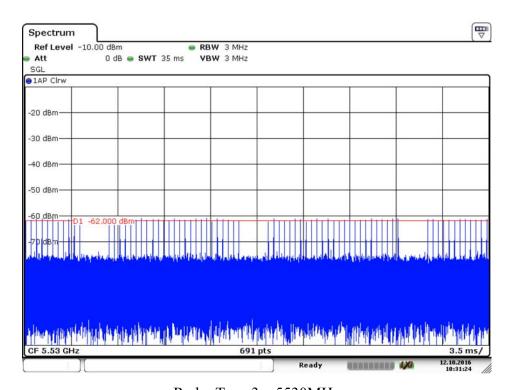
Radar Type 1B - 5530MHz



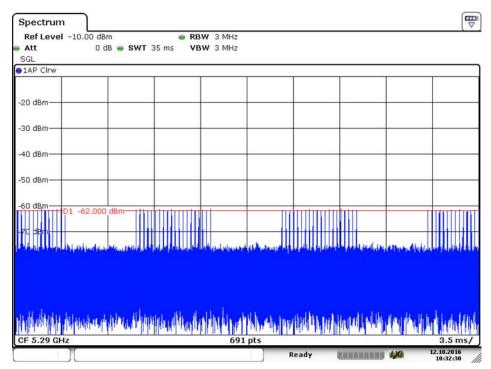

Radar Type 2 – 5290MHz



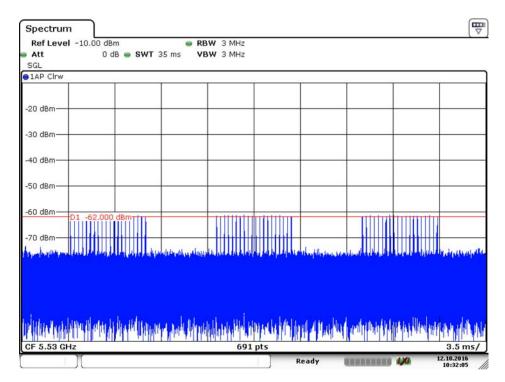
Radar Type 2 – 5530MHz



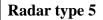
Radar Type 3 – 5290MHz

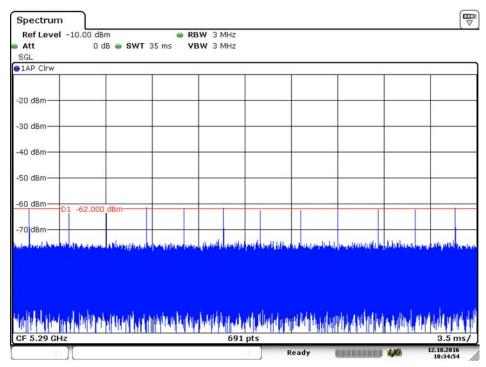


Radar Type 3 - 5530 MHz

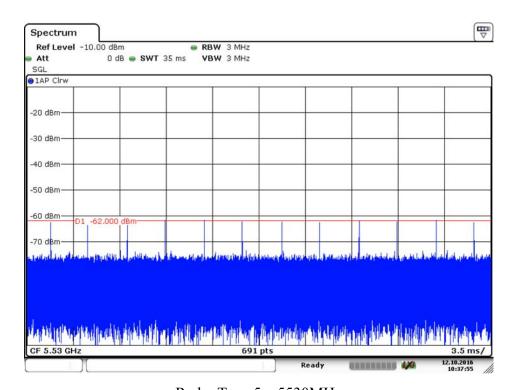


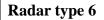
Radar type 4

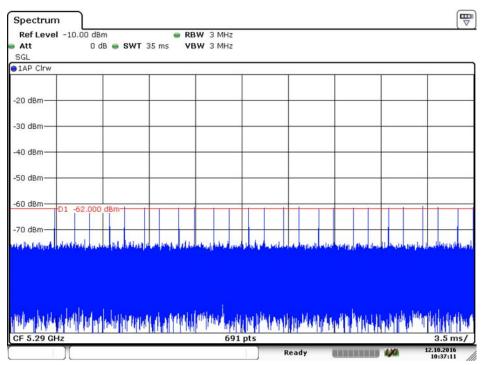

Radar Type 4 – 5290MHz



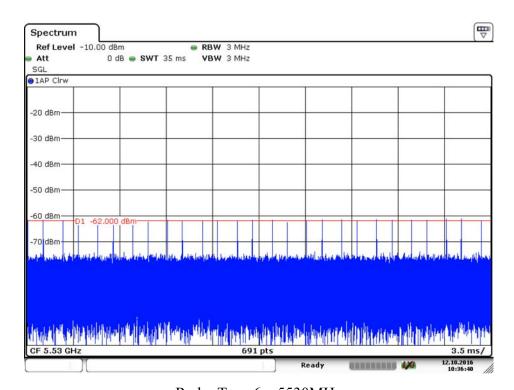
Radar Type 4 – 5530MHz




Radar Type 5 – 5290MHz

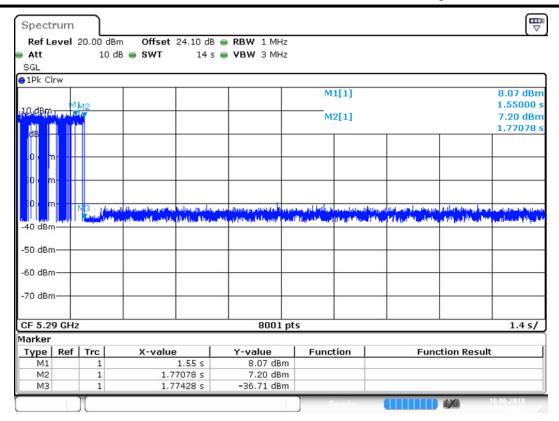


Radar Type 5 – 5530MHz



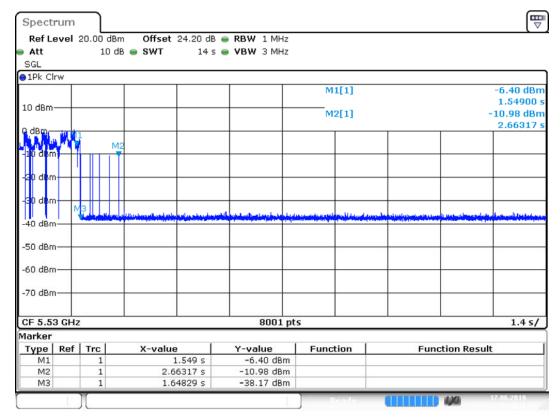
Radar Type 6 – 5290MHz

Radar Type 6 – 5530MHz

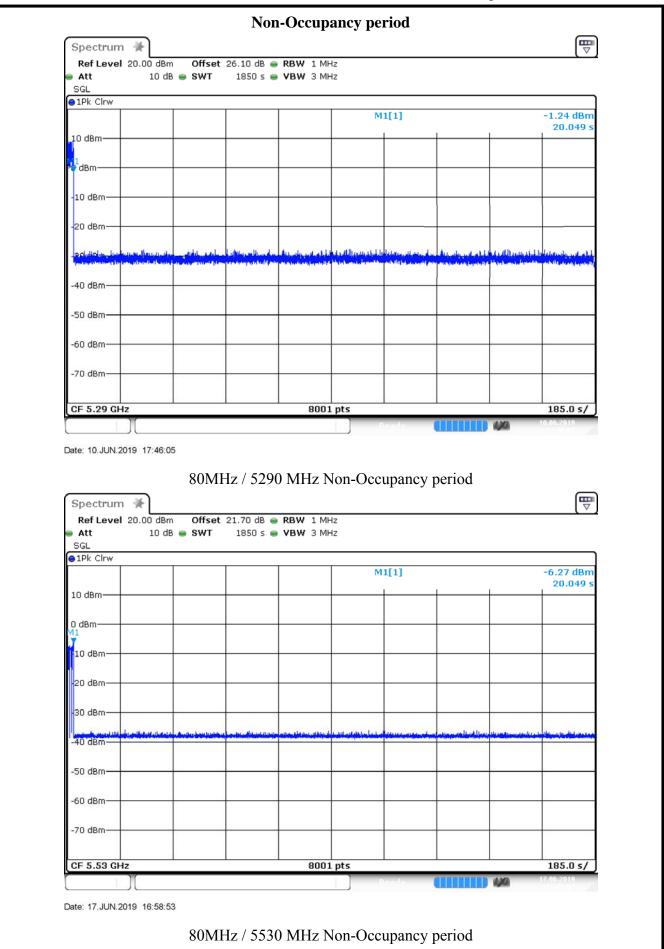


4. Test Results

Channel closing transmission and channel move time and Non-Occupancy period


Test Item	Operation Channel	Test Result	Limit	Pass / Fail
Channel Move Time		0.221	<10s	Pass
Channel Closing Transmission Time	58	225.722	<260ms	Pass
Non-Occupancy period		≥30	≥30min	Pass
Channel Move Time		1.11s	<10s	Pass
Channel Closing Transmission Time	106	208.75ms	<260ms	Pass
Non-Occupancy period		≥30	≥30min	Pass

Date: 10.JUN.2019 17:03:42


80MHz / 5290 MHz Closing Transmission Time and Channel Move Time

Date: 17.JUN.2019 16:23:11

80MHz / 5530 MHz Channel Move Time and Channel Move Time

5. List of measuring equipment

DFS Test System							
No.	Equipment Name	Serial No.	Model No.	Manufacturer	Cal Date	Due Date	
1	Spectrum Analyzer	101008	FSV-40	R&S	2019.05.08	2020.05.07	
2	Vector Signal Generator	105328	SMU200A	R&S	2019.04.01	2020.03.31	
3	30dB Attenuator	272.4410.50	30	MCE/Weinschel	2019.05.24	2020.05.23	
4	20dB Attenuator	04702	779	narda	2019.05.24	2020.05.23	
5	6dB Attenuator	BM8173	2	MCE/Weinschel	2019.05.24	2020.05.23	

Support Unit used in test configuration and system							
Equipment	Trade Name	Model Name	FCC ID	Serial No.			
WLAN AP	D-Link	DIR-826	KA2IR826LMO1	QBQ91C6000056			
Notebook	Lenovo	E40	\	TP00005A			

^{**} END OF REPORT **