Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DT&C (Dymstec) Certificate No: D2450V2-726 Sep21 | Object | D2450V2 - SN:72 | 26 | | |--|---|--|--| | Calibration procedure(s) | QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz | | between 0.7-3 GHz | | Calibration date: | September 22, 2 | 021 | | | | | ional standards, which realize the physical un | | | | | robability are given on the following pages ar | | | All calibrations have been conducted | ed in the closed laborato | ry facility: environment temperature (22 ± 3)° | C and humidity < 70%. | | Calibration Equipment used (M&TE | E critical for calibration) | | | | | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | ID
SN: 104778 | Cal Date (Certificate No.)
09-Apr-21 (No. 217-03291/03292) | Scheduled Calibration
Apr-22 | | Power meter NRP | | | | | Power meter NRP
Power sensor NRP-Z91 | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291) | Apr-22
Apr-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292) | Apr-22
Apr-22
Apr-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20) | Apr-22
Apr-22
Apr-22
Apr-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21
Scheduled Check In house check: Oct-22 In house check: Oct-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | Certificate No: D2450V2-726_Sep21 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-726_Sep21 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 1.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 2.05 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 52.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.27 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-726_Sep21 Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.3 Ω + 4.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.1 dB | Report No.: DRRFCC2201-0021 # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.1 Ω + 7.5 Ω | |--------------------------------------|-----------------| | Return Loss | - 22.4 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.160 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-726_Sep21 Page 4 of 8 #### DASY5 Validation Report for Head TSL Date: 22.09.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:726 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.9 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51% Maximum value of SAR (measured) = 21.9 W/kg 0 dB = 21.9 W/kg = 13.40 dBW/kg Certificate No: D2450V2-726_Sep21 # Impedance Measurement Plot for Head TSL Certificate No: D2450V2-726_Sep21 ## **DASY5 Validation Report for Body TSL** Date: 22.09.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:726 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.05 \text{ S/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 28.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.8 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.1 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.27 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 54.3% Maximum value of SAR (measured) = 21.1 W/kg 0 dB = 21.1 W/kg = 13.25 dBW/kg # Impedance Measurement Plot for Body TSL Certificate No: D2450V2-726_Sep21 Page 8 of 8 #### Calibration Laboratory of Schmid &
Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DT&C (Dymstec) Certificate No: D2600V2-1016_Feb21 | ALIDITATION OF | ERTIFICATE | | | |--|---|--|---| | Object | D2600V2 - SN:10 | 016 | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | February 18, 202 | 1 | | | | | onal standards, which realize the physical uni | | | | | ry facility: environment temperature (22 ± 3)°C | | | | | | | | Calibration Equipment used (M&1) | E Childai for Calibration) | | | | | ID # | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards | 1 | Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) | Scheduled Calibration Apr-21 | | Primary Standards Power meter NRP | ID# | | | | Primary Standards Power meter NRP Power sensor NRP-Z91 | ID #
SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 | ID #
SN: 104778
SN: 103244 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100) | Apr-21
Apr-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | ID #
SN: 104778
SN: 103244
SN: 103245 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101) | Apr-21
Apr-21
Apr-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | ID #
SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106) | Apr-21
Apr-21
Apr-21
Apr-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Dec-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20)
Check Date (in house) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Dec-21
Nov-21 | | Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20)
Check Date (in house)
30-Oct-14 (in house check Oct-20) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (In house check Oct-20) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-21 | Certificate No: D2600V2-1016_Feb21 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: February 19, 2021 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of
calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1016_Feb21 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.6 ± 6 % | 2.03 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.0 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.2 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1016_Feb21 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.8 Ω - 5.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.4 Ω - 4.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.7 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.151 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2600V2-1016_Feb21 ## **DASY5 Validation Report for Head TSL** Date: 18.02.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1016 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.03$ S/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.2 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.35 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 49.8% Maximum value of SAR (measured) = 24.0 W/kg 0 dB = 24.0 W/kg = 13.80 dBW/kg ## Impedance Measurement Plot for Head TSL # DASY5 Validation Report for Body TSL Date: 18.02.2021 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1016 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.91, 7.91, 7.91) @ 2600 MHz; Calibrated: 28.12.2020 Report No.: DRRFCC2201-0021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.5 W/kg ## SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.14 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 51% Maximum value of SAR (measured) = 22.9 W/kg 0 dB = 22.9 W/kg = 13.60 dBW/kg ## Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DT&C (Dymstec) Certificate No: D5GHzV2-1103 Feb21 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1103 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: February 23, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and
humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | 1.65 | | Approved by: | Katja Pokovic | Technical Manager | as sec | Certificate No: D5GHzV2-1103_Feb21 Page 1 of 16 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: February 23, 2021 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1103_Feb21 Page 2 of 16 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | ## Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.49 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.4 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.59 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.78 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.85 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 87.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.51 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 4.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.72 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 86.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.9 ± 6 % | 5.09 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5800 MHz
| SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.5 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.3 ± 6 % | 5.43 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.07 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | #### Body TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.1 ± 6 % | 5.56 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.8 ± 6 % | 5.84 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 1-44 | | ## SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.81 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.5 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.6 ± 6 % | 5.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.85 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.6 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.2 ± 6 % | 6.27 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.04 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.4 W/kg ± 19.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 52.5 Ω - 7.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.8 dB | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 50.4 Ω - 1.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 36.6 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 51.5 Ω - 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.8 dB | # Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 54.7 Ω + 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | ## Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 50.8 Ω + 1.3 jΩ | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | - 36.4 dB | | | | ## Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 52.1 Ω - 3.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.7 dB | #### Antenna Parameters with Body TSL at 5300 MHz | Impedance, transformed to feed point | 50.0 Ω + 1.2 jΩ | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | - 38.3 dB | | | | ### Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 51.1 Ω - 0.4 jΩ | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | - 38.4 dB | | | | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | $56.0 \Omega + 2.8 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.1 dB | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 52.5 Ω + 2.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.2 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.207 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | |-----------------------| | nufactured by SPEAG | Certificate No: D5GHzV2-1103_Feb21 Page 10 of 16 #### DASY5 Validation Report for Head TSL Date: 22.02.2021 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.49$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.59$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.78 S/m; ϵ_r = 34.3; ρ = 1000 kg/m³ , Medium parameters used: f = 5600 MHz; σ = 4.88 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ =
5.09 S/m; ϵ_r = 33.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.87 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 8.29 W/kg; SAR(10 g) = 2.36 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 70.2% Maximum value of SAR (measured) = 18.7 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 79.89 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70% Maximum value of SAR (measured) = 19.5 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 79.35 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 8.85 W/kg; SAR(10 g) = 2.51 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.2% Maximum value of SAR (measured) = 20.7 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 79.43 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.72 W/kg; SAR(10 g) = 2.48 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.1% Maximum value of SAR (measured) = 19.8 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.66 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 8.44 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 19.6 W/kg #### Impedance Measurement Plot for Head TSL ## DASY5 Validation Report for Body TSL Date: 23.02.2021 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.43 \text{ S/m}$; $\varepsilon_r = 49.3$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5300 MHz; $\sigma = 5.56$ S/m; $\varepsilon_r = 49.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.84 \text{ S/m}$; $\varepsilon_r = 48.8$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 5.98 \text{ S/m}$; $\varepsilon_r = 48.6$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: f = 5800 MHz; $\sigma = 6.27$ S/m; $\epsilon_r = 48.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.23, 5.23, 5.23) @ 5300 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.31 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.07 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.1% Maximum value of SAR (measured) = 17.6 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.71 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 29,3 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.05 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 66.4% Maximum value of SAR (measured) = 17.8 W/kg Certificate No: D5GHzV2-1103_Feb21 Page 14 of 16 # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid; dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.77 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.14 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.6% Maximum value of SAR (measured) = 19.1 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.11 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.16 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.5% Maximum value of SAR (measured) = 19.3 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.39 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.04 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.8% Maximum value of SAR (measured) = 18.6 W/kg 0 dB = 19.3 W/kg = 12.86 dBW/kg # Impedance Measurement Plot for Body TSL # **APPENDIX C. – SAR Tissue Specifications** Report No.: DRRFCC2201-0021 TRF-RF-601(03)161101 Pages: 265 /283 The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove. Figure 3.9 Simulated Tissue **Table C.1 Composition of the Tissue Equivalent Matter** | Ingredients | Frequency (MHz) | | | | | | | | |--------------------------------|-----------------|-------|-------|-------|-------|-------|---------|---------| | (% by weight) | 83 | 55 | 1 9 | 000 | 2 4 | 150 | 5 200 ~ | - 5 800 | | Tissue Type | Head | Body | Head | Body | Head | Body | Head | Body | | Water | 40.19 | 50.75 | 55.24 | 70.23 | 71.88 | 73.40 | 65.52 | 80.00 | | Salt (NaCl) | 1.480 | 0.940 | 0.310 | 0.290 | 0.160 | 0.060 | - | - | | Sugar | 57.90 | 48.21 | - | - | - | - | - | - | | HEC | 0.250 | - | - | - | - | - | - | - | | Bactericide | 0.180 | 0.100 | - | - | - | - | - | - | | Triton X-100 | - | - | - | - | 19.97 | - | 17.24 | - | | DGBE | - | - | 44.45 | 29.48 | 7.990 | 26.54 | - | - | | Diethylene glycol hexyl ether | - | - | - | - | - | - | 17.24 | - | | Polysorbate (Tween) 80 | - | - | - | - | - | - | | 20.00 | | Target for Dielectric Constant | 41.5 | 55.2 | 40.0 | 53.3 | 39.2 | 52.7 | - | - | | Target for Conductivity (S/m) | 0.90 | 0.97 | 1.40 | 1.52 | 1.80 | 1.95 | - | - | Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol] Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether TRF-RF-601(03)161101 Pages: 266 /283 Table C.2 HSL/MSL750 (Head and Body liquids for 700 - 800 MHz) Report No.: DRRFCC2201-0021 | ltom | Head Tissue Simulation Liquids HSL750 | | | | | |--|--|--|--|--|--| | Item | Muscle (body) Tissue Simulation Liquids MSL750 | | | | | | Type No | SL AAH 075, SL AAM 075 | | | | | | Manufacturer | SPEAG | | | | | | The item is composed of the following ingredients: | | | | | | | H ² O | Water, 35 – 58% | | | | | | Sucrose | Sucrose, 40 – 60% | | | | | | NaCl | Sodium Chloride, 0 – 6% | | | | | | Hydroxyethyl-cellulose | Medium Viscosity (CAS# 9004-62-0), < 0.3% | | | | | | Preventol-D7 | Preservative: aqueous preparation, (CAS# 55965-84-9), containing 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, 0.1 – 0.6% | | | | | TRF-RF-601(03)161101 Pages: 267 /283 # **APPENDIX D. - SAR SYSTEM VALIDATION** Report No.: DRRFCC2201-0021 TRF-RF-601(03)161101 #### **SAR System Validation** Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR
measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media. Report No.: DRRFCC2201-0021 A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included. | SAR | Freq. | Dete | Probe | Probe | Ducha Ci | N. Daint | PERM. | PERM. COND. | | CW Validatio | n | МО | MOD. Validation | | | |--------|-------|------------|-------|--------|------------------|----------|--------|-------------|------------------|--------------------|-------------------|-----------|-----------------|------|--| | System | [MHz] | Date | SN | Туре | Probe CAL. Point | | (εr) | (σ) | Sensi-
tivity | Probe
Linearity | Probe
Isortopy | MOD. Type | Duty
Factor | PAR | | | D | 750 | 2021.02.15 | 3327 | ES3DV3 | 750 | Head | 41.931 | 0.887 | PASS | PASS | PASS | N/A | N/A | N/A | | | D | 750 | 2021.06.15 | 3866 | EX3DV4 | 750 | Head | 42.757 | 0.904 | PASS | PASS | PASS | N/A | N/A | N/A | | | D | 835 | 2021.02.16 | 3327 | ES3DV3 | 835 | Head | 41.037 | 0.896 | PASS | PASS | PASS | GMSK | PASS | N/A | | | E | 1 900 | 2021.12.16 | 7368 | EX3DV4 | 1 900 | Head | 40.201 | 1.431 | PASS | PASS | PASS | GMSK | PASS | N/A | | | С | 2 450 | 2021.05.10 | 3916 | EX3DV4 | 2 450 | Head | 39.493 | 1.852 | PASS | PASS | PASS | OFDM/TDD | PASS | PASS | | | D | 2 600 | 2021.02.18 | 3327 | ES3DV3 | 2 600 | Head | 39.051 | 1.953 | PASS | PASS | PASS | TDD | PASS | N/A | | | F | 5 200 | 2021.07.24 | 7337 | EX3DV4 | 5 200 | Head | 36.469 | 4.763 | PASS | PASS | PASS | OFDM | N/A | PASS | | | F | 5 300 | 2021.11.09 | 3933 | EX3DV4 | 5 300 | Head | 35.776 | 4.925 | PASS | PASS | PASS | OFDM | N/A | PASS | | | F | 5 500 | 2021.11.10 | 3933 | EX3DV4 | 5 500 | Head | 35.298 | 5.107 | PASS | PASS | PASS | OFDM | N/A | PASS | | | F | 5 600 | 2021.11.10 | 3933 | EX3DV4 | 5 600 | Head | 35.128 | 5.219 | PASS | PASS | PASS | OFDM | N/A | PASS | | | F | 5 800 | 2021.11.10 | 3933 | EX3DV4 | 5 800 | Head | 35.031 | 5.423 | PASS | PASS | PASS | OFDM | N/A | PASS | | **Table D.1 SAR System Validation Summary** NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664. TRF-RF-601(03)161101 Pages: 269 /283 # **APPENDIX E. – Description of Test Equipment** Report No.: DRRFCC2201-0021 TRF-RF-601(03)161101 ## **E.1 SAR Measurement Setup** Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. E.1.1). A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3 770 3.40 GHz/ i7-8 700K 3.70 GHz/ i7-4 770 3.40 GHz/ i7-2 600 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5,A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure E.1.1 SAR Measurement System Setup The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail. TRF-RF-601(03)161101 Pages: 271 /283 ## **E.2 Probe Specification** Frequency 10 MHz to 4 GHz/4 MHz to 10 GHz **Linearity** ±0.2 dB(30 MHz to 4 GHz/30 MHz to 10 GHz) **Dynamic** 10 μ W/g to > 100 mW/g Range Linearity: ±0.2dB **Dimensions** Overall length: 337 mm Tip length 20 mm Body diameter 12 mm **Tip diameter** 3.9 mm/2.5 mm Distance from probe tip to sensor center 2.0 mm/1.0 mm **Application** SAR Dosimetry Testing Compliance tests of mobile phones Figure E.2.1 Triangular Probe Configurations Figure E.2.2 Probe Thick-Film Technique **DAE System** The SAR measurements were conducted with the dosimetric probe ES3DV3 and EX3DV4 designed in the classical triangular configuration(see E.2.1) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum. #### E.3 E-Probe Calibration Process #### **Dosimetric Assessment Procedure** Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ± 10 %. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested. #### Free Space Assessment The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees. #### **Temperature Assessment *** C E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ $SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$ where: where: Δt = exposure time (30 seconds), = heat capacity of tissue (brain or muscle), ΔT = temperature increase due to RF exposure. σ = simulated tissue conductivity, = Tissue density (1.25 g/cm³ for brain tissue) SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field; Figure E.3.1 E-Field and Temperature Measurements at 900MHz Figure E.3.2 E-Field and Temperature Measurements at 1 800MHz ### E.4 Data Extrapolation The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below; $$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$ with V_{i} = compensated signal of channel i (i=x,y,z) U_{i} = input signal of channel i (i=x,y,z) C_{i} = crest factor of exciting field (DASY parameter) C_{i} = crest factor of
exciting field (DASY parameter) From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: with V_i = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermetian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_x^2}$$ The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$ with SAR = local specific absorption rate in W/g = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ The power flow density is calculated assuming the excitation field to be a free space field. $P_{pwr} = \frac{E_{tot}^2}{3770}$ with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m #### **E.5 SAM Twin Phantom** The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. E.5.1) Figure E.5.1 SAM Twin Phantom ### **SAM Twin Phantom Specification:** Construction The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. Report No.: DRRFCC2201-0021 A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure. Shell Thickness (2 ± 0.2) mmFilling VolumeApprox. 25 litersDimensionsLength: 1000 mmWidth: 500 mm Height: adjustable feet #### Specific Anthropomorphic Mannequin (SAM) Specifications: The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. E.5.2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface. Figure E.5.2 Sam Twin Phantom shell TRF-RF-601(03)161101 Pages: 275 /283 #### **E.6 Device Holder for Transmitters** In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests. Figure E.6.1 Mounting Device TRF-RF-601(03)161101 # **E.7 Automated Test System Specifications** # **Positioner** Robot Stäubli Unimation Corp. Robot Model: TX90XL, TX60L Repeatability 0.02 mm No. of axis 6 # **Data Acquisition Electronic (DAE) System** Cell Controller **Processor** Intel Core i7-3 770/ i7-8 700K/ i7-4 770/ i7-2 600 Clock Speed 3.40 GHz/ 3.70 GHz Operating System Windows 7 Professional DASY5 PC-Board **Data Converter** Features Signal, multiplexer, A/D converter. & control logic Software DASY5 Connecting Lines Optical downlink for data and status info Optical uplink for commands and clock **PC Interface Card** **Function** 24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot **E-Field Probes** Model ES3DV3 S/N: 3327, EX3DV4 S/N: 7368, 3916, 3933, 3866, 7337 **Construction** Triangular core fiber optic detection system Frequency 10 MHz to 4 GHz/4 MHz to 10 GHz **Linearity** ±0.2 dB (30 MHz to 4 GHz/30 MHz to 10 GHz) **Phantom** **Phantom** SAM Twin Phantom (V5.0) Shell MaterialCompositeThickness (2.0 ± 0.2) mm Figure E.7.1 DASY5 Test System # APPENDIX F. – Power reduction verification with proximity sensor enabled TRF-RF-601(03)161101 Pages: 278 /283 - Power reduction and Proximity Sensor information of XM75P F.1 Cap Sensor (proximity sensor) Power Measurement, Triggering Distance - (1) Power reduction by proximity (capacitance) sensing: WCDMA 1900, LTE B25, LTE B2, LTE B7, LTE B41 - a) A proximity sensor for power reduction is implemented in this device to address RF exposure compliance about SAR requirement for protection of the human body. - (2) Proximity sensor detection area: - a) All proximity sensor pads are combined with the primary antenna pattern, therefore, they occupy the same area as the primary antenna. - b) The primary antenna and the proximity sensor pads are collocated and the peak SAR location is overlapping with the sensors, therefore do not need to measure proximity sensor coverage according to the KDB 616217 D04v01r02, section 6.3. - c) Power reduction mechanism is implemented in this device - i) Bottom surface - d) The proximity sensor is triggered at the following distances when: - i) The rear surface of the device is 20 mm for the trigger from the phantom. - ii) Other surfaces (Front surface & Bottom/Right/Left edges) will be tested with the maximum powers. - e) When a certain object or human body approaches the DUT, if the measured capacitance is higher than certain capacitance, proximity sensor is triggered and power is reduced as follows. **Table F.1.1 Proximity Sensor power information** | | 100101111 | i i rexiiiiky cone. | or power imormation | | | |-----------------|------------------------|---------------------|---------------------|--------|-------------| | Band | Proximity sensor state | Maximum | Power (dBm) | Normal | Power (dBm) | | WCDMA 1900, | Inactive (Far) | Maximum | 23.7 | Normal | 23.2 | | WCDMA 1900, | Active (Near) | Maximum | 20.2 | Normal | 19.7 | | LTE B25, LTE B2 | Inactive (Far) | Maximum | 23.2 | Normal | 22.7 | | LIE B25, LIE B2 | Active (Near) | Maximum | 20.0 | Normal | 19.5 | | LTE B7 | Inactive (Far) | Maximum | 23.2 | Normal | 22.7 | | LIE B/ | Active (Near) | Maximum | 19.5 | Normal | 19.0 | | LTE B41 | Inactive (Far) | Maximum | 22.7 | Normal | 22.2 | | LIE B41 | Active (Near) | Maximum | 21.7 | Normal | 21.2 | Figure F.1.1 Proximity Sensor Triggering Distance Assessment # Cap Sensor Power Measurement and Triggering Distance As per the KDB616217 D04v01r02, section 6.2 and two parts power verification procedure is used to determine the triggering distances. Report No.: DRRFCC2201-0021 Using this procedure the most conservative sensor triggering distance was measured and SAR measurement distance is determined (The most conservative sensor triggering distance – 1 mm for each applicable sides and edges). (1) Proximity sensor status table when DUT is moving towards/ moving away the phantom (Rear) | (<u>1) 1 10xiii</u> | iity serisoi ste | สเนอ เลมเซ | WITCH D | 01 13 111 | oving towards/ moving away the phantom (Real) | | | | | | | | |--|---|----------------------------------|-------------------------|-------------------------------|--|---|----------------------------------|-------------------------|-------------------------------|---------------------------------|--|--| | | Moving to | ward the phantom | | | | Moving awa | ay from the phanto | om | | Final SAR | | | | Dist.
to the DUT
(mm) | Capacitive Sensor
Status
(Bottom surface) | WCDMA B2
Cond. Power
(dBm) | Trigg.
dist.
(mm) | SAR
meas.
Dist.
(mm) | Dist.
to the
DUT
(mm) | Capacitive Sensor
Status
(Bottom surface) | WCDMA B2
Cond. Power
(dBm) | Trigg.
dist.
(mm) | SAR
meas.
Dist.
(mm) | Measurement
Distance
(mm) | | | | 40
37
34
31
28
25
24
23
22
21 | Inactive (Far) | 23.7 | | | 30
29
28
27
26
25
24
23
22
21 | Inactive (Far) | 23.7 | | | | | | | 20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2 | Active (Near) | 20.2 | 20 | 19 | 20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2 | Active (Near) | 20.2 | 20 | 19 | 19 | | | | | Moving to | ward the phantom | | | | Final SAR | | | | | |--|---|------------------------------------
-------------------------|--|--|---|------------------------------------|-------------------------|-------------------------------|---------------------------| | Dist.
to the DUT
(mm) | Capacitive Sensor
Status
(Bottom surface) | LTE B25/B2
Cond. Power
(dBm) | Trigg.
dist.
(mm) | SAR
meas.
Dist.
(mm) | Dist.
to the
DUT
(mm) | Capacitive Sensor
Status
(Bottom surface) | LTE B25/B2
Cond. Power
(dBm) | Trigg.
dist.
(mm) | SAR
meas.
Dist.
(mm) | Measurement Distance (mm) | | 40
37
34
31
28
25
24
23
22
21 | Inactive (Far) | 23.2 | · · · · · · | 30
29
28
27
26
25
24
23
22
21 | Inactive (Far) | 23.2 | | | | | | 20
19
18
17
16
15
14
13
12
11
10
9
8
8
7
6
5
4
3
3
2 | Active (Near) | 20.0 | 20 | 19 | 20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2 | Active (Near) | 20.0 | 20 | 19 | 19 | TRF-RF-601(03)161101 Pages: 280 /283 Moving toward the phantom Moving away from the phantom Final SAR Measurement Distance (mm) Dist. to the DUT (mm) SAR meas. Dist. (mm) SAR Dist. to the DUT (mm) Capacitive Sensor Status (Bottom surface) LTE B7 Cond. Power (dBm) Trigg. dist. (mm) Capacitive Sensor Status (Bottom surface) LTE B7 Cond. Power (dBm) meas. Dist. (mm) 37 34 31 28 25 24 Inactive (Far) 23.2 Inactive (Far) 19 20 19 20 19 Active (Near) 19.5 Active (Near) 19.5 Report No.: DRRFCC2201-0021 | | Moving to | ward the phantom | | | | Moving away from the phantom | | | | | | | |--|---|---------------------------------|-------------------------|-------------------------------|--|---|---------------------------------|-------------------------|-------------------------------|--|--|--| | Dist.
to the DUT
(mm) | Capacitive Sensor
Status
(Bottom surface) | LTE B41
Cond. Power
(dBm) | Trigg.
dist.
(mm) | SAR
meas.
Dist.
(mm) | Dist.
to the
DUT
(mm) | Capacitive Sensor
Status
(Bottom surface) | LTE B41
Cond. Power
(dBm) | Trigg.
dist.
(mm) | SAR
meas.
Dist.
(mm) | Final SAR
Measurement
Distance
(mm) | | | | 40
37
34
31
28
25
24
23
22
21 | Inactive (Far) | 22.7 | | | 30
29
28
27
26
25
24
23
22
21 | Inactive (Far) | 22.7 | | | | | | | 20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2 | Active (Near) | 21.7 | 20 | 19 | 20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2 | Active (Near) | 21.7 | 20 | 19 | 19 | | | TRF-RF-601(03)161101 Cap Sensor SAR Test Plan for XM75P The smallest separation distance determined by the sensor triggering and sensor coverage for normal and/or tilt positions in KDB 616217 D04v01r02 section 6.2, 6.3 and 6.4 for front, rear surface and edge triggering conditions, minus 1 mm, must be used as the test separation distance for SAR testing. Report No.: DRRFCC2201-0021 - (1) The proximity sensor SAR will tested at the following distances when: - a) The **rear surface** will be tested with the **maximum powers** of the device is **19 mm** from the phantom. - b) Other surfaces (Front surface & Bottom/Right/Left edges) will be tested with the maximum powers of the device is 0 mm from the phantom. - c) The rear surface will be tested with the reduction powers of the device is 0 mm from the phantom. Per FCC KDB Publication 616217 D04v01r02, this device was tested by test lab(DT&C) to determine the proximity sensor triggering distances for all applicable sides and edges of the device. The measured output power at distances within ± 5 mm of the triggering points (or until touching the phantom) is included for rear and front sides and each applicable edge per Step i) in Section 6.2 of the KDB. The technical descriptions in the filing contain the complete set of triggering data required by Section 6 of FCC Publication 616217 D04v01r02. To ensure all production units are compliant, it is necessary to test SAR at a distance 1 mm less than the smallest distance between the device and SAR phantom (determined from the sensor triggering tests according to FCC KDB 616217 D04v01r02) with the device at the maximum output power (without power reduction). These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom (at the reduced output power level). The operational description contains information explaining how this device remains compliant in the event of a sensor malfunction. TRF-RF-601(03)161101 Pages: 282 /283 # F.2 Cap Sensor (proximity sensor) Tilt Angle Assessment The DUT was positioned perpendicular to the flat phantom, at the minimum sensor triggering test distance. The DUT was rotated about bottom for angles $\pm 45^{\circ}$. If sensor triggering is released and normal maximum output power is restored within the $\pm 45^{\circ}$, the DUT was moved 1mm toward the phantom and the rotation repeated. Report No.: DRRFCC2201-0021 This procedures should be repeated by until the proximity sensor no longer releases triggering, and maximum output power remains in the reduced mode. Table F.2.1 Tilt Angle Influence to Proximity Sensor Triggering (Bottom) | Band | Minimum triggering | Minimum distance at which power reduction | | Power reduction status | | | | | | | | | | | | |--------------------------------|--------------------|---|------|------------------------|------|------|------|----|-----|-----|-----|-----|-----|--|--| | Вапо | Distance (Rear) | was maintained over ±45° | -45° | -40° | -30° | -20° | -10° | 0° | 10° | 20° | 30° | 40° | 45° | | | | WCDMA B2,
LTE B25/B2/B7/B41 | 20 mm | N/A | No | | Note(s): 1. SAR evaluation for this tilt position is not needed, because we measured the Bottom-EDGE SAR test at 10mm with no power reduction 2. Cap sensor (proximity sensor) works only on the rear side of the device.