EMC TEST REPORT Report No.: SET2019-10284 Product Name: USB Dongle FCC ID: UTWBTSG Trade name: Janam Model No.: BTSG Applicant: Janam Technologies LLC Address: 100 Crossways Park West Suite 105 Woodbury, NY 11797 **Dates of Testing:** 07/01/2019 — 07/17/2019 **Issued by:** CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. Building 28/29, East of Shigu Xili Industrial Zone, Nanshan District Lab Location: Shenzhen, Guangdong 518055, China This test report consists of **21**pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. CCIC-SET/TRF: GJ-EMC-E (2019-05-22) Page 1 of 18 # **Test Report** Product Name....: USB Dongle Model No. BTSG Trade name Janam Applicant.....: Janam Technologies LLC Applicant Address...... 100 Crossways Park West Suite 105 Woodbury, NY 11797 Manufacturer: Janam Technologies LLC Manufacturer Address: 100 Crossways Park West Suite 105 Woodbury, NY 11797 Test Standards...... 47 CFR Part 15 Subpart B: Radio Frequency Devices Test Result: PASS Tested by: Yun Lie Form Yun Lei Fang Test Engineer 2019.07.18 Reviewed by: Chris You Senior Engineer 2019.07.18 Approved by Shrangwan thang 2019.07.18 Shuangwen Zhang, Manager #### TABLE OF CONTENTS GENERAL INFORMATION4 1. EUT Description4 1.1 1.2 Facilities and Accreditations......6 1.3 1 3 1 Facilities 6 132 Test Environment Conditions 6 1.3.3 Measurement Uncertainty 6 2. TEST CONDITIONS SETTING......7 2.1 2.2 2.3 Test Setup and Equipments List......8 2.3.1 2.3.2 Radiated Emission8 47 CFR PART 15B REQUIREMENTS......11 3. 3.1 3.1.1 Requirement 11 3.1.2 3.1.3 Test Result 11 3.2 3.2.1 3.2.2 3.2.3 Test Result 15 Change History Issue Reason for change Date 1.0 2019.07.18 First edition ## 1. GENERAL INFORMATION ## 1.1 EUT Description EUT Name USB Dongle Trade Name....... Janam Brand Name...... Janam Hardware Version : 103c8-r71-v2 Software Version : SCANNER_V3.9 Power supply..... Battery Model No.: NBLR7 Capacitance:1000mAh Rated Voltage:3.7V Charge Limit: $4.2V \pm 0.03V$ Ancillary Equipment...... AC Adapter Model No.: A122-0501500IU I/p: 100-240V~50/60Hz ,0.4A O/p: 5.0V===1.5A Manufacturer: Hunan Zhongxingtai Electronics Technology Co., Ltd. *Note1*: The EUT is a USB dongle; *Note 2:* or a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer. ## 1.2 Test Standards and Results The objective of the report is to perform testing according to 47 CFR Part 15 Subpart B: | No. | Identity | Document Title | |-----|----------------|-------------------------| | 1 | 47 CFR Part 15 | Radio Frequency Devices | | | Subpart B | | Test detailed items/section required by FCC rules and results are as below: | No. | Section | Description | Result | |-----|---------|--------------------|--------| | 1 | 15.107 | Conducted Emission | PASS | | 2 | 15.109 | Radiated Emission | PASS | #### NOTE: ### 1.3 Facilities and Accreditations #### 1.3.1 Facilities #### FCC-Registration No.: CN5031 CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN5031, valid time is until December 31, 2019. CAB identifier: CN0064 ISED Registration: 11185A-1 CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A-1 on Aug. 04, 2016, valid time is until Dec. 31, 2019. #### NVLAP Lab Code: 201008-0 CCIC-SET is a third party testing organization accredited by NVLAP according to ISO/IEC 17025. The accreditation certificate number is 201008-0. #### 1.3.2 Test Environment Conditions During the measurement, the environmental conditions were within the listed ranges: | Temperature (°C): | 15°C - 35°C | |-----------------------------|--------------| | Relative Humidity (%): | 25% -75% | | Atmospheric Pressure (kPa): | 86kPa-106kPa | #### 1.3.3 Measurement Uncertainty The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO. | Uncertainty of Conducted Emission: | Uc = 3.6 dB (k=2) | |------------------------------------|--------------------| | Uncertainty of Radiated Emission: | Uc = 4.5 dB (k=2) | # 2. TEST CONDITIONS SETTING # 2.1 Test Peripherals The following is a listing of the EUT and peripherals utilized during the performance of EMC test: # **Support Cable:** | Description | Shield Type | Ferrite Core | Length | | |------------------------|---------------|--------------|--------|--| | PC Power adapter Cable | Un- shielding | Yes | 1.2m | | # 2.2 Test Mode The EUT have the following typical setups during the test: Setup 1: EUT Traffic+ PC # 2.3 Test Setup and Equipments List #### 2.3.1 Conducted Emission ### A. Test Setup: The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu H$ of coupling impedance for the measuring instrument. The Common Antenna is used for the call between the EUT and the System Simulator (SS). A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading. #### **B.** Equipments List: | Description | Description Manufacturer | | Serial No. | Calibration
Date | Calibration Due. Date | |---------------|--------------------------|--------|------------|---------------------|-----------------------| | Test Receiver | KEYSIGHT | ESR3 | A181103297 | 2018.09.14 | 2019.09.13 | | LISN | ROHDE&SCHWARZ | ENV216 | A140701847 | 2018.12.10 | 2019.12.10 | | Cable | MATCHING PAD | W7 | / | 2019.01.02 | 2020.01.01 | #### 2.3.2 Radiated Emission #### A. Test Setup: 1) For radiated emissions from 30MHz to1GHz 2) For radiated emissions above 1GHz #### **B.** Test Procedure The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a variable-height antenna master tower. For the test Antenna: 1) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested. # C. Equipments List: | Manufacturar | Model | Sorial No | Calibration | Calibration | | |----------------|--|--|--|--|--| | Ivianuracturei | Model | Seriai No. | Date | Due. Date | | | ROHDE&SCHWARZ | ESR3 | A181103297 | 2018.09.14 | 2019.09.13 | | | ROHDE&SCHWARZ | ENV216 | A140701847 | 2018.12.10 | 2019.12.10 | | | , | L7300*W4500 | A 101002226 | 2010 00 06 | 2021 00 05 | | | / | *H3100 | A181003226 | 2018.09.06 | 2021.09.05 | | | ROHDE&SCHWARZ | ESIB7 | A0501375 | 2018.08.06 | 2019.08.05 | | | 2786 | ETC | A150402239 | 2018.09.17 | 2021.09.16 | | | A 11 4 | SAC-3MAC | 4.0410275 | 2016 02 00 | 2020 02 07 | | | Albatross | 9*6*6m | A0412373 | 2016.03.08 | 2020.03.07 | | | ROHDE&SCHWARZ | ESIB26 | A180502935 | 2018.11.01 | 2019.10.31 | | | ROHDE&SCHWARZ | CMW500 | A150802214 | 2017.08.29 | 2019.08.28 | | | A 11- otmogra | SAC-5MAC | A 0204210 | 2016 02 09 | 2020 02 07 | | | Aivatross | 12.8x6.8x6.4m | A0304210 | 2016.03.08 | 2020.03.07 | | | ROHDE&SCHWARZ | HF906 | A0304225 | 2019.04.17 | 2022.04.17 | | | | ROHDE&SCHWARZ / ROHDE&SCHWARZ 2786 Albatross ROHDE&SCHWARZ ROHDE&SCHWARZ Albatross | ROHDE&SCHWARZ ESR3 ROHDE&SCHWARZ ENV216 L7300*W4500 *H3100 ROHDE&SCHWARZ ESIB7 2786 ETC Albatross SAC-3MAC 9*6*6m ROHDE&SCHWARZ ESIB26 ROHDE&SCHWARZ CMW500 Albatross SAC-5MAC 12.8x6.8x6.4m | ROHDE&SCHWARZ ESR3 A181103297 ROHDE&SCHWARZ ENV216 A140701847 L7300*W4500
*H3100 A181003226 ROHDE&SCHWARZ ESIB7 A0501375 2786 ETC A150402239 Albatross SAC-3MAC
9*6*6m A0412375 ROHDE&SCHWARZ ESIB26 A180502935 ROHDE&SCHWARZ CMW500 A150802214 Albatross SAC-5MAC
12.8x6.8x6.4m A0304210 | Manufacturer Model Serial No. Date ROHDE&SCHWARZ ESR3 A181103297 2018.09.14 ROHDE&SCHWARZ ENV216 A140701847 2018.12.10 / L7300*W4500
*H3100 A181003226 2018.09.06 ROHDE&SCHWARZ ESIB7 A0501375 2018.08.06 2786 ETC A150402239 2018.09.17 Albatross SAC-3MAC
9*6*6m A0412375 2016.03.08 ROHDE&SCHWARZ ESIB26 A180502935 2018.11.01 ROHDE&SCHWARZ CMW500 A150802214 2017.08.29 Albatross SAC-5MAC
12.8x6.8x6.4m A0304210 2016.03.08 | | CCIC-SET/TRF: GJ-EMC-E (2019-05-22) Page 10 of 18 # 3. 47 CFR PART 15B REQUIREMENTS #### 3.1 Conducted Emission #### 3.1.1 Requirement According to FCC section 15.107, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN). | Eraguanay ranga (MIIa) | Conducted Limit (dBµV) | | | | | |------------------------|------------------------|----------|--|--|--| | Frequency range (MHz) | Quasi-peak | Average | | | | | 0.15 - 0.50 | 66 to 56 | 56 to 46 | | | | | 0.50 - 5 | 56 | 46 | | | | | 5 - 30 | 60 | 50 | | | | #### Note: - a) The limit subjects to the Class B digital device. - b) The lower limit shall apply at the band edges. - c) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz. #### 3.1.2 Test Description See section 2.3.1 of this report. #### 3.1.3 Test Result The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. All test modes are considered, refer to recorded points and plots below. #### Note: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a Nominal 120V AC,50/60Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies. # Test voltage and frequency (120V AC,60Hz) # A. Mains terminal disturbance voltage, L phase (Plot A: L Phase) | | Conducted Disturbance at Mains Terminals | | | | | | | | |--|--|-------|-------|------------------------|---------------|---------------------------------|-------------|--| | L Test Data | | | | | | | | | | QP AV | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | Frequen
cy
(MHz) | Limits (dBµV) | Measurem
ent Value
(dBμV) | Margin (dB) | | | 1.6530 | 56.00 | 28.12 | 27.88 | 1.6530 | 46.00 | 17.35 | 28.65 | | | 2.3640 | 56.00 | 28.00 | 28.00 | 2.3640 | 46.00 | 15.22 | 30.78 | | | 3.0255 | 56.00 | 27.55 | 28.45 | 3.0255 | 46.00 | 14.58 | 31.42 | | | 3.8040 | 56.00 | 26.87 | 29.13 | 3.8040 | 46.00 | 13.72 | 32.28 | | | 7.1610 | 60.00 | 31.89 | 28.11 | 7.1610 | 50.00 | 18.15 | 31.85 | | | 16.3950 | 60.00 | 42.55 | 17.45 | 16.3950 | 50.00 | 28.58 | 21.42 | | # B. Mains terminal disturbance voltage, N phase (Plot B: N Phase) | Conducted Disturbance at Mains Terminals | | | | | | | | | |--|-------|-------|-------|--------------------|---------------|---------------------------------|-------------|--| | N Test Data | | | | | | | | | | QP AV | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | Frequency
(MHz) | Limits (dBµV) | Measureme
nt Value
(dBµV) | Margin (dB) | | | 1.5000 | 56.00 | 28.59 | 27.41 | 1.4055 | 46.00 | 19.01 | 26.99 | | | 1.9005 | 56.00 | 28.23 | 27.77 | 1.8330 | 46.00 | 19.42 | 26.58 | | | 2.5485 | 56.00 | 28.39 | 27.61 | 2.5305 | 46.00 | 19.30 | 26.70 | | | 3.0300 | 56.00 | 29.87 | 26.13 | 3.1245 | 46.00 | 19.36 | 26.64 | | | 4.0470 | 56.00 | 25.08 | 30.92 | 7.5705 | 46.00 | 16.45 | 29.55 | | | 16.1430 | 60.00 | 42.72 | 17.28 | 16.2060 | 50.00 | 30.23 | 19.77 | | #### 3.2 Radiated Emission # 3.2.1 Requirement According to FCC section 15.109, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: | Frequency | Field Strength | | Field Strength Limitation at 3m Measurement Dist | | | | |---------------|----------------|------|--|------------------------|--|--| | range (MHz) | $\mu V/m$ | Dist | (uV/m) | (dBuV/m) | | | | 0.009 - 0.490 | 2400/F(kHz) | 300m | 10000* 2400/F(kHz) | 20log 2400/F(kHz) + 80 | | | | 0.490 - 1.705 | 2400/F(kHz) | 30m | 100* 2400/F(kHz) | 20log 2400/F(kHz) + 40 | | | | 1.705 - 30.00 | 30 | 30m | 100*30 | 20log 30 + 40 | | | | 30.0 - 88.0 | 100 | 3m | 100 | 20log 100 | | | | 88.0 - 216.0 | 150 | 3m | 150 | 20log 150 | | | | 216.0 - 960.0 | 200 | 3m | 200 | 20log 200 | | | | Above 960.0 | 500 | 3m | 500 | 20log 500 | | | - a) As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules. - b) Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. - c) For below 1G:QP detector RBW 120kHz, VBW 300kHz. - d) For Above 1G: PK detector RBW 1MHz,VBW 3MHz for PK value ;AV detector RBW 1MHz, VBW 10Hz for AV value. #### Note: - 1) The tighter limit shall apply at the boundary between two frequency range. - 2) Limitation expressed in dBuV/m is calculated by 20log Emission Level(uV/m). - 3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of Ld1 = Ld2 * $(d2/d1)^2$. Example: F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as $Ld1 = L1 = 30uV/m * (10)^2 = 100 * 30uV/m$. # 3.2.2 Test Description See section 2.3.2 of this report. #### 3.2.3 Test Result The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors. Both the vertical and the horizontal polarizations of the Test Antenna are considered to perform the tests. All test modes are considered, refer to recorded points and plots below. The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported. Note: All radiated emission tests were performed in X, Y, Z axis direction, and only the worst axis test condition was recorded in this test report. # A.Radiation disturbances, antenna polarization: Horizontal (Plot C: Test Antenna Vertical 30M - 1G) | Frequency
(MHz) | QuasiPeak
(dB μ V/m) | Bandwidth
(kHz) | Antenna
height
(cm) | Limit
(dB µ V/m) | Margin
(dB) | Antenna | Verdict | |--------------------|-------------------------|--------------------|---------------------------|---------------------|----------------|------------|---------| | 30.26 | 30.12 | 120.000 | 208.0 | 40.00 | 9.88 | Horizontal | Pass | | 37.52 | 28.11 | 120.000 | 129.0 | 40.00 | 11.89 | Horizontal | Pass | | 75.63 | 20.02 | 120.000 | 147.0 | 40.00 | 19.98 | Horizontal | Pass | | 106.87 | 23.05 | 120.000 | 169.0 | 43.50 | 20.45 | Horizontal | Pass | | 148.92 | 22.43 | 120.000 | 207.0 | 43.50 | 21.07 | Horizontal | Pass | | 352.00 | 26.11 | 120.000 | 207.0 | 46.00 | 19.89 | Horizontal | Pass | # B.Radiation disturbances, antenna polarization: Vertical (Plot D: Test Antenna Horizontal 30M - 1G) | Frequency
(MHz) | QuasiPeak
(dB μ V/m) | Bandwidth
(kHz) | Antenna
height
(cm) | Limit
(dB µ V/m) | Margin
(dB) | Antenna | Verdict | |--------------------|-------------------------|--------------------|---------------------------|---------------------|----------------|----------|---------| | 30.00 | 29.49 | 120.000 | 223.0 | 40.00 | 10.51 | Vertical | Pass | | 47.45 | 31.11 | 120.000 | 209.0 | 40.00 | 8.89 | Vertical | Pass | | 53.11 | 20.14 | 120.000 | 126.0 | 43.50 | 23.36 | Vertical | Pass | | 146.39 | 22.55 | 120.000 | 268.0 | 43.50 | 20.95 | Vertical | Pass | | 197.13 | 21.55 | 120.000 | 214.0 | 43.50 | 21.95 | Vertical | Pass | | 256.32 | 23.48 | 120.000 | 364.0 | 46.00 | 22.52 | Vertical | Pass | **Test Result: PASS**