

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13301 MCCALLEN PASS • AUSTIN, TEXAS 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

June 3, 2013

Elecraft P. O. Box 69 Aptos, CA 95001

Dear Bob Wolbert,

Enclosed is the EMC test report for compliance testing of the Elecraft, KXPA100, tested to the requirements of FCC Part 97.307 (d) and (e).

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, MET LABORATORIES, INC.

Ella Bareng
Documentation Department

Reference: (\Elecraft\EMCS38502-FCC 97)

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13301 MCCALLEN PASS • AUSTIN, TEXAS 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

Electromagnetic Compatibility Test Report

for the

Elecraft KXPA100

Tested under

FCC Part 97. 07 (d) and (e)

MET Report: EMCS38502-FCC 97 June 3, 2013

> Prepared for: Elecraft P. O. Box 69 Aptos, CA 95001

> > Prepared by: MET Laboratories, Inc. 3162 Belick Street Santa Clara, CA 95054

Electromagnetic Compatibility Test Report

For the

Elecraft KXPA100

Tested under

FCC Part 97.307 (d) and (e)

MET Report: EMCS38502-FCC 97

Aaron Chang

Project Engineer, Electromagnetic Compatibility Lab

Ella Bareng

Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the applicable limits. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements per Test Summary (Section 1.0).

Asad Bajwa

Director, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	June 3, 2013	Initial Issue.

Table of Contents

1.0	Testing Summary
	Testing Summary 1.1 Emissions Test Summary
2.0	Equipment Configuration
	2.1 Overview
	2.1.1 Test Site
	2.1.2 Measurement Uncertainty
	2.2 Detailed EUT Description and Test Setup
	2.2.1 Description of Test Sample
	2.2.2 Photograph(s) of Test Sample
	2.2.3 Block Diagram.
	2.2.4 Equipment Configuration
	2.2.5 Support Equipment
	2.2.6 Ports and Cabling Information
	2.2.7 Mode of Operation & Method of Monitoring EUT Operation
	2.3 Modifications to EUT
	2.4 Disposition of EUT
3.0	Electromagnetic Compatibility Emission Criteria10
	3.1 97.307(d) Radiated Spurious Emissions for TX Operating Below 30 MHz
	3.2 97.307(e) Radiated Spurious Emissions for TX Operating Above 30 MHz
4 0	Test Equipment

List of Tables

Table 1: Uncertainty Calculations Summary	
Table 2. Equipment Configuration	
Table 3. Support Equipment	8
Table 4. Ports and Cabling Information	
Table 5. 97.307(d) Radiated Spurious Emissions for TX Operating Below 30 MHz Test Results	13
Table 6. 97.307(e) Radiated Spurious Emissions for TX Operating Between 30-225 MHz Test Results	17
Table 7. Emissions Test Equipment List	
List of Figures	
Figure 1. Block Diagram of Test Configuration	7
Figure 2. Test Configuration	
rigule 2. Test Configuration	
List of Photographs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
List of Photographs	
List of Photographs Photograph 1. Front View of KXPA100	4 4
List of Photographs Photograph 1. Front View of KXPA100	4 4 5
List of Photographs Photograph 1. Front View of KXPA100	4 4 5
List of Photographs Photograph 1. Front View of KXPA100	4 5 5
List of Photographs Photograph 1. Front View of KXPA100	4 5 5
List of Photographs Photograph 1. Front View of KXPA100	4 5 5 6
List of Photographs Photograph 1. Front View of KXPA100	

List of Terms and Abbreviations

AC	Alternating Current	kPa	kilopascal
ACF	Antenna Correction Factor	kV	kilovolt
AV	Average	LISN	Line Impedance Stabilization Network
Cal	Calibration	MHz	Megahertz
d	Measurement Distance	μ H	microhenry
dB	Decibels	μ F	microfarad
dΒμA	Decibels above one microamp	μs	microseconds
dΒμV	Decibels above one microvolt	PRF	Pulse Repetition Frequency
dBμA/m	Decibels above one microamp per meter	RF	Radio Frequency
dBμV/m	Decibels above one microvolt per meter	RMS	Root-Mean-Square
DC	Direct Current	V/m	Volts per meter
E	Electric Field	VCP	Vertical Coupling Plane
ESD	Electrostatic Discharge	CE	Conducted Emissions
EUT	Equipment Under Test	RE	Radiated Emissions
f	Frequency	VF	Voltage Fluctuations
CISPR	Comite International Special des Perturbations Radioelectriques (International Special Committee on Radio Interference)	ESD	Electrostatic Discharge
GRP	Ground Reference Plane	QP	Quasi Peak
Н	Magnetic Field	RI	Radiated Immunity
НСР	Horizontal Coupling Plane	EFT/B	Electrical Fast Transient/Burst
Hz	Hertz	CI	Conducted Immunity
IEC	International Electrotechnical Commission	MI	Magnetic Immunity
kHz	kilohertz	VDI	Voltage Dips Interruptions

1.0 Testing Summary

1.1. Emissions Test Summary

The emissions tests specified below were performed with the following results:

Radiated Emissions					
Transmitting Frequency	Specification	Margin (dBc)	Compliance		
Below 30 MHz	FCC Part 97.307 (d)	>43	Compliant		
30-225 MHz	FCC Part 19.307 (e)	>60	Compliant		

2.0 Equipment Configuration

2.1. Overview

MET Laboratories, Inc. was contracted by Elecraft to perform testing on the KXPA100, under Elecraft, purchase order number 19422.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Elecraft, KXPA100.

In accordance with §2.955(a) (3), the following data is presented in support of the verification of the Elecraft, KXPA100. Elecraft should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the KXPA100 has been **permanently** discontinued, as per §2.955(b).

The results obtained relate only to the item(s) tested.

Model(s) Tested:	KXPA100
Model(s) Covered:	KXPA100
Primary Power as Tested:	Voltage: 13.8 VDC Current (mA): 24000 mA (24 A) (18A nominal)
Equipment Emissions Class:	В
Highest frequency generated or used by the EUT:	16 MHz
Evaluated by:	Aaron Chang
Report Date:	June 3, 2013

2.1.1. Test Site

All testing was performed at MET Laboratories, Inc., 3162 Belick Street, Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

MET Laboratories is an ISO/IEC 17025 accredited site by A2LA, (California #0591.02).

Radiated Emissions measurements were performed in a semi anechoic chamber. In accordance with §2.948(a) (3), a complete site description is contained at MET Laboratories.

2.1.2. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty (dB)	K	Confidence Level
Radiated Emissions, (30 MHz – 1 GHz)	±3.45	2	95%

Table 1: Uncertainty Calculations Summary

2.2. Detailed EUT Description and Test Setup

2.2.1. Description of Test Sample

The KXPA100, Equipment Under Test (EUT), is an External 100W RF Power Amplifier for Amateur Radio Service.

2.2.2. Photograph(s) of Test Sample

Photograph 1. Front View of KXPA100

Photograph 2. Rear View of KXPA100

Photograph 3. Right View of KXPA100

Photograph 4. Left View of KXPA100

Photograph 5. Top View of KXPA100

2.2.3. Block Diagram

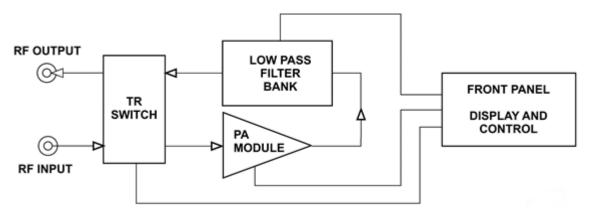
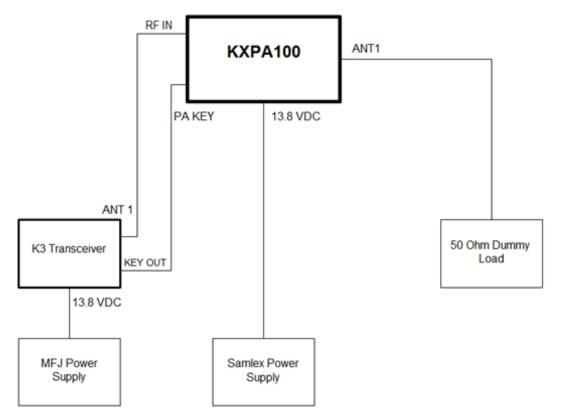



Figure 1. Block Diagram of Test Configuration

Figure 2. Test Configuration

2.2.4. Equipment Configuration

The EUT was setup as outlined in Figure 1 and Figure 2. All equipment incorporated as part of the EUT is included in the following list.

Name / Description	Model Number	Serial Number
KXPA100	N/A	0

Table 2. Equipment Configuration

2.2.5. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Name / Description	Manufacturer	Model Number	Serial Number
50 Ohm Load	ł		
K3 Transceiver	Elecraft	K3	5980
DUT Power Supply	Samlex	RPS1220	none
Transceiver Power Supply	MFJ	MFJ-4125	1072

Table 3. Support Equipment

2.2.6. Ports and Cabling Information

Port Name on EUT	Cable Description or reason for no cable	Qty.	Length (m)	Shielded (Y/N)	Termination Box ID & Port ID
RF IN	50 ohm Coax to transceiver	1	1	Y	K3 Transceiver
ANT 1	50 ohm coax to load	1	1	Y	50 Ohm Load
PA KEY	Transmit Key Line	1	1	Y	K3 Transceiver
13.8 VDC	Power Supply Input	1	1.5	N	DUT Power Supply
RS232	None. Not used in normal operation.	N/A	N/A	N/A	N/A
CONTROL	None. Not used in normal operation.	N/A	N/A	N/A	N/A
ANT 2	None. Secondary output, not used in normal operation	N/A	N/A	N/A	N/A

Table 4. Ports and Cabling Information

2.2.7. Mode of Operation & Method of Monitoring EUT Operation

The EUT was operated in the following manner:

Test simulates normal intended operation. Apply RF drive (nominally 4 to 5W) at 1.9MHz, 24.93MHz, and 52 MHz. Monitor output, nominally 100W, at same frequency.

Connections: RF In (PL-259/SO-239). RF Out (PL-259/SO-239). 13.8V DC input (cable and power supply provided by Elecraft for this test. Power supply is NOT an Elecraft product and will not be offered to customer. Transmit Control Cable (Phono/RCA plugs).

This is a single-channel RF power amplifier that operates with one frequency at a time.

Performance of the EUT was monitored in the following manner:

RF output dropping from its nominal 100W to a low value (less than 80W) is considered a failure.

Note that the amplifier is not intended for continuous operation. If its duty cycle is exceeded, thermal protection will shut down the amplifier. This is NOT considered a failure as operation will resume after the heat sink cools. Please keep test transmissions to 5 minutes of power output at a time, with a 50% nominal duty cycle.

2.2.8. Modifications to EUT

No modifications were made to the EUT.

2.2.9. Disposition of EUT

The test sample including all support equipment (if any), submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Electraft upon completion of testing.

3.0 Electromagnetic Compatibility Emission Criteria

3.1. 97.307(d) Radiated Spurious Emissions for TX Operating Below 30 MHz

3.1.1. Test Method, Test Requirements, and Test Procedures

3.1.1.1. Test Method

TIA/EIA-603

3.1.1.2. Test Requirements

For transmitters installed after January 1, 2003, the mean power of any spurious emission from a station transmitter or external RF power amplifier transmitting on a frequency a 30 MHz must be at least 43 dB below the mean power of the fundamental emission. For transmitters installed on or before January 1, 2003, the mean power of any spurious emission from a station transmitter or external RF power amplifier transmitting on a frequency below 30 MHz must not exceed 50 mW and must be at least 40 dB below the mean power of the fundamental emission. For a transmitter of mean power less than 5 W installed on or before January 1, 2003, the attenuation must be at least 30 dB. A transmitter built before April 15, 1977, or first marketed before January 1, 1978, is exempt from this requirement.

3.1.1.3. Test Procedure

The EUT was placed on top of an 80 centimeter high table inside a semi-anechoic chamber. A transceiver was connected to the input of the EUT and a 50 Ohm load was connected to the output. Various antennas were placed near the EUT and measurements were taken of the field strengths and frequencies. For final radiated measurements, the EUT was placed inside a semi-anechoic chamber, and located 10 meters from the antenna mast.

3.1.2. Test Results, Test Data, and Test Setup

3.1.2.1. Test Results

The EUT was **compliant** with the requirement(s) of this section. Measured emissions were below applicable limits.

97.307(d) Radiated Spurious Emissions for TX Operating Below 30 MHz			
Ambient Temperature: 21.2°C			
Relative Humidity: 34%			
Atmospheric Pressure:	101.9 kPa		

Test Engineer(s): Aaron Chang

Test Date(s): 05/22/2013

3.1.2.2. Test Data

Frequency	Harmonic	dB below Fundamental	>43dB
1.9	1.9	-	-
1.9	3.8	>43dB	Yes
1.9	5.7	>43dB	Yes
1.9	7.6	>43dB	Yes
1.9	9.5	>43dB	Yes
1.9	11.4	>43dB	Yes
1.9	13.3	>43dB	Yes
1.9	15.2	>43dB	Yes
1.9	17.1	>43dB	Yes
1.9	19	>43dB	Yes
3.75	3.75	-	=
3.75	7.5	>43dB	Yes
3.75	11.25	>43dB	Yes
3.75	15	>43dB	Yes
3.75	18.75	>43dB	Yes
3.75	22.5	>43dB	Yes
3.75	26.25	>43dB	Yes
3.75	30	>43dB	Yes
3.75	33.75	>43dB	Yes
3.75	37.5	>43dB	Yes
5.357	5.357	-	=

Elecraft KXPA100

Frequency	Harmonic	dB below Fundamental	>43dB	
5.357	10.714	>43dB	Yes	
5.357	16.071	>43dB	Yes	
5.357	21.428	>43dB	Yes	
5.357	26.785	>43dB	Yes	
5.357	32.142	>43dB	Yes	
5.357	37.499	>43dB	Yes	
5.357	42.856	>43dB	Yes	
5.357	48.213	>43dB	Yes	
5.357	53.57	>43dB	Yes	
7.15	7.15	-	-	
7.15	14.3	>43dB	Yes	
7.15	21.45	>43dB	Yes	
7.15	28.6	>43dB	Yes	
7.15	35.75	>43dB	Yes	
7.15	42.9	>43dB	Yes	
7.15	50.05	>43dB	Yes	
7.15	57.2	>43dB	Yes	
7.15	64.35	>43dB	Yes	
7.15	71.5	>43dB	Yes	
10.125	10.125	-	-	
10.125	20.25	>43dB	Yes	
10.125	30.375	>43dB	Yes	
10.125	40.5	>43dB	Yes	
10.125	50.625	>43dB	Yes	
10.125	60.75	>43dB	Yes	
10.125	70.875	>43dB	Yes	
10.125	81	>43dB	Yes	
10.125	91.125	>43dB	Yes	
10.125	101.25	>43dB	Yes	
14.175	14.175	-	-	
14.175	28.35	>43dB	Yes	
14.175	42.525	>43dB	Yes	
14.175	56.7	>43dB	Yes	
14.175	70.875	>43dB	Yes	
14.175	85.05	>43dB	Yes	
14.175	99.225	>43dB	Yes	
14.175	113.4	>43dB	Yes	
14.175	127.575	>43dB	Yes	
14.175	141.75	>43dB	Yes	
18.118	18.118	-	-	
18.118	36.236	>43dB	Yes	
18.118	54.354	>43dB	Yes	
18.118	72.472	>43dB	Yes	

Elecraft KXPA100

Frequency	Harmonic	dB below Fundamental	>43dB	
18.118	90.59	>43dB	Yes	
18.118	108.708	>43dB	Yes	
18.118	126.826	>43dB	Yes	
18.118	144.944	>43dB	Yes	
18.118	163.062	>43dB	Yes	
18.118	181.18	>43dB	Yes	
21.225	21.225	-	-	
21.225	42.45	>43dB	Yes	
21.225	63.675	>43dB	Yes	
21.225	84.9	>43dB	Yes	
21.225	106.125	>43dB	Yes	
21.225	127.35	>43dB	Yes	
21.225	148.575	>43dB	Yes	
21.225	169.8	>43dB	Yes	
21.225	191.025	>43dB	Yes	
21.225	212.25	>43dB	Yes	
24.94	24.94	-	-	
24.94	49.88	>43dB	Yes	
24.94	74.82	>43dB	Yes	
24.94	99.76	>43dB	Yes	
24.94	124.7	>43dB	Yes	
24.94	149.64	>43dB	Yes	
24.94	174.58	>43dB	Yes	
24.94	199.52	>43dB	Yes	
24.94	224.46	>43dB	Yes	
24.94	249.4	>43dB	Yes	
28.85	28.85	-	-	
28.85	57.7	>43dB	Yes	
28.85	86.55	>43dB	Yes	
28.85	115.4	>43dB	Yes	
28.85	144.25	>43dB	Yes	
28.85	173.1	>43dB	Yes	
28.85	201.95	>43dB	Yes	
28.85	230.8	>43dB	Yes	
28.85	259.65	>43dB	Yes	
28.85	288.5	>43dB	Yes	

Table 5. 97.307(d) Radiated Spurious Emissions for TX Operating Below 30 MHz Test Results

3.1.2.3. Test Setup Photograph

Photograph 6. 97.307(d) Radiated Spurious Emissions for TX Operating Below 30 MHz Test Setup

Photograph 7. 97.307(d) Radiated Spurious Emissions for TX Operating Below 30 MHz Test Setup (Front View)

3.2. 97.307(e) Radiated Spurious Emissions for TX Operating Above 30 MHz

3.2.1. Test Method, Test Requirements, and Test Procedures

3.2.1.1. Test Method

TIA/EIA-603

3.2.1.2. Test Requirements

The mean power of any spurious emission from a station transmitter or external RF power amplifier transmitting on a frequency between 30-225 MHz must be at least 60 dB below the mean power of the fundamental. For a transmitter having a mean power of 25 W or less, the mean power of any spurious emission supplied to the antenna transmission line must not exceed 25 μ W and must be at least 40 dB below the mean power of the fundamental emission, but need not be reduced below the power of 10 μ W. A transmitter built before April 15, 1977, or first marketed before January 1, 1978, is exempt from this requirement.

3.2.1.3. Test Procedure

The EUT was placed on top of an 80 centimeter high table inside a semi-anechoic chamber. A transceiver was connected to the input of the EUT and a 50 Ohm load was connected to the output. Various antennas were placed near the EUT and measurements were taken of the field strengths and frequencies. For final radiated measurements, the EUT was placed inside a semi-anechoic chamber, and located 10 meters from the antenna mast.

3.2.2. Test Results, Test Data, and Test Setup

3.2.2.1. Test Results

The EUT was **compliant** with the requirement(s) of this section. Measured emissions were below applicable limits.

97.307(e) Radiated Spurious Emissions for TX Operating Below 30 MHz			
Ambient Temperature:	21.2°C		
Relative Humidity:	34%		
Atmospheric Pressure:	101.9 kPa		

Test Engineer(s): Aaron Chang

Test Date(s): 05/22/2013

3.2.2.2. Test Data

Frequency	Harmonic	dB below Fundamental	>60dB
52	52	-	-
52	104	>60dB	Yes
52	156	>60dB	Yes
52	208	>60dB	Yes
52	260	>60dB	Yes
52	312	>60dB	Yes
52	364	>60dB	Yes
52	416	>60dB	Yes
52	468	>60dB	Yes
52	520	>60dB	Yes

Table 6. 97.307(e) Radiated Spurious Emissions for TX Operating Between 30-225 MHz Test Results

3.2.2.3. Test Setup Photograph

Photograph 8. 97.307(e) Radiated Spurious Emissions for TX Operating Above 30 MHz Test Setup

Photograph 9. 97.307(e) Radiated Spurious Emissions for TX Operating Between 30-225 Test Setup (Front View)

4.0 Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

Test Name: 97.307(d) Radiated Spurious Emissions for TX Operating Below 30 MHz		Test Date(s): 05/22/2013			
MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2404	Passive Loop Antenna	EMCO	6512	02/20/2013	08/20/2014
1S2460	9 kHz - 26 GHZ Spectrum Analyzer	Agilent Technologies	E4407B	07/27/2012	01/27/2014
1S2481	10 Meter Chamber (NSA)	ETS-Lingren	DKE- 8X8 DBL	12/05/2011	06/05/2013
1S2746	Bilog Antenna	Sunol Science	ЈВ3	11/06/2012	11/06/2013
Test Name: 97.307(e) Operating Below 30 N	Radiated Spurious Emi	ssions for TX		To	est Date(s): 05/22/2013
MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2404	Passive Loop Antenna	EMCO	6512	02/20/2013	08/20/2014
1S2460	9 kHz - 26 GHZ Spectrum Analyzer	Agilent Technologies	E4407B	07/27/2012	01/27/2014
1S2481	10 Meter Chamber (NSA)	ETS-Lingren	DKE- 8X8 DBL	12/05/2011	06/05/2013
1S2746	Bilog Antenna	Sunol Science	ЈВ3	11/06/2012	11/06/2013

Table 7. Emissions Test Equipment List