

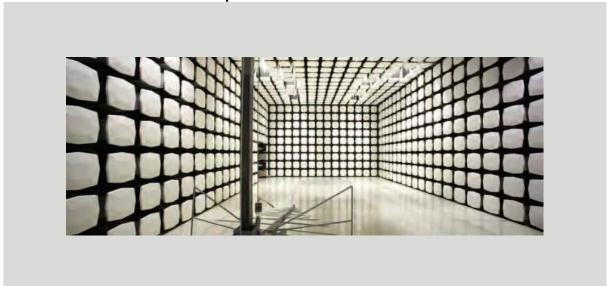
Third Millennium Systems Ltd

Door Access RFID Reader Family:

BD Inline / LNL-R11030 / 3M Inline / 3MIL-R11030

BD Mullion / LNL-R11330 / 3M Mullion / 3MIL-R11330

BD S-Gang / LNL-R11320 / 3M S-Gang / 3MIL-R11320


BD S-Gang Keypad / LNL R11325 / 3M S-Gang Keypad / 3MIL-R11325

FCC 15.207:2016

FCC 15.225:2016

13.56 MHz Radio

Report # ELEM0005 Rev. 2

NVLAP Lab Code: 201049-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

CERTIFICATE OF TEST

Last Date of Test: September 15, 2016
Third Millennium Systems Ltd
Model: Door Access RFID Reader Family

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2016 FCC 15.225:2016	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.4	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions Less Than 30 MHz	Yes	Pass	
6.5	Field Strength of Spurious Emissions Greater Than 30 MHz	Yes	Pass	
6.8	Frequency Stability	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
01	Updated Functional Description to clarify the radios contained in each model	10-7-16	7
	Updated Cover Page to list each of the four variants of each model	10-20-16	1
02	Updated functional description on Product Description page with explanation and table of models and variants	10-20-16	8
	Updated ANSI C63.10:2009 method to 2013	10-20-16	55, 56, 58

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://www.nwemc.com/accreditations/ http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

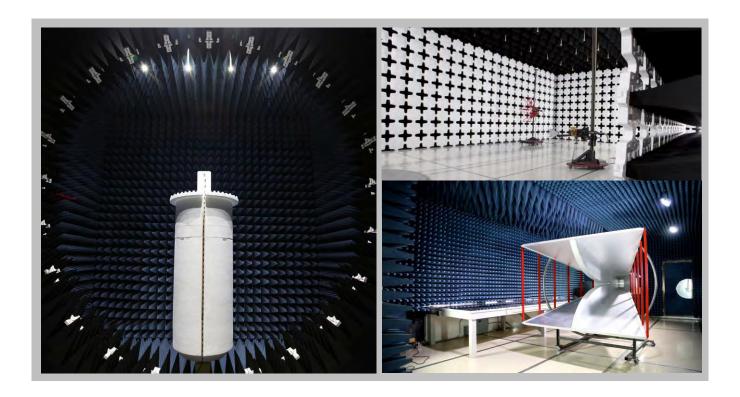
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES



California			
Labs OC01-13			
41 Tesla			
Irvine, CA 92618			
(949) 861-8918			

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600			
	NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
	Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1			
	BSMI							
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
	VCCI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			
	Recognized Phase	e I CAB for ACMA, BSM	I, IDA, KCC/RRA, MIC, M	OC, NCC, OFCA				
US0158	US0175	N/A	US0017	US0191	US0157			

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Third Millennium Systems Ltd
Address:	18/19 Torfaen Business Centre
City, State, Zip:	Panteg Way, New Inn Pontypool NP4 0LS
Test Requested By:	Alex Toohie
Model:	Door Access RFID Reader Family
First Date of Test:	September 7, 2016
Last Date of Test:	September 15, 2016
Receipt Date of Samples:	September 7, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage

PRODUCT DESCRIPTION

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The Door Access RFID Reader Family includes the AV400, AV390, AV3K90, and AV490. All four models contain a 125 kHz Inductive radio with one antenna and a Bluetooth radio module. Only the AV390, AV3K90 and AV490 also contain a 13.56 MHz radio that uses one modulation scheme and has one antenna configuration. All three radios use different antennas and can transmit simultaneously.

The four models tested, the AV400, AV390, AV3K90, and AV490, are intended to represent the entire Door Access RFID Reader Family. Each of those four models has four variants that are electrically and mechanically identical to the models tested. The table below provides the cross reference for each of the different models. Therefore, this report is intended to demonstrate compliance for each of the following models listed below.

AV00			
Old Model New Models (AV00 Variants)			
	BD Inline		
AV/400	LNL-R11030		
AV400	3M Inline		
	3MIL-R11030		

AV90			
Old Model	New Models (AV90 Variants)		
	BD Mullion		
AV490	LNL-R11330		
AV490	3M Mullion		
	3MIL-R11330		
AV390	BD S-Gang		
	LNL-R11320		
	3M S-Gang		
	3MIL-R11320		
	BD S-Gang Keypad		
AV3K90	LNL-R11325		
AVJNJU	3M S-Gang Keypad		
	3MIL-R11325		

Testing Objective:

To demonstrate compliance of the 13.56 MHz radio to FCC Part 15.225 specifications.

CONFIGURATIONS

Configuration ELEM0005-1

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
3M MULLION (AV490)	Third Millennium Systems Ltd	3MIL-R11330	IRN0430-07		
Main PCB	Third Millennium Systems Ltd	AV90	None		

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
DC Power Supply Agilent E3648A MY51120046					

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	3.0m	No	Device Under Test	DC Power Supply
AC Cable	No	1.8m	No	AC Mains	DC Power Supply

Configuration ELEM0005-2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
3M S-GANG (AV390)	Third Millennium Systems Ltd	3MIL-R11320	IRN0430-09
Main PCB	Third Millennium Systems Ltd	AV90	None

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
DC Power Supply	Agilent	E3648A	MY51120046		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	3.0m	No	Device Under Test	DC Power Supply
AC Cable	No	1.8m	No	AC Mains	DC Power Supply

CONFIGURATIONS

Configuration ELEM0005-4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
3M S-GANG KEYPAD (AV3K90)	Third Millennium Systems Ltd	3MIL-R11325	IRN0430-10
Main PCB	Third Millennium Systems Ltd	AV90	None

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
DC Power Supply	Agilent	E3648A	MY51120046		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	3.0m	No	Device Under Test	DC Power Supply
AC Cable	No	1.8m	No	AC Mains	DC Power Supply

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	9/7/2016	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	9/8/2016	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	9/8/2016	Field Strength of Spurious Emissions less than 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	9/8/2016	Field Strength of Spurious Emissions greater than 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	9/14/2016	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	9/15/2016	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

In the FCC-TCBC Conference Call Meeting Minutes from April 12, 2005, the FCC stated:

"We are willing to accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested."

This procedure was followed for the AC powerline conducted emissions testing documented on the following pages.

Per the FCC Guidance, the FCC will accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. (1) First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. (2) For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARG	6/9/2016	6/9/2017
Cable - Conducted Cable Assembly	Northwest EMC	OCP, HFP, AWC	OCPA	4/4/2016	4/4/2017
LISN	Solar Electronics	9252-50-24-BNC	LIA	3/3/2016	3/3/2017

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

ELEM0005-2

MODES INVESTIGATED

Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

EUT:	Door Access RFID Reader Family (AV390)	Work Order:	ELEM0005
Serial Number:	IRN0430-09	Date:	09/07/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.4%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-2

TEST SPECIFICATIONS

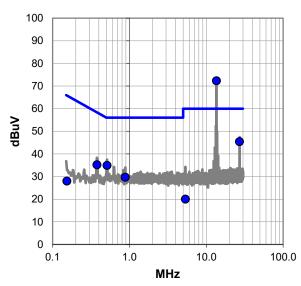
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

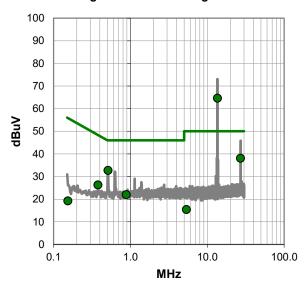
TEST PARAMETERS

Run #:	1	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz and 13.56 MHz radios were transmitting with no means to stop transmitting. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

0.154

RESULTS - Run #1

Quasi Peak Data - vs - Quasi Peak Limit

Quasi i cak bata - vs - Quasi i cak Elitlik						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
13.561	51.5	20.8	72.3	60.0	12.3	
27.122	23.5	21.9	45.4	60.0	-14.6	
0.512	15.0	19.9	34.9	56.0	-21.1	
0.379	15.2	20.0	35.2	58.3	-23.1	
0.884	9.7	20.0	29.7	56.0	-26.3	
0.154	7.8	20.2	28.0	65.8	-37.8	
5.355	-0.3	20.3	20.0	60.0	-40.0	

Average Data - vs - Average Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
13.561	43.8	20.8	64.6	50.0	14.6		
27.122	16.2	21.9	38.1	50.0	-11.9		
0.512	12.8	19.9	32.7	46.0	-13.3		
0.379	6.3	20.0	26.3	48.3	-22.0		
0.884	2.0	20.0	22.0	46.0	-24.0		
5.355	-4.9	20.3	15.4	50.0	-34.6		

20.2

-1.0

CONCLUSION

Tested By

19.2

55.8

-36.6

EUT:	Door Access RFID Reader Family (AV390)	Work Order:	ELEM0005
Serial Number:	IRN0430-09	Date:	09/07/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.4%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-2

TEST SPECIFICATIONS

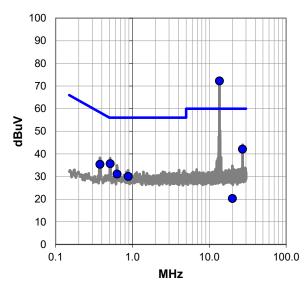
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

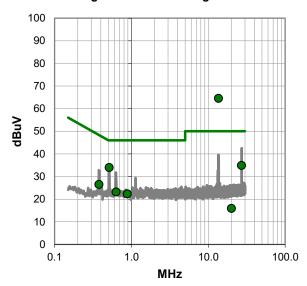
TEST PARAMETERS

Ruil #. 2 Line. Neutral Add. Ext. Attendation (db). 0	Run #:	2	Line:	Neutral	Add. Ext. Attenuation (dB):	0
---	--------	---	-------	---------	-----------------------------	---

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz and 13.56 MHz radios were transmitting with no means to stop transmitting. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

0.883

19.994

-23.7

-34.1

RESULTS - Run #2

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	51.4	20.8	72.2	60.0	12.2
27.122	20.2	21.9	42.1	60.0	-17.9
0.513	15.8	19.9	35.7	56.0	-20.3
0.379	15.4	20.0	35.4	58.3	-22.9
0.631	11.1	20.0	31.1	56.0	-24.9
0.883	10.0	20.0	30.0	56.0	-26.0
19.994	-0.9	21.2	20.3	60.0	-39.7

Average Data - vs - Average Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
13.561	43.7	20.8	64.5	50.0	14.5		
0.513	14.1	19.9	34.0	46.0	-12.0		
27.122	13.0	21.9	34.9	50.0	-15.1		
0.379	6.5	20.0	26.5	48.3	-21.8		
0.631	3.2	20.0	23.2	46.0	-22.8		

21.2

-5.3

CONCLUSION

Tested By

22.3

15.9

50.0

EUT:	Door Access RFID Reader Family (AV390)	Work Order:	ELEM0005
Serial Number:	IRN0430-09	Date:	09/13/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.2°C
Attendees:	None	Relative Humidity:	48%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-2

TEST SPECIFICATIONS

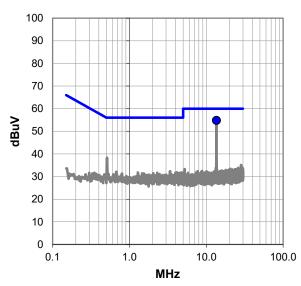
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

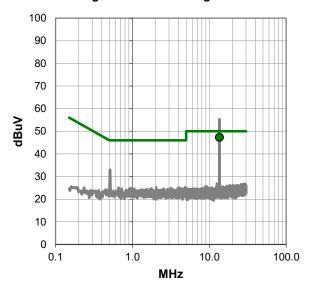
TEST PARAMETERS

Run #:	12	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. The 13.56 MHz radio antenna was terminated by a 50 Ohm load. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #12

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	34.0	20.8	54.8	60.0	- 5.2

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
13.561	26.5	20.8	47.3	50.0	-2.7	

CONCLUSION

Pass

EUT:	Door Access RFID Reader Family (AV390)	Work Order:	ELEM0005
Serial Number:	IRN0430-09	Date:	09/13/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.2°C
Attendees:	None	Relative Humidity:	48%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-2

TEST SPECIFICATIONS

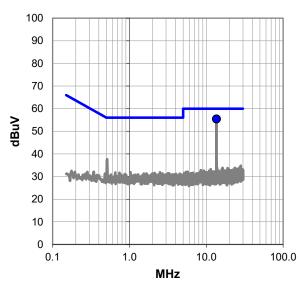
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

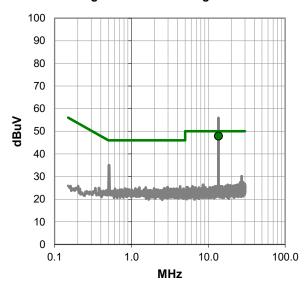
TEST PARAMETERS

Run #: 14 Line: Neutral Add. Ext. Attenuation (dB): 0	Run #: 14	4	Line:	Neutral	Add. Ext. Attenuation (dB):	0
---	-----------	---	-------	---------	-----------------------------	---

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. The 13.56 MHz radio antenna was terminated by a 50 Ohm load. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #14

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	34.6	20.8	55.4	60.0	-4.6

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
13.561	27.1	20.8	47.9	50.0	-2.1	

CONCLUSION

Pass

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

In the FCC-TCBC Conference Call Meeting Minutes from April 12, 2005, the FCC stated:

"We are willing to accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested."

This procedure was followed for the AC powerline conducted emissions testing documented on the following pages.

Per the FCC Guidance, the FCC will accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. (1) First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. (2) For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARG	6/9/2016	6/9/2017
Cable - Conducted Cable Assembly	Northwest EMC	OCP, HFP, AWC	OCPA	4/4/2016	4/4/2017
LISN	Solar Electronics	9252-50-24-BNC	LIA	3/3/2016	3/3/2017

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

ELEM0005-4

MODES INVESTIGATED

Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

EUT:	Door Access RFID Reader Family (AV3K90)	Work Order:	ELEM0005
Serial Number:	IRN0430-10	Date:	09/07/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.4%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-4

TEST SPECIFICATIONS

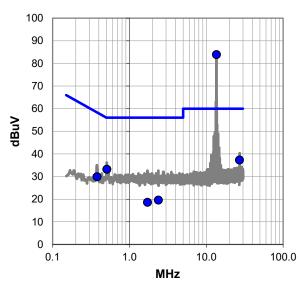
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

TEST PARAMETERS

Ruii #. / Line. Neutral Add. Ext. Attenuation (db). 0	Run #: 7	Line:	Neutral	Add. Ext. Attenuation (dB):	0
---	----------	-------	---------	-----------------------------	---

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz and 13.56 MHz radios were transmitting with no means to stop transmitting. The Bluetooth radio was not transmitting.


EUT OPERATING MODES

Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #7

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	63.1	20.8	83.9	60.0	23.9
27.121	15.4	21.9	37.3	60.0	-22.7
0.509	13.3	19.9	33.2	56.0	-22.8
0.379	9.9	20.0	29.9	58.3	-28.4
2.384	-0.5	20.1	19.6	56.0	-36.4
1.718	-1.5	20.1	18.6	56.0	-37.4

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	55.4	20.8	76.2	50.0	26.2
0.509	7.9	19.9	27.8	46.0	-18.2
27.121	8.5	21.9	30.4	50.0	-19.6
0.379	2.3	20.0	22.3	48.3	-26.0

20.1

20.1

-4.5

-5.1

Average Data - vs - Average Limit

 2.384
 -0.5
 20.1
 19.6
 56.0
 -36.4
 1.718

 1.718
 -1.5
 20.1
 18.6
 56.0
 -37.4
 2.384

CONCLUSION

Tested By

15.6

15.0

46.0

46.0

-30.4

-31.0

EUT:	Door Access RFID Reader Family (AV3K90)	Work Order:	ELEM0005
Serial Number:	IRN0430-10	Date:	09/07/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.4%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-4

TEST SPECIFICATIONS

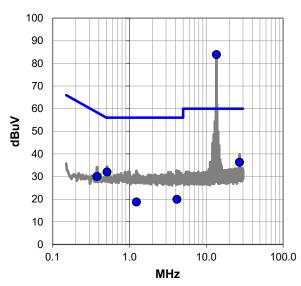
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

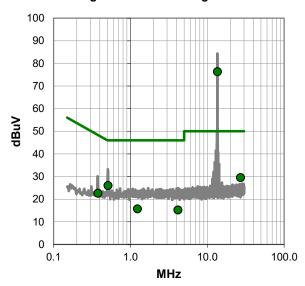
TEST PARAMETERS

Run #: 8 Line: High Line Add. Ext. Attenuation (dB): U	Run #:	8	Line:	High Line	Add. Ext. Attenuation (dB):	0
--	--------	---	-------	-----------	-----------------------------	---

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz and 13.56 MHz radios were transmitting with no means to stop transmitting. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #8

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	63.1	20.8	83.9	60.0	23.9
27.120	14.4	21.9	36.3	60.0	-23.7
0.511	12.1	19.9	32.0	56.0	-24.0
0.378	10.0	20.0	30.0	58.3	-28.3
4.150	-0.4	20.3	19.9	56.0	-36.1
1.234	-1.4	20.1	18.7	56.0	-37.3

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	55.5	20.8	76.3	50.0	26.3
0.511	6.1	19.9	26.0	46.0	-20.0
27 120	7.6	21.0	20.5	50.0	20.5

Average Data - vs - Average Limit

2.6 -25.7 0.378 20.0 22.6 48.3 1.234 -4.4 20.1 15.7 46.0 -30.3 4.150 -5.1 20.3 15.2 46.0 -30.8

CONCLUSION

EUT:	Door Access RFID Reader Family (AV3K90)	Work Order:	ELEM0005
Serial Number:	IRN0430-10	Date:	09/13/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.2°C
Attendees:	None	Relative Humidity:	48%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-4

TEST SPECIFICATIONS

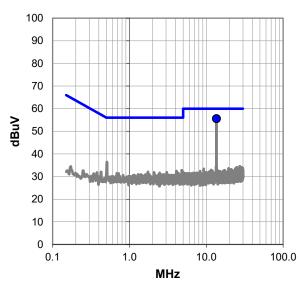
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

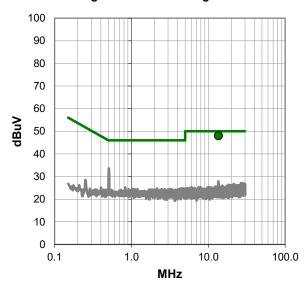
TEST PARAMETERS

Train II. Tright Eine Tright Eine Train (ab).	Run #:	15	Line:	High Line	Add. Ext. Attenuation (dB):	0
---	--------	----	-------	-----------	-----------------------------	---

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. The 13.56 MHz radio antenna was terminated by a 50 Ohm load. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #15

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	34.8	20.8	55.6	60.0	-4.4

	Average	Data - vs	- Average	Limit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	27.2	20.8	48.0	50.0	-2.0

CONCLUSION

Pass

EUT:	Door Access RFID Reader Family (AV3K90)	Work Order:	ELEM0005
Serial Number:	IRN0430-10	Date:	09/13/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.2°C
Attendees:	None	Relative Humidity:	48%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-4

TEST SPECIFICATIONS

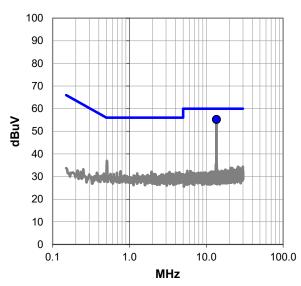
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

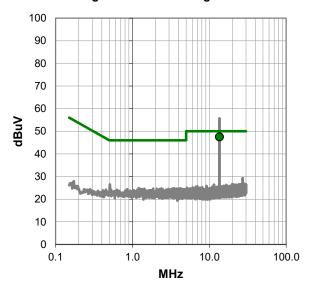
TEST PARAMETERS

Run #: 16 Line: Neutral Add. Ext. Attenuation (dB): U	Run #:	16	Line:	Neutral	Add. Ext. Attenuation (dB):	0
---	--------	----	-------	---------	-----------------------------	---

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. The 13.56 MHz radio antenna was terminated by a 50 Ohm load. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #16

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	34.4	20.8	55.2	60.0	-4.8

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	26.7	20.8	47.5	50.0	-2.5

CONCLUSION

Pass

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

In the FCC-TCBC Conference Call Meeting Minutes from April 12, 2005, the FCC stated:

"We are willing to accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested."

This procedure was followed for the AC powerline conducted emissions testing documented on the following pages.

Per the FCC Guidance, the FCC will accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. (1) First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. (2) For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARG	6/9/2016	6/9/2017
Cable - Conducted Cable Assembly	Northwest EMC	OCP, HFP, AWC	OCPA	4/4/2016	4/4/2017
LISN	Solar Electronics	9252-50-24-BNC	LIA	3/3/2016	3/3/2017

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

ELEM0005-1

MODES INVESTIGATED

Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

EUT:	Door Access RFID Reader Family (AV490)	Work Order:	ELEM0005
Serial Number:	IRN0430-07	Date:	09/07/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.4%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-1

TEST SPECIFICATIONS

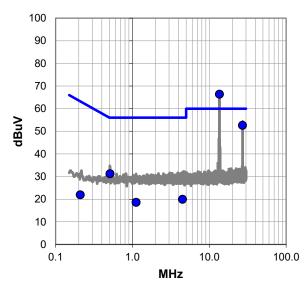
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

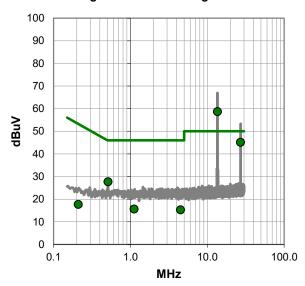
TEST PARAMETERS

Run #:	3	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz and 13.56 MHz radios were transmitting with no means to stop transmitting. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #3

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	45.6	20.8	66.4	60.0	6.4
27.122	30.7	21.9	52.6	60.0	-7.4
0.510	11.3	19.9	31.2	56.0	-24.8
4.485	-0.4	20.3	19.9	56.0	-36.1
1.119	-1.4	20.0	18.6	56.0	-37.4
0.209	1.8	20.1	21.9	63.2	-41.3

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	37.9	20.8	58.7	50.0	8.7
27.122	23.2	21.9	45.1	50.0	-4.9
0.510	7.8	19.9	27.7	46.0	-18.3

Average Data - vs - Average Limit

1.119 20.0 15.6 46.0 -30.4 4.485 -5.0 20.3 15.3 46.0 -30.7 0.209 -2.4 20.1 17.7 53.2 -35.5

CONCLUSION

EUT:	Door Access RFID Reader Family (AV490)	Work Order:	ELEM0005
Serial Number:	IRN0430-07	Date:	09/07/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.4%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-1

TEST SPECIFICATIONS

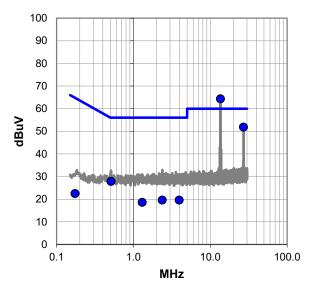
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

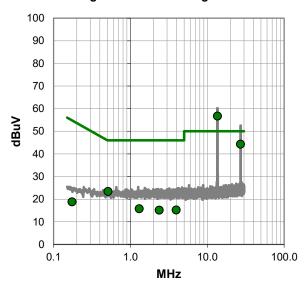
TEST PARAMETERS

rtair //.	Run #:	4	Line:	High Line	Add. Ext. Attenuation (dB):	0
-----------	--------	---	-------	-----------	-----------------------------	---

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz and 13.56 MHz radios were transmitting with no means to stop transmitting. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #4

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	43.5	20.8	64.3	60.0	4.3
27.121	29.9	21.9	51.8	60.0	-8.2
0.512	7.9	19.9	27.8	56.0	-28.2
2.377	-0.5	20.1	19.6	56.0	-36.4
3.936	-0.6	20.2	19.6	56.0	-36.4
1.300	-1.5	20.1	18.6	56.0	-37.4
0.174	2.3	20.2	22.5	64.8	-42.3

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
13.561	35.9	20.8	56.7	50.0	6.7	
27.121	22.4	21.9	44.3	50.0	-5.7	
0.512	3.5	19.9	23.4	46.0	-22.6	
1.300	-4.3	20.1	15.8	46.0	-30.2	
3.936	-5.0	20.2	15.2	46.0	-30.8	
2.377	-5.0	20.1	15.1	46.0	-30.9	
0.174	-1.4	20.2	18.8	54.8	-36.0	

CONCLUSION

EUT:	Door Access RFID Reader Family (AV490)	Work Order:	ELEM0005
Serial Number:	IRN0430-07	Date:	09/15/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.2°C
Attendees:	None	Relative Humidity:	49.6%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-1

TEST SPECIFICATIONS

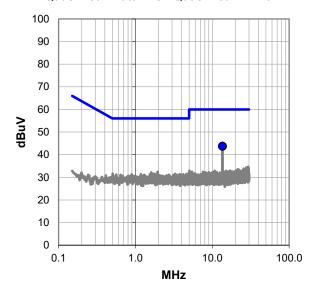
Specification:	Method:
FCC 15 207:2016	ANSI C63 10:2013

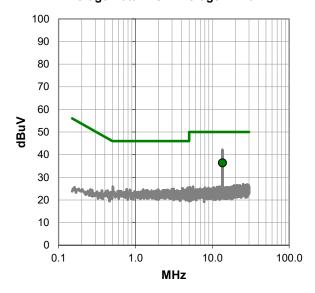
TEST PARAMETERS

Run #:	18	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. Pertaining to the 13.56 MHz radio, per the manufacturer's instructions, the following components were removed on the PCB to disconnect the aerial loop: R33, L8, L7, and R32. The Bluetooth radio was not transmitting.


EUT OPERATING MODES


Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #18

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	22.9	20.8	43.7	60.0	-16.3

Average Data - vs - Average Limit						
Freq	Amp.	Factor	Adjusted	Spec. Limit	Margin	
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
13.561	15.6	20.8	36.4	50.0	-13.6	

CONCLUSION

Pass

POWERLINE CONDUCTED EMISSIONS – AV490

EUT:	Door Access RFID Reader Family (AV490)	Work Order:	ELEM0005
Serial Number:	IRN0430-07	Date:	09/15/2016
Customer:	Third Millennium Systems Ltd	Temperature:	21.2°C
Attendees:	None	Relative Humidity:	49.6%
Customer Project:	TRA-030990	Bar. Pressure:	1018 mb
Tested By:	Mike Tran	Job Site:	OC06
Power:	12VDC	Configuration:	ELEM0005-1

TEST SPECIFICATIONS

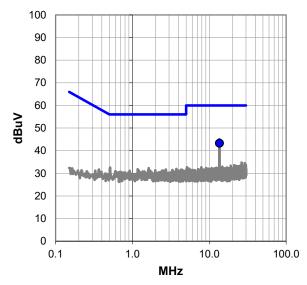
Specification:	Method:
FCC 15.207:2016	ANSI C63.10:2013

TEST PARAMETERS

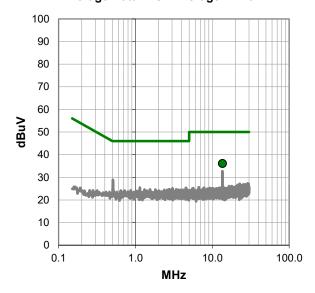
Run #:	19	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. Pertaining to the 13.56 MHz radio, per the manufacturer's instructions, the following components were removed on the PCB to disconnect the aerial loop: R33, L8, L7, and R32. The Bluetooth radio was not transmitting.


EUT OPERATING MODES

Transmitting at 125KHz and 13.56MHz, 2.4GHz off.


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

POWERLINE CONDUCTED EMISSIONS – AV490

RESULTS - Run #19

Quasi Peak Data - vs - Quasi Peak Limit

Freq Amp. (MHz) (dBuV		Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.561	22.5	20.8	43.3	60.0	-16.7

Average Data - vs - Average Limit											
Freq	Amp.	Factor	Adjusted	Spec. Limit	Margin						
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)						
13.561	15.3	20.8	36.1	50.0	-13.9						

CONCLUSION

Pass

Tested By

FIELD STRENGTH OF FUNDAMENTAL AV390

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56MHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 10 kHz	Stop Frequency 30 MHz	

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, fundamental carrier from the EUT was maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

FIELD STRENGTH OF FUNDAMENTAL AV390

	PSA-ESCI 2016.07.22 EmiR5 2016.07.22.1
	9/08/16 11.2°C Sin Huy
	.7% RH
Serial Number: IRN0430-09 Barometric Pres.: 1 EUT: Door Access RFID Reader Family (AV390)	21 mbar Tested by: Mike Tran
Configuration: 2	
Customer: Third Millennium Systems Ltd	
Attendees: None EUT Power: 12VDC	
Operating Mode: Transmitting at 13.56MHz	
Deviations: None	
Comments: None	
Test Specifications	Test Method
FCC 15.225:2016	ANSI C63.10:2013
Run # 24 Test Distance (m) 10 Antenna Heigh	s) 1 to 4(m) Results Pass
100	
80	
60	
ε	
# 40 40 40 40 40 40 40 40 40 40 40 40 40	
8	
20	
0	
-20 13.11 13.21 13.31 13.41 13.51	13.61 13.71 13.81 13.91 14.01
	tz ■ PK ◆ AV • QP
	Polarity/
Freq Amplitude Factor Antenna Height Azimuth Test Distance Attenua	Transducer Distance Compared to
(MHz) (dBuV) (dB) (meters) (degrees) (meters) (dB)	(dB) (dBuV/m) (dBuV/m) (dB) Comments
13.553 27.1 11.0 1.0 115.0 10.0 0.0	Perp EUT PK -19.1 19.0 50.5 -31.5 EUT Vert
13.553 24.0 11.0 1.0 115.0 10.0 0.0 13.719 11.7 11.1 1.0 224.0 10.0 0.0	Perp EUT AV -19.1 15.9 50.5 -34.6 EUT Vert Perp EUT PK -19.1 3.7 40.5 -36.8 EUT Vert
13.357 11.7 11.0 1.0 223.0 10.0 0.0 13.265 5.8 11.0 1.0 223.0 10.0 0.0	Perp EUT PK -19.1 3.6 40.5 -36.9 EUT Vert Perp EUT AV -19.1 -2.3 40.5 -42.8 EUT Vert
13.980 5.2 11.1 1.0 224.0 10.0 0.0	Perp EUT AV -19.1 -2.8 40.5 -43.3 EUT Vert Perp EUT PK -19.1 25.7 84.0 -58.3 EUT Vert
13.561 33.3 11.1 1.0 90.0 10.0 0.0	Perp EUT AV -19.1 25.3 84.0 -58.7 EUT Vert
13.561 33.2 11.1 1.0 1.0 10.0 0.0 13.561 32.8 11.1 1.0 1.0 1.0 10.0 0.0	Perp EUT PK -19.1 25.2 84.0 -58.8 EUT on Side Perp EUT AV -19.1 24.8 84.0 -59.2 EUT on Side
13.561 32.0 11.1 1.5 1.0 10.0 0.0	Par GND PK -19.1 24.0 84.0 -60.0 EUT on Side
13.561 32.0 11.1 1.5 98.0 10.0 0.0 13.561 31.5 11.1 1.5 98.0 10.0 0.0	Par GND PK -19.1 24.0 84.0 -60.0 EUT Vert Par GND AV -19.1 23.5 84.0 -60.5 EUT Vert
13.561 31.4 11.1 1.5 1.0 10.0 0.0 13.567 30.2 11.1 1.0 99.0 10.0 0.0	Par GND AV -19.1 23.4 84.0 -60.6 EUT on Side Perp EUT PK -19.1 22.2 84.0 -61.8 EUT Vert
13.561 28.4 11.1 1.0 295.0 10.0 0.0	Par EUT PK -19.1 20.4 84.0 -63.6 EUT on Side
13.567 28.3 11.1 1.0 99.0 10.0 0.0	Perp EUT AV -19.1 20.3 84.0 -63.7 EUT Vert

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
13.561	28.0	11.1	1.0	295.0	10.0	0.0	Par EUT	AV	-19.1	20.0	84.0	-64.0	EUT on Side
13.561	27.8	11.1	1.0	21.0	10.0	0.0	Par GND	AV	-19.1	19.8	84.0	-64.2	EUT Vert
13.561	22.1	11.1	1.0	135.0	10.0	0.0	Perp EUT	PK	-19.1	14.1	84.0	-69.9	EUT Horz
13.561	21.9	11.1	1.5	135.0	10.0	0.0	Par GND	PK	-19.1	13.9	84.0	-70.1	EUT Horz
13.561	20.7	11.1	1.0	135.0	10.0	0.0	Perp EUT	AV	-19.1	12.7	84.0	-71.3	EUT Horz
13.560	20.6	11.1	1.5	135.0	10.0	0.0	Par GND	AV	-19.1	12.6	84.0	-71.4	EUT Horz
13.559	15.5	11.1	2.5	226.0	10.0	0.0	Par EUT	PK	-19.1	7.5	84.0	-76.5	EUT Horz
13.560	13.0	11.1	2.5	226.0	10.0	0.0	Par EUT	AV	-19.1	5.0	84.0	-79.0	EUT Horz

FIELD STRENGTH OF FUNDAMENTAL AV3K90

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56MHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 4

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, fundamental carrier from the EUT was maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

FIELD STRENGTH OF FUNDAMENTAL AV3K90

													iR5 2016.07.22.1		
Wo	ork Orde		ELEMO			Date:				0 -	- 0				
	Projec		RA-03			nperature:				Dui	Hug				
	Job Sit														
Seria	l Numbe							mbar		Tested by:	Mike Tran			=.	
0	EU		Door Access RFID Reader Family (AV3K90)												
	iguratio		4 Third Millennium Systems Ltd												
	Attendee														
	JT Powe														
		T	ransmitting at 13.56MHz												
Operat	ing Mod	e:		,											
	eviation	. None	one												
U	eviation	5.													
		None	lone												
C	omment	s:													
														=	
Test Spec		S						Test Meth						_	
FCC 15.22	25:2016							ANSI C63.	.10:2013						
Run #	27	Tes	st Dist	ance (m)	10	Antenna	a Height(s)		1 to 4(m)		Results	Pa	ass	-	
100 -				()			g(e)							=	
100 -															
80 -													+		
60 -															
00 -															
							┷┩┖								
Ę															
≥ 40 -			_												
W//\ng p															
0															
20 -															
0 -															
					•										
-20															
13	.11	13.21		13.31	13.4	ı 1:	3.51	13.61	13.71	13.8	1 1	3.91	14.01		
							MHz				■ PK	◆ AV	QP		
								Polarity/							
							External	Transducer		Distance			Compared to		
Freq	Amplitude (dBuV)	Fact (dE		Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)		
(MHz)	(abav)	,dL	′	()	(4091003)	((35)			(35)	(abaviii)	(3534/111)	(45)	Comments	
13.553	27.7	11.		1.0	104.0	10.0	0.0	Perp EUT	PK	-19.1	19.6	50.5	-30.9	EUT Vert	
13.777 13.553	14.6 24.0	11. 11.		1.0 1.0	258.0 104.0	10.0 10.0	0.0 0.0	Perp EUT Perp EUT	PK AV	-19.1 -19.1	6.6 15.9	40.5 50.5	-33.9 -34.6	EUT Vert EUT Vert	
13.352	13.1	11.		1.0	240.0	10.0	0.0	Perp EUT	PK	-19.1 -19.1	5.0	40.5	-34.6 -35.5	EUT Vert	
13.775	6.6	11.	.1	1.0	258.0	10.0	0.0	Perp EUT	AV	-19.1	-1.4	40.5	-41.9	EUT Vert	
13.350	5.5	11.		1.0	240.0	10.0	0.0	Perp EUT	AV	-19.1	-2.6	40.5	-43.1	EUT Vert	
13.561 13.561	33.5 33.3	11. 11.		1.0 1.0	90.0 358.0	10.0 10.0	0.0 0.0	Perp EUT Perp EUT	PK PK	-19.1 -19.1	25.5 25.3	84.0 84.0	-58.5 -58.7	EUT Vert EUT on Side	
13.561	33.2	11.		1.0	90.0	10.0	0.0	Perp EUT	AV	-19.1	25.2	84.0	-58.8	EUT Vert	
13.561	33.0	11.	.1	1.0	358.0	10.0	0.0	Perp EUT	AV	-19.1	25.0	84.0	-59.0	EUT on Side	
13.561	31.2	11.		1.5	104.0	10.0	0.0	Par GND	PK	-19.1 10.1	23.2	84.0	-60.8	EUT Vert	
13.561 13.561	30.9 30.9	11. 11.		1.5 1.5	2.0 104.0	10.0 10.0	0.0 0.0	Par GND Par GND	PK AV	-19.1 -19.1	22.9 22.9	84.0 84.0	-61.1 -61.1	EUT on Side EUT Vert	
13.561	30.5	11.		1.5	2.0	10.0	0.0	Par GND	AV	-19.1	22.5	84.0	-61.5	EUT on Side	
13.567	29.7	11.	.1	1.0	81.0	10.0	0.0	Perp EUT	PK	-19.1	21.7	84.0	-62.3	EUT Vert	
13.561 13.561	28.4	11. 11.		1.0 1.0	293.0 360.0	10.0 10.0	0.0 0.0	Par EUT	PK PK	-19.1 -19.1	20.4	84.0 84.0	-63.6 -63.8	EUT on Side EUT Vert	
13.561 13.561	28.2 28.0	11. 11.		1.0 1.0	293.0	10.0 10.0	0.0	Par EUT Par EUT	PK AV	-19.1 -19.1	20.2 20.0	84.0 84.0	-63.8 -64.0	EUT vert EUT on Side	
				-						***	-		*	*	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
13.567	27.9	11.1	1.0	81.0	10.0	0.0	Perp EUT	AV	-19.1	19.9	84.0	-64.1	EUT Vert
13.561	27.6	11.1	1.0	360.0	10.0	0.0	Par EUT	AV	-19.1	19.6	84.0	-64.4	EUT Vert
13.560	23.8	11.1	1.0	270.0	10.0	0.0	Perp EUT	PK	-19.1	15.8	84.0	-68.2	EUT Horz
13.561	23.3	11.1	1.5	181.0	10.0	0.0	Par GND	PK	-19.1	15.3	84.0	-68.7	EUT Horz
13.560	23.0	11.1	1.0	270.0	10.0	0.0	Perp EUT	AV	-19.1	15.0	84.0	-69.0	EUT Horz
13.561	22.1	11.1	1.5	181.0	10.0	0.0	Par GND	AV	-19.1	14.1	84.0	-69.9	EUT Horz
13.561	17.5	11.1	3.0	270.0	10.0	0.0	Par EUT	PK	-19.1	9.5	84.0	-74.5	EUT Horz
13.561	14.9	11.1	3.0	270.0	10.0	0.0	Par EUT	AV	-19.1	6.9	84.0	-77.1	EUT Horz

FIELD STRENGTH OF FUNDAMENTAL AV490

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56MHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	10 kHz	Stop Frequency	30 MHz
-----------------	--------	----------------	--------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, fundamental carrier from the EUT was maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

FIELD STRENGTH OF FUNDAMENTAL **AV490**

																															ESCI 2 R5 201	16.07.22.			
	Wor	'nΟ	rder		Е	LEN	1000	5					Da	ate:		0	9/08	3/16						-	7 _		7						1		
			ject		TF	RA-0	3099	90			Te		eratu				21.2						/	W	ni	0	lu	4							
	,	Job	Site:	:		OC	800						umid			45	5.7%	RI	1																
Se	rial l						30-0						ic Pre			10)21 ı	mba	ır				Tes	sted	by:	Mike	Trar	า					_		
					or A	cces	ss RI	FID	Rea	der	Fami	ily (AV49	90)																			_		
Co	onfig																																_		
						∕liller	nniun	n Sy	ste	ms L	.td																						_		
			lees																														_		
	EUI	ГРо	wer																														_		
Ope	ratin	ıa M	ode	: Tra	ansn	nittin	ıg at	13.5	6M	Hz																									
																																	_		
	De	viati	ons	: INC	ne																														
				NIo																													_		
	Col	mm	ents		ne																														
	00.		51113	•																															
				_																			_												
Test Sp																			t Me			10											_		
FCC 15	.225	:201	6														ŀ	ANS	SI C6	3.1	0:20	113													
	,		4														, .					47 .								_			_		
Run	#	2	1		Test	t Dis	stanc	ce (n	n)	1	0		Ante	nna	a He	ight	(s)				1 to	4(m)				Re	sults	S		Pa	ass		_		
10	0 —			_													_															1			
																	٦.																		
8	0 +																															1			
•	_																																		
6	٠ 🕇																					\top													
Ε											[Т					7													
W/∕Vuab	, L																																		
1 €	۲																						Т												
쁑																																			
2	οl											\perp		\perp			7_						\perp												
																'																			
	o +	+	-	+	\vdash	+	++	+		+	+	+	+	+	+	+	+	-	_	+	+	+	+		-	++	+	+	+-	+	+	1			
																								ľ											
-2							ш.																								<u> </u>	J			
	13.1	1		13	.21		1	3.31			13.4	11		1	3.51			13.	61		1	3.71			13.8	1		13.9	1		14	.01			
																MI	Ηz										PK	4	Δ۱	/	•	QΡ			
															,	Externa	.		olarity/ nsduce	,				Distan	ice.						Com	pared to			
Freq		Ampl	itude		Facto	r	Antenr	na Hei	ght	Azir	nuth	Te	est Dista	ance		tenuation			Гуре		Dete	ector		djustn		Adjı	usted	s	pec. Li	mit		Spec.			
(MHz)		(dB	uV)		(dB)		(m	eters)		(deg	rees)		(meter	s)		(dB)								(dB))	(dBu	ıV/m)	(dBuV/r	m)		(dB)			
13.553		29	1		11.0)		1.0		10	6.0		10.0)		0.0		Por	p EU		Г	PΚ		-19.	1	2	1.0		50.5			29.5	Comme EUT on		
13.553		26			11.0			1.0			6.0		10.0			0.0			p EU			۱V		-19. -19.			1.0 B.1		50.5			29.5 32.4	EUT on		
13.775		14			11.1			1.0			0.0		10.0			0.0			p EU			Ϋ́Κ		-19.			.7		40.5			33.8	EUT on		
13.344		13			11.0			3.6			1.0		10.0			0.0			p EU			PΚ		-19.			.6		40.5			34.9	EUT on		
13.348		7.			11.0			3.6			1.0		10.0			0.0			p EU			V.		-19.).4		40.5			40.9	EUT on		
13.774 13.561		6. 35			11.1			1.0 1.0			0.0		10.0			0.0			p EU			۱V PK		-19. -19.			1.1 7.5		40.5 84.0			41.6 56.5	EUT on EUT on		
13.561		35			11.1			1.0			0.0		10.0			0.0			p EU			V		-19.			7.3		84.0			56.7	EUT on		
13.561		33	.9		11.1			1.0		90	0.0		10.0)		0.0		Per	p EU	Т		PΚ		-19.	1	2	5.9		84.0		-	58.1	EUT Ve		
13.561		33			11.1			1.0			0.0		10.0			0.0			p EU			١V		-19.			5.5		84.0			58.5	EUT Ve		
13.561 13.567		31 31			11.1			1.4 1.0			0.0 9.0		10.0			0.0			r GNE p EU			γK γK		-19. -19.			3.8 3.7		84.0 84.0			60.2 60.3	EUT on EUT on		
13.561		31			11.1			1.0			0.0		10.0			0.0			r GNE			۱V		-19. -19.			3. <i>1</i> 3.6		84.0			60.4	EUT on		
13.561		30			11.1			1.5			2.0		10.0			0.0			GNE			ΥK		-19.			2.5		84.0			61.5	EUT Ve		
13.561		30	.2		11.1			1.5		10	2.0		10.0)		0.0		Pai	GNE)	Α	١V		-19.	1	2	2.2		84.0)	-	61.8	EUT Ve	rt	
13.567		30			11.1			1.0			9.0		10.0			0.0			p EU			١V		-19.			2.2		84.0			61.8	EUT on		
13.561 13.561		29 29			11.1 11.1			1.0 1.0			4.0 4.0		10.0			0.0			r EUT r EUT			٩K		-19. -19.			1.9 1.5		84.0 84.0			62.1 62.5	EUT on EUT on		
10.001		28			11.1			1.0		- 11	-r.∪		10.0	•		0.0		га	01		A	. v		-19.	1		1.5		U+.U	•	-	UZ.U	LO I UII	Side	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
13.561	28.7	11.1	1.0	23.0	10.0	0.0	Par EUT	PK	-19.1	20.7	84.0	-63.3	EUT Vert
13.561	28.2	11.1	1.0	23.0	10.0	0.0	Par EUT	AV	-19.1	20.2	84.0	-63.8	EUT Vert
13.561	25.6	11.1	1.0	180.0	10.0	0.0	Perp EUT	PK	-19.1	17.6	84.0	-66.4	EUT Horz
13.561	24.9	11.1	1.0	180.0	10.0	0.0	Perp EUT	AV	-19.1	16.9	84.0	-67.1	EUT Horz
13.561	24.1	11.1	1.2	180.0	10.0	0.0	Par GND	PK	-19.1	16.1	84.0	-67.9	EUT Horz
13.561	22.9	11.1	1.2	180.0	10.0	0.0	Par GND	AV	-19.1	14.9	84.0	-69.1	EUT Horz
13.561	18.0	11.1	3.0	270.0	10.0	0.0	Par EUT	PK	-19.1	10.0	84.0	-74.0	EUT Horz
13.562	16.2	11.1	3.0	270.0	10.0	0.0	Par EUT	AV	-19.1	8.2	84.0	-75.8	EUT Horz

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ AV390

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56MHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 2

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

FIELD STRENGTH OF SPURIOUS **EMISSIONS LESS THAN 30 MHZ AV390**

												Em	niR5 2016.07	7.22.1	
	Wo	rk Order:		M0005		Date:		8/16		11					
		Project:		-030990	1	Temperature:	22.8			11		>+			
		Job Site:		C08		Humidity:		% RH							
	Serial	Number:		0430-09		metric Pres.:	1018	mbar		Tested by:	Mark Bayta	an			
				ess RFID Re	ader Fa	mily (AV390)									
		guration:	2												
				ennium Syste	ems Ltd										
		ttendees:													
	EU	T Power:	12VDC		41.1-										
O	perati	ng Mode:	Transmitt	ing at 13.56N	/IHZ										
			None												
	De	eviations:	NONE												
			None												
	Co	omments:													
Toot 9	2nooi	fications						Test Meth	od						
		fications 5:2016						ANSI C63.							
FUU	15.22	5:2016						ANSI Cos.	10:2013						
P	un #	32	Toet D	istance (m)	10	Antonno	Height(s)		1 to 4(n	n)	Results	D	ass		
K		32	Test D	istance (m)	10	Antenna	neight(s)		1 10 4(1	11)	Results	Р	ass		
	70														
	60														
	50														
	50														
	40														
dBuV/m															
≥ `	30				+										
₫						<u> </u>									
ਰ															
	20														
	10					-									
											•				
	0														
											- 5				
	-10														
	- 10 -					1			10				100	1	
	U					•	BA1 1-		10				100	,	
							MHz				■ PK	◆ AV	QP	•	
								Dolg-it-i							
							External	Polarity/ Transducer		Distance			Compare	ed to	
Fre		Amplitude	Factor	Antenna Height	Azimuth		Attenuation	Туре	Detector	- Adjustment	Adjusted	Spec. Limit	Spec	D.	
(MF	lz)	(dBuV)	(dB)	(meters)	(degrees	s) (meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)) Comments	
27.1	20	12.2	9.5	1.0	65.0	10.0	0.0	Perp to EUT	QP	-19.1	2.6	29.5	-26.		
27.1		12.0	9.5	1.0	360.0		0.0	Perp to EUT	QP	-19.1	2.4	29.5	-27.		
27.1		12.0	9.5	1.0	351.0		0.0	Perp to EUT	QP	-19.1	2.4	29.5	-27.	1 EUT on Side	
27.1		7.0	9.5	1.9	334.0		0.0	Parallel to EUT	QP	-19.1	-2.6	29.5	-32.		
27.1 27.1		6.8 5.8	9.5 9.5	1.0 2.1	314.0 217.0		0.0 0.0	Parallel to EUT Parallel to EUT	QP QP	-19.1 -19.1	-2.8 -3.8	29.5 29.5	-32.3 -33.3		
27.1		5.6 4.7	9.5 9.4	1.0	359.0		0.0	Parallel to GND		-19.1 -19.1	-3.6 -5.0	29.5 29.5	-33. -34.		
27.5		4.8	9.3	1.8	354.0		0.0	Parallel to GND	QP	-19.1	-5.0	29.5	-34.		
27.5	11	4.8	9.3	1.0	100.0	10.0	0.0	Parallel to GND	QP	-19.1	-5.0	29.5	-34.	5 EUT on Side	

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ AV3K90

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56MHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 4

FREQUENCY RANGE INVESTIGATED

Start Frequency 10 kHz Stop Frequency 30 MHz	Start Frequency 10 kHz	Stop Frequency 30 MHz
--	------------------------	-----------------------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ AV3K90

PSA-ESCI 2016.07.22 EmiR5 2016.07.22.1

Work Order:	ELEM0005	Date:	09/08/16	11
Project:	TRA-030990	Temperature:	22.8 °C	Mr Syt-
Job Site:	OC08	Humidity:	48.1% RH	
Serial Number:	IRN0430-10	Barometric Pres.:	1018 mbar	Tested by: Mark Baytan
EUT:	Door Access RFID Re	eader Family (AV3K90)		
Configuration:	4			
Customer:	Third Millennium Syst	ems Ltd		
Attendees:	None			
EUT Power:	12VDC			
Operating Mode:	Transmitting at 13.56	MHz		
Deviations:	None			
Comments:	None			
Test Specifications			Test Met	thod

 Test Specifications
 Test Method

 FCC 15.225:2016
 ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
27.120	8.4	9.5	1.0	95.0	10.0	0.0	Perp to EUT	QP	-19.1	-1.2	29.5	-30.7	EUT on Side
27.120	8.3	9.5	1.0	72.0	10.0	0.0	Perp to EUT	QP	-19.1	-1.3	29.5	-30.8	EUT Vert
27.120	7.2	9.5	1.0	0.0	10.0	0.0	Perp to EUT	QP	-19.1	-2.4	29.5	-31.9	EUT Horz
27.655	4.9	9.3	1.0	171.0	10.0	0.0	Parallel to GND	QP	-19.1	-4.9	29.5	-34.4	EUT Vert
27.147	4.7	9.5	1.0	297.0	10.0	0.0	Parallel to EUT	QP	-19.1	-4.9	29.5	-34.4	EUT Vert
27.781	4.8	9.3	1.0	185.0	10.0	0.0	Parallel to EUT	QP	-19.1	-5.0	29.5	-34.5	EUT Horz
27.555	4.8	9.3	3.1	178.0	10.0	0.0	Parallel to GND	QP	-19.1	-5.0	29.5	-34.5	EUT Horz
27.802	4.8	9.3	1.0	332.0	10.0	0.0	Parallel to EUT	QP	-19.1	-5.0	29.5	-34.5	EUT on Side
27.709	4.8	9.3	1.0	22.0	10.0	0.0	Parallel to GND	QP	-19.1	-5.0	29.5	-34.5	EUT on Side

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ AV490

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56MHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 10 kHz Stop Frequency 30 MHz	Start Frequency 10 kHz	Stop Frequency 30 MHz
--	------------------------	-----------------------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ AV490

PSA-ESCI 2016.07.22 EmiR5 2016.07.22.1

Work Order:	ELEM0005	Date:	09/08/16	11 0
Project:	TRA-030990	Temperature:	22.8 °C	Mt Byt
Job Site:	OC08	Humidity:	48.1% RH	
Serial Number:	IRN0430-07	Barometric Pres.:	1018 mbar	Tested by: Mark Baytan
EUT:	Door Access RFID Re	eader Family (AV490)		
Configuration:	1			
Customer:	Third Millennium Syst	ems Ltd		
Attendees:	None			
EUT Power:				
Operating Mode:	Transmitting at 13.56l	MHz		
Deviations:	None			
Comments:	None			
Toot Coordinations	1		Took Mad	had

 Test Specifications
 Test Method

 FCC 15.225:2016
 ANSI C63.10:2013

Test Distance (m) Antenna Height(s) Results Run# 10 1 to 4(m) Pass 70 60 50 40 **8** 30 **9** 20 10 0 -10 -20 10 100 MHz QP ■ PK AV

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
27.121	19.6	9.5	1.9	44.0	10.0	0.0	Perp to EUT	QP	-19.1	10.0	29.5	-19.5	EUT Vert
27.121	18.3	9.5	1.0	33.0	10.0	0.0	Perp to EUT	QP	-19.1	8.7	29.5	-20.8	EUT on Side
27.121	18.3	9.5	1.0	10.0	10.0	0.0	Perp to EUT	QP	-19.1	8.7	29.5	-20.8	EUT Horz
27.121	12.3	9.5	2.0	297.0	10.0	0.0	Parallel to EUT	QP	-19.1	2.7	29.5	-26.8	EUT Vert
27.120	11.3	9.5	2.2	314.0	10.0	0.0	Parallel to EUT	QP	-19.1	1.7	29.5	-27.8	EUT on Side
27.120	11.0	9.5	3.8	312.0	10.0	0.0	Parallel to GND	QP	-19.1	1.4	29.5	-28.1	EUT Vert
27.120	11.0	9.5	1.9	317.0	10.0	0.0	Parallel to EUT	QP	-19.1	1.4	29.5	-28.1	EUT Horz
27.120	8.9	9.5	2.8	301.0	10.0	0.0	Parallel to GND	QP	-19.1	-0.7	29.5	-30.2	EUT on Side
27.063	4.7	9.5	2.0	137.0	10.0	0.0	Parallel to GND	QP	-19.1	-4.9	29.5	-34.4	EUT Horz

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ AV390

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56MHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	11000 MHz
Clart i requerioy	OO IVII IZ	Otop i requerioy	1000 WH 12

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	8/9/2016	12 mo
Antenna - Biconilog	EMCO	3142B	AXK	10/6/2014	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	2/9/2016	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2013).

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ AV390

											En	niR5 2016.04.26.1		
W	ork Order:	ELE	M0005		Date:	09/0	8/16		11		-			
	Project:	TRA-	030990	Ter	mperature:	22.	9 °C		4	6	54			
	Job Site:	0	C10		Humidity:	46.3	% RH				1			
Seria	al Number:	IRN0	430-09	Baromo	etric Pres.:		mbar		Tested by:	Mark Bayta	an		_	
	EUT:	Door Acce	ess RFID Re	ader Fami	ly (AV390)								-	
Conf	figuration:	2											_	
		Third Mille	ennium Syste	ms Ltd									_	
-	Attendees:	None	-										_	
El	UT Power:	12VDC	2VDC											
		Transmitti	ansmitting at 13.56MHz											
Operat	ting Mode:		· ·											
	Deviations:	None											_	
	Deviations:													
		None											-	
С	comments:													
													_	
Test Spec	cifications						Test Meth	od					-	
FCC 15.22							ANSI C63.						-	
1 00 10.22	20.2010						,	10.2010						
Run #	2	Toot D	istance (m)	3	Antonno	Height(s)		1 to 4(m)		Results	В	ass	-	
		I est D	istance (iii)	J	Antenna	rieigiit(s)		1 10 4(111)		Results	Г	a55	-	
80 T														
_														
70 +														
60 +														
												[
50														
_														
W//NB														
5 40 +														
- 등														
30 +														
20 +														
40														
10 +														
0														
10	n					100						1000		
10	U											1000		
						MHz				■ PK	AV	QP		
						External	Polarity/ Transducer		Distance			Compared to		
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.		
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	0	
40.690	27.6	1 5	10	41.0	3.0	0.0	Vert	QP	0.0	29.1	40.0	10.0	Comments ELIT on Side	
40.689 40.690	27.6 27.1	1.5 1.5	1.0 1.0	41.0 11.0	3.0 3.0	0.0 0.0	Vert Vert	QP QP	0.0	29.1 28.6	40.0 40.0	-10.9 -11.4	EUT on Side EUT Vert	
40.690	26.9	1.5	1.1	92.0	3.0	0.0	Vert	QP QP	0.0	28.4	40.0	-11.4	EUT Horz	
40.690	23.6	1.5	1.5	268.0	3.0	0.0	Horz	QP	0.0	25.1	40.0	-14.9	EUT Horz	
40.690	22.5	1.5	1.5	282.0	3.0	0.0	Horz	QP	0.0	24.0	40.0	-16.0	EUT Vert	
54.252	26.2	-2.4	1.0	186.0	3.0	0.0	Vert	QP	0.0	23.8	40.0	-16.2	EUT on Side	
40.692	22.2	1.5	1.5	296.0	3.0	0.0	Horz	QP	0.0	23.7	40.0	-16.3	EUT on Side	
30.214 50.461	13.5	7.3 -1.6	2.8	63.0 92.0	3.0	0.0	Vert	QP QP	0.0	20.8	40.0	-19.2 -19.8	EUT on Side	
50.461 31.525	21.8 13.4	-1.6 6.4	1.2 1.0	92.0 46.0	3.0 3.0	0.0 0.0	Vert Horz	QP QP	0.0 0.0	20.2 19.8	40.0 40.0	-19.8 -20.2	EUT on Side EUT Horz	
01.020	10.7	5.4	1.0	-5.0	0.0	0.0	11012	- Cai	0.0	10.0	-0.0	20.2	20111012	

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ AV3K90

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56MHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 4

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	8/9/2016	12 mo
Antenna - Biconilog	EMCO	3142B	AXK	10/6/2014	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	2/9/2016	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2013).

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ AV3K90

W										Er	niR5 2016.04.26.1	
	ork Order:	ELEM0005		Date:	09/0	8/16		11		-		
	Project:	TRA-030990	Te	mperature:	22.9	9°C		11		54		
	Job Site:	OC10		Humidity:	46.39	% RH				1		
Seria	al Number:	IRN0430-10	Barom	etric Pres.:	1018		7	Tested by:	Mark Bayta	an		•
	EUT:	Door Access RFID	Reader Fam	ly (AV3K90)								-
Con	figuration:	4		•								='
			stems Ltd									-
-	Attendees:											-
	UT Power:											-
		Transmitting at 13.	6MHz									-
Operat	ting Mode:	· ·										
-	Daviotiona	None										= '
L	Deviations:											
		None										= '
С	Comments:											
												_
Test Spec	cifications					Test Meth	ho					
FCC 15.22						ANSI C63.						=
1 00 13.22	20.2010					AI 1 01 000.	10.2013					
- "										_		<u>-</u>
Run #	1	Test Distance (I	n) 3	Antenna	Height(s)		1 to 4(m)		Results	F	Pass	<u>-</u>
80 _T												
70 -												
60 -												
											rt	
50 -												
_												
W/Ang												
≥ 40 +							 -					
ā												
ס												
ە 30 -												
_												
_			•									
_												
30 -												
30 -												
30 -												
30 -												
30 - 20 - 10 -												
30 - 20 - 10 -												
30 - 20 - 10 -	0				100						1000	
30 - 20 - 10 -	0				100 MHz				■ PK	◆ AV		
30 - 20 - 10 -	0								■ PK	◆ AV	1000 • QP	
30 - 20 - 10 -	0				MHz	Polarity/			■ PK	◆ AV	• QP	
30 - 20 - 10 - 0 -		Factor Antenna He	oht Azimuth	Test Distance	MHz	Transducer	Detector	Distance Adjustment			• QP	
30 - 20 - 10 - 10	O Amplitude (dBuV)	Factor Antenna He (dB) (meters)		Test Distance (meters)	MHz		Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	◆ AV Spec. Limit (dBuV/m)	• QP	
30 - 20 - 10 - 10 Freq (MHz)	Amplitude (dBuV)	(dB) (meters)	(degrees)	(meters)	MHz External Attenuation (dB)	Transducer Type		Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
30 - 20 - 10 - 0 - 10 Freq (MHz) 40.690	Amplitude (dBuV)	(dB) (meters)	(degrees)	(meters)	External Attenuation (dB)	Transducer Type	QP	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	EUT Vert
30 - 20 - 10 - 0 - 10 Freq (MHz) 40.690 40.690	Amplitude (dBuV) 24.7 24.4	(dB) (meters) 1.5 1.0 1.5 1.0	354.0 348.0	3.0 3.0	External Attenuation (dB) 0.0 0.0	Transducer Type Vert Vert	QP QP	Adjustment (dB) 0.0 0.0	Adjusted (dBuV/m) 26.2 25.9	Spec. Limit (dBuV/m) 40.0 40.0	Compared to Spec. (dB) -13.8 -14.1	EUT Vert EUT on Side
30 - 20 - 10 - 10 Freq (MHz) 40.690 40.690 40.692	Amplitude (dBuV) 24.7 24.4 19.5	1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.5	354.0 348.0 259.0	3.0 3.0 3.0 3.0	External Attenuation (dB) 0.0 0.0 0.0 0.0	Transducer Type Vert Vert Horz	QP QP QP	Adjustment (dB) 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 26.2 25.9 21.0	Spec. Limit (dBuV/m) 40.0 40.0 40.0	• QP Compared to Spec. (dB) -13.8 -14.1 -19.0	EUT Vert EUT on Side EUT on Side
30 - 20 - 10 - 10 Freq (MHz) 40.690 40.690 40.692 40.692	Amplitude (dBuV) 24.7 24.4 19.5 18.9	1.5 1.0 1.5 1.0 1.5 1.5 1.5 1.5 1.5 1.0	354.0 348.0 259.0 126.0	3.0 3.0 3.0 3.0 3.0	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0	Vert Vert Horz Horz	QP QP QP QP	Adjustment (dB) 0.0 0.0	Adjusted (dBuV/m) 26.2 25.9 21.0 20.4	Spec. Limit (dBuV/m) 40.0 40.0 40.0 40.0 40.0	Compared to Spec. (dB) -13.8 -14.1 -19.0 -19.6	EUT Vert EUT on Side EUT on Side EUT Vert
30 - 20 - 10 - 10 Freq (MHz) 40.690 40.690 40.692	Amplitude (dBuV) 24.7 24.4 19.5	1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.5	354.0 348.0 259.0	3.0 3.0 3.0 3.0	External Attenuation (dB) 0.0 0.0 0.0 0.0	Transducer Type Vert Vert Horz	QP QP QP	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 26.2 25.9 21.0	Spec. Limit (dBuV/m) 40.0 40.0 40.0	• QP Compared to Spec. (dB) -13.8 -14.1 -19.0	EUT Vert EUT on Side EUT on Side
30 - 20 - 10 - 10 Freq (MHz) 40.690 40.692 40.692 40.692 30.606 47.578	Amplitude (dBuV) 24.7 24.4 19.5 18.9 18.8 13.2 19.0	(dB) (meters) 1.5 1.0 1.5 1.0 1.5 1.5 1.5 1.0 7.0 1.0 -0.9 1.0	354.0 348.0 259.0 126.0 0.0 338.0 242.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vert Vert Horz Vert Horz Vert Vert	QP QP QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 26.2 25.9 21.0 20.4 20.3 20.2 18.1	Spec. Limit (dBuV/m) 40.0 40.0 40.0 40.0 40.0 40.0 40.0	Oppared to Spec. (dB) -13.8 -14.1 -19.0 -19.6 -19.7 -19.8 -21.9	EUT Vert EUT on Side EUT on Side EUT vert EUT Horz EUT Ur Side EUT Vert
30 - 20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	Amplitude (dBuV) 24.7 24.4 19.5 18.9 18.8 13.2 19.0 19.4	(dB) (meters) 1.5 1.0 1.5 1.5 1.5 1.5 1.5 1.0 7.0 1.0 -0.9 1.0 -1.4 1.0	(degrees) 354.0 348.0 259.0 126.0 0.0 338.0 242.0 229.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vert Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert Vert	QP QP QP QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 26.2 25.9 21.0 20.4 20.3 20.2 18.1 18.0	Spec. Limit (dBuV/m) 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Compared to Spec. (dB) -13.8 -14.1 -19.0 -19.6 -19.7 -19.8 -21.9 -22.0	EUT Vert EUT on Side EUT on Side EUT Vert EUT Horz EUT on Side EUT Vert EUT Vert
30 - 20 - 10 - 10 Freq (MHz) 40.690 40.692 40.692 40.692 30.606 47.578	Amplitude (dBuV) 24.7 24.4 19.5 18.9 18.8 13.2 19.0	(dB) (meters) 1.5 1.0 1.5 1.0 1.5 1.5 1.5 1.0 7.0 1.0 -0.9 1.0	354.0 348.0 259.0 126.0 0.0 338.0 242.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vert Vert Horz Vert Horz Vert Vert	QP QP QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 26.2 25.9 21.0 20.4 20.3 20.2 18.1	Spec. Limit (dBuV/m) 40.0 40.0 40.0 40.0 40.0 40.0 40.0	Oppared to Spec. (dB) -13.8 -14.1 -19.0 -19.6 -19.7 -19.8 -21.9	EUT Vert EUT on Side EUT on Side EUT vert EUT Horz EUT Ur Side EUT Vert

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ AV490

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56MHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 1

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	8/9/2016	12 mo
Antenna - Biconilog	EMCO	3142B	AXK	10/6/2014	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	2/9/2016	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2013).

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ AV490

											Em	iR5 2016.04.26.	1
W	ork Order:	ELE	EM0005		Date:	09/08			11		-		
	Project:		-030990	Te	mperature:	22.9			11	-	7/		
	Job Site:		DC10		Humidity:	46.3%							
Seria	al Number:		0430-07		etric Pres.:	1018	mbar		Tested by:	Mark Bayta	an		_
	EUT:	Door Acc	cess RFID Re	ader Fami	ily (AV490)								_
	figuration:	1											_
			lennium Syste	ems Lta									_
	Attendees: UT Power:												_
			ting at 13.56N	ЛН									_
Operat	ting Mode:	Transmit	ang at 10.00m	/II IZ									
_	Deviations:	None											_
L	Deviations:												_
		None											
С	comments:												
													=
Test Spec							Test Meth						
FCC 15.22	25:2016						ANSI C63.	.10:2013					
Run #	3	Test F	Distance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	D	ass	_
	U	1031 E	pistance (iii)		Antonia	ricigiit(3)		1 10 4(111)		Nosuits		433	_
80 T													
70													
60 -													
												П	
50 -													
Ε												 '	
\(\bar{\}\)													
W/Ang				<u> </u>	•								
ס					•								
30				-									
					•								
					•								
20 -													
10													
10													
0 +												\perp	
10	0					100						1000	
						MHz				■ PK	◆ AV	• QP	
											* //		1
						External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
54.251	40.7	-2.4	1.0	182.0	3.0	0.0	Vert	QP QP	0.0	38.3	40.0	-1.7	EUT Horz
54.249	40.6	-2.4	1.0	193.0	3.0	0.0	Vert	QP	0.0	38.2	40.0	-1.8	EUT Vert
54.249	40.5	-2.4	1.0	203.0	3.0	0.0	Vert	QP	0.0	38.1	40.0	-1.9	EUT on Side
40.689 67.810	35.3 37.6	1.5 -3.2	1.0 1.0	111.0 179.0	3.0 3.0	0.0 0.0	Vert Vert	QP QP	0.0 0.0	36.8 34.4	40.0 40.0	-3.2 -5.6	EUT Horz EUT Horz
40.689	28.0	1.5	1.5	278.0	3.0	0.0	Horz	QP	0.0	29.5	40.0	-10.5	EUT on Side
54.251	30.9	-2.4	3.8	267.0	3.0	0.0	Horz	QP	0.0	28.5	40.0	-11.5	EUT on Side
54.251	30.8	-2.4	1.5	210.0	3.0	0.0	Horz	QP	0.0	28.4	40.0	-11.6	EUT Horz
54.251 94.933	30.1 30.3	-2.4 -2.0	1.8 1.0	237.0 50.0	3.0 3.0	0.0 0.0	Horz Vert	QP QP	0.0 0.0	27.7 28.3	40.0 43.5	-12.3 -15.2	EUT Vert EUT Horz
67.812	26.8	-3.2	1.6	152.0	3.0	0.0	Horz	QP QP	0.0	23.6	40.0	-16.4	EUT on Side
94.933	26.8	-2.0	3.9	110.0	3.0	0.0	Horz	QP	0.0	24.8	43.5	-18.7	EUT on Side

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	79 III	MMD	2/11/2016	2/11/2019
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPHS-32-3.5-SCT/AC	TBE	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUC	10/3/2014	10/3/2017
Probe - Near Field Set	EMCO	7405	IPI	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18E-10	TKT	4/4/2016	4/4/2017
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/19/2015	11/19/2016

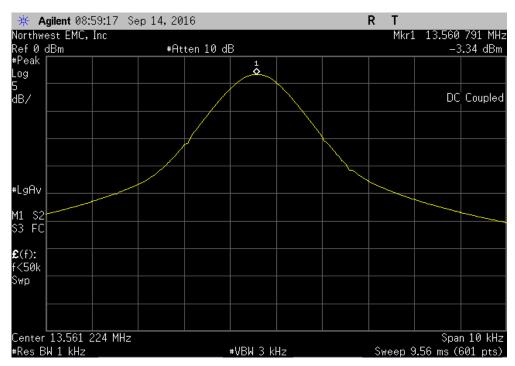
TEST DESCRIPTION

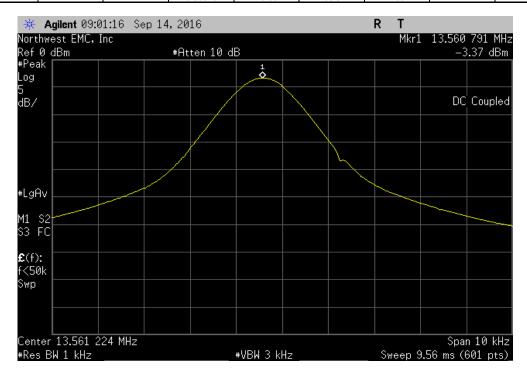
A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

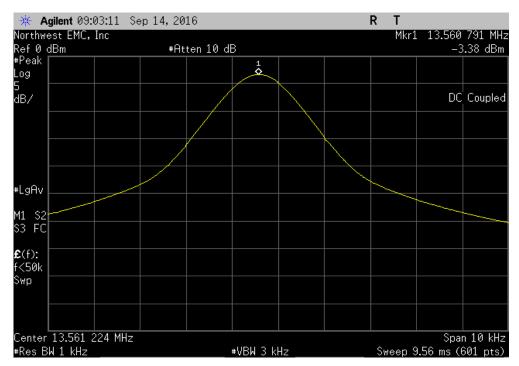
The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -20 ° to +50° C and at 10°C intervals.

The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm. The formula to check for compliance is:

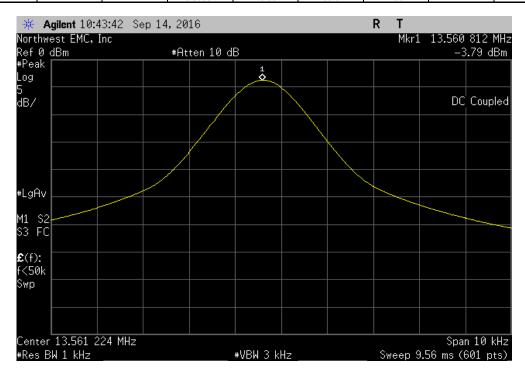

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000


EU.	T: Door Access RFID Reader Family (AV490)				Work Order:	ELEM0005						
Serial Numbe	r: IRN0430-07				Date:	09/14/16						
Custome	r: Third Millennium Systems Ltd				Temperature:	21.1 °C						
Attendees	s: None					49.1% RH						
Projec	t: TRA-030990				Barometric Pres.:	1020 mbar						
	y: Johnny Candelas	Power: 12		Job Site: OC13								
EST SPECIFICA	TIONS	T	est Method									
CC 15.225:2016		Α	ANSI C63.10:2013									
OMMENTS												
nit model AV490	I found to be worst case varient based on Emissions testing. Test	ed as representative	e unit for 13.56 MHz transmitter									
EVIATIONS FRO	DM TEST STANDARD											
one												
		le d.	11									
onfiguration #	1	a.	La there									
	Signature											
			Measured	Assigned	Error	Limit						
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results					
FID 13.56MHz												
	Normal Temperature and Voltage		13.560791	13.56	58.3	100	Pass					
	Normal Temperature, Extreme Voltage +15%		13.560791	13.56	58.3	100	Pass					
	Normal Temperature, Extreme Voltage -15%		13.560791	13.56	58.3	100	Pass					
	Extreme Temperature, +50°C		13.560812	13.56	59.9	100	Pass					
	Extreme Temperature, +40°C		13.560807	13.56	59.5	100	Pass					
	Extreme Temperature, +30°C		13.560789	13.56	58.2	100	Pass					
	Extreme Temperature, +20°C		13.560791	13.56	58.3	100	Pass					
	Extreme Temperature, +10°C		13.560791	13.56	58.3	100	Pass					
	Extreme Temperature, 0°C		13.560774	13.56	57.1	100	Pass					
	Extreme Temperature, -10°C		13.560757	13.56	55.8	100	Pass					
	Extreme Temperature, -20°C		13.560724	13.56	53.4	100	Pass					

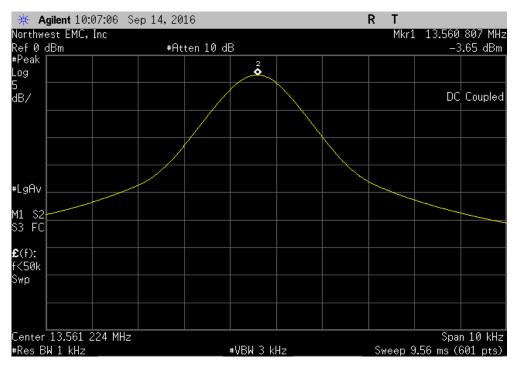
	RFID 13.56MHz,	Normal Tempera	ature and Voltage		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560791	13.56	58.3	100	Pass



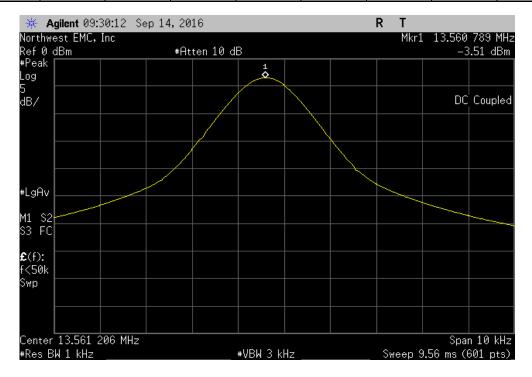
	RFID	13.56MHz, Norm	al Temperature,	Extreme Voltage	+15%	
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.560791	13.56	58.3	100	Pass



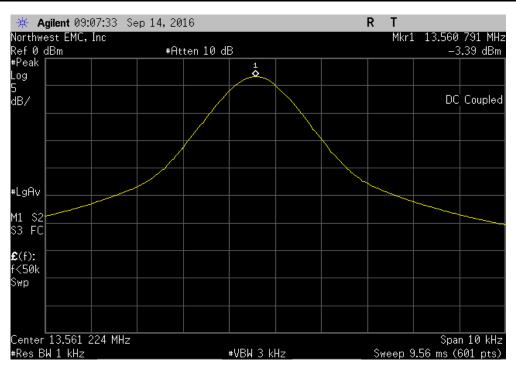
	RFID	13.56MHz, Norm	nal Temperature,	Extreme Voltage	-15%		
		Measured	Assigned	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
		13.560791	13.56	58.3	100	Pass	ł



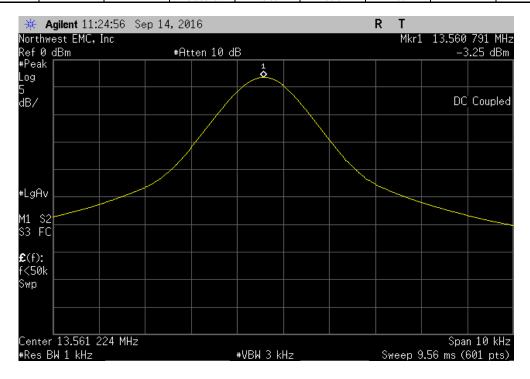
	RFID 13.56MH	lz, Extreme Temp	erature, +50°C		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560812	13.56	59.9	100	Pass



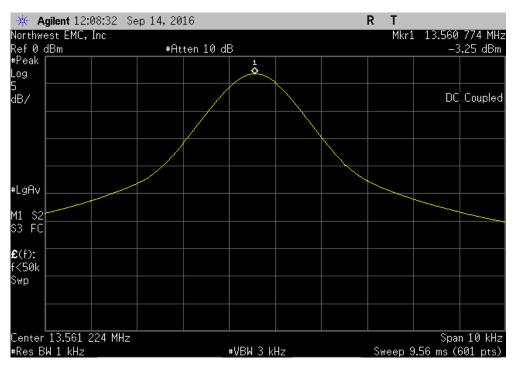
	RFID 13.56MH	lz, Extreme Temp	erature, +40°C		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560807	13.56	59.5	100	Pass



	RFID 13.56MH	lz, Extreme Temp	erature, +30°C		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560789	13.56	58.2	100	Pass



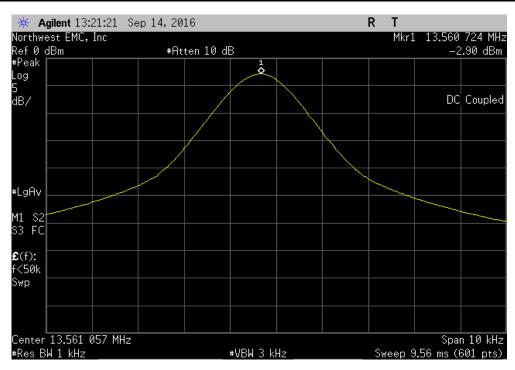
	RFID 13.56MH	lz, Extreme Temp	erature, +20°C			
	Measured	Assigned	Error	Limit		
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
	13.560791	13.56	58.3	100	Pass	



	RFID 13.56MH	lz, Extreme Temp	erature, +10°C		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560791	13.56	58.3	100	Pass



		RFID 13.56M	Hz, Extreme Tem	perature, 0°C		
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
I		13.560774	13.56	57.1	100	Pass



RFID 13.56MHz, Extreme Temperature, -10°C									
		Measured	Assigned	Error	Limit				
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
_		13.560757	13.56	55.8	100	Pass			

RFID 13.56MHz, Extreme Temperature, -20°C											
			Measured	Assigned	Error	Limit					
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
			13.560724	13.56	53.4	100	Pass				

