

VDE Testing & Certification Institute

ADDENDUM TO TEST REPORT 95313-14

Toothbrush Models: 3754 & 3764

Tested To The Following Standards:

FCC Part 15 Subpart C, Section 15.247

Report No.: 95313-14A

Date of issue: May 9, 2014

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
15.247(a)(2) Occupied Bandwidth	7
15.247(b)(3) Maximum Power Output	13
15.247(d) Field Strength of Radiated Spurious Emissions & Band Edge	22
15.247(e) Power Spectral Density	33
Supplemental Information	39
Measurement Uncertainty	39
Emissions Test Details	39

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Braun GmbH
Frankfurterstraße 145
61476 Kronberg am Taunus
Germany

Representative: Martin Moesbauer – Braun GmbH
Ching-Yun Wang – VDE Testing & Certification Inst.

REPORT PREPARED BY:

Morgan Tramontin
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 95313

DATE OF EQUIPMENT RECEIPT:

February 25, 2014

DATE(S) OF TESTING:

February 25 – April 3, 2014

Revision History

Original: Testing of the Toothbrush, 3754 & 3764 to FCC Part 15.247.

Addendum A: To replace the Field Strength of Radiated Spurious Emissions data sheet because the previous datasheet did not include an antenna up to 26GHz.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Mariposa A	US0103	SL2-IN-E-1147R	3082A-2	90477	A-0136

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Test Procedure/Method	Description	Results
15.247(a)(2)	Occupied Bandwidth	Pass
15.247(b)(3)	Maximum Power Output	Pass
15.247(d)	Field Strength of Radiated Spurious Emissions & Band Edge	Pass
15.247(e)	Power Spectral Density	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions
<p>Note: The two models are organized throughout the report structure as "3754" and "3764". These two models each operate in two different modes: Bluetooth mode and Proprietary mode. All testing included in this report is tested in the Bluetooth mode.</p>

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Toothbrush

Manuf: Braun
Model: 3754
Serial: Test_SW

Toothbrush

Manuf: Braun
Model: 3764
Serial: Test_SW

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) CFR 47 Section 15 Subpart C requirements for Intentional Radiators.

15.247(a)(2) Occupied Bandwidth

Test Conditions / Setup

Engineer Name: Eddie Mariscal

Test Conditions:

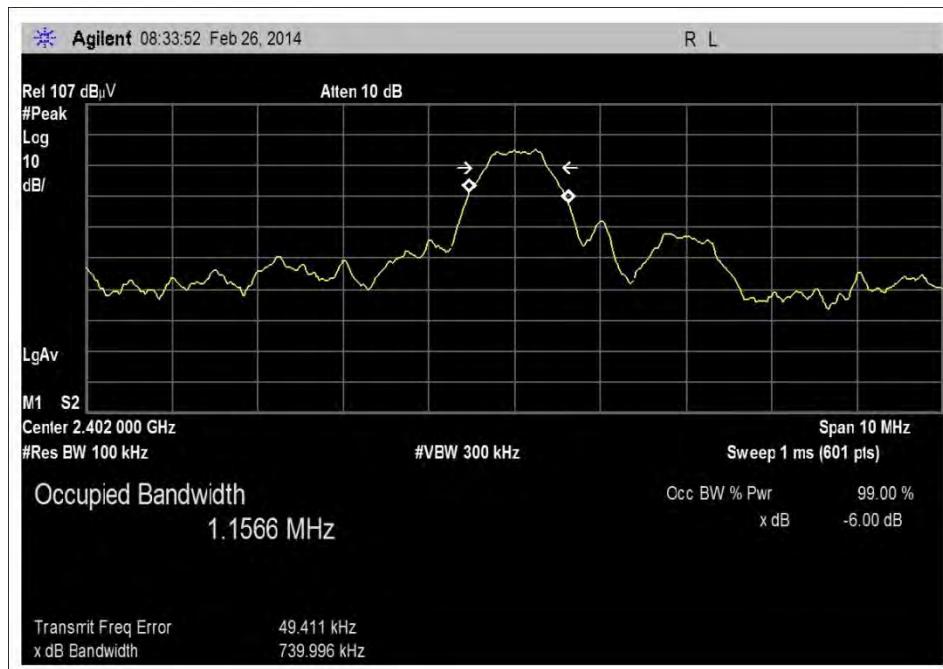
Temp: 18°C

Humidity: 35%

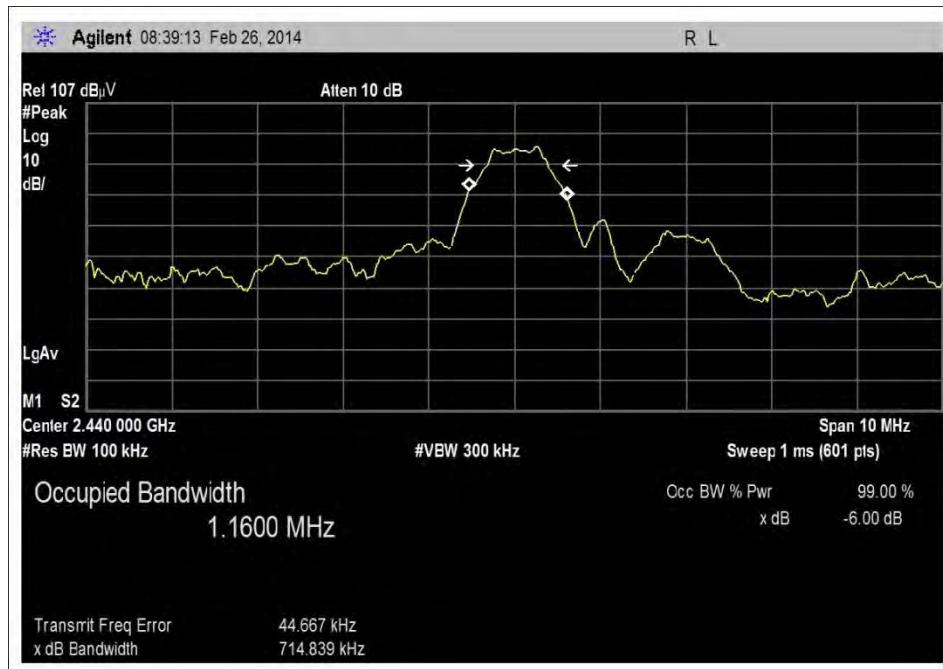
Pressure: 97.8kPa

Freq: 2402-2480MHz

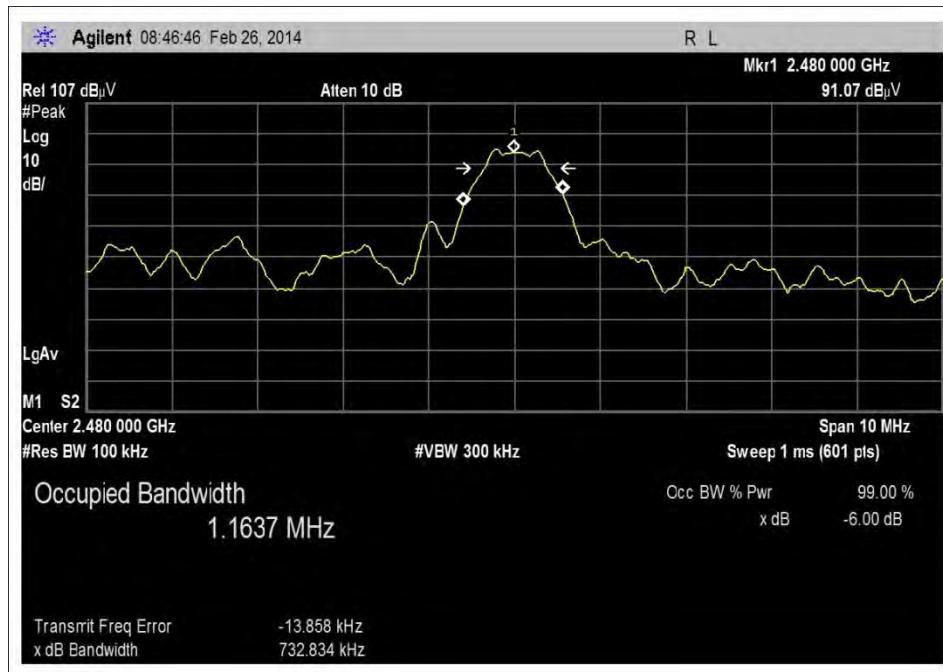
RBW = 1MHz; VBW = 3MHz;

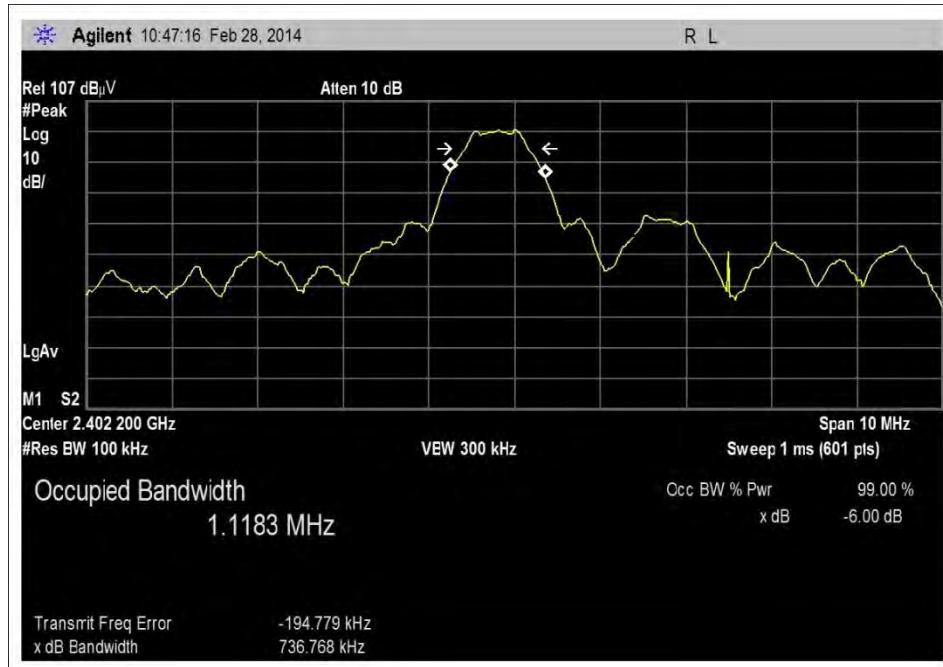

The EUT's use a non-removable antenna, thus the data will be gathered through radiated measurements. The EUT is located on top of a Styrofoam support, 80cm above the reference ground plane. The EUT is operating in Bluetooth mode during testing. Three orthogonal axes were investigated. The data presented represents the worst case orientation. The EUT battery is fully charged per FCC 15.31(e).

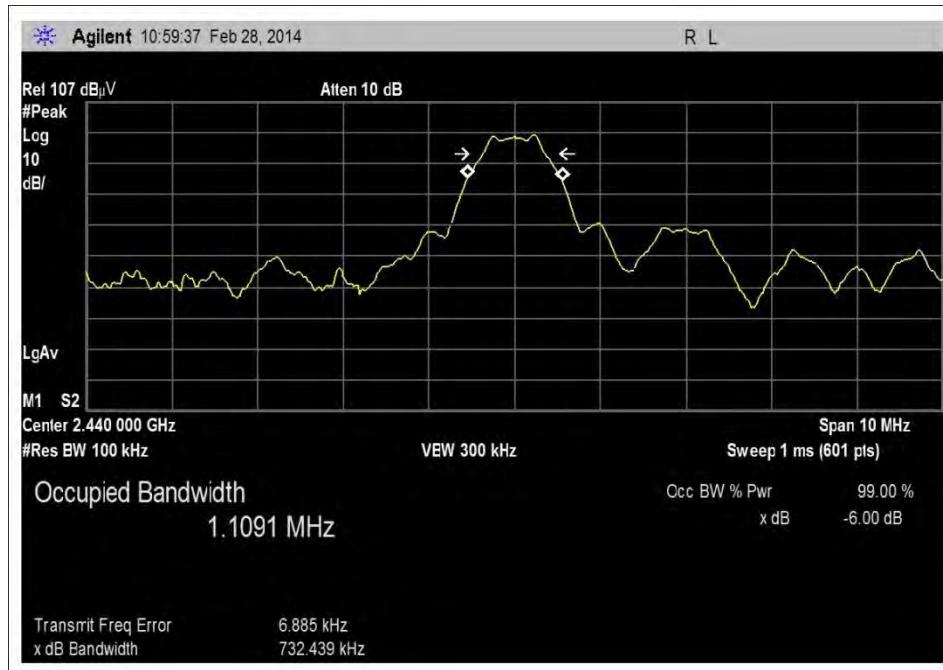
Test Equipment

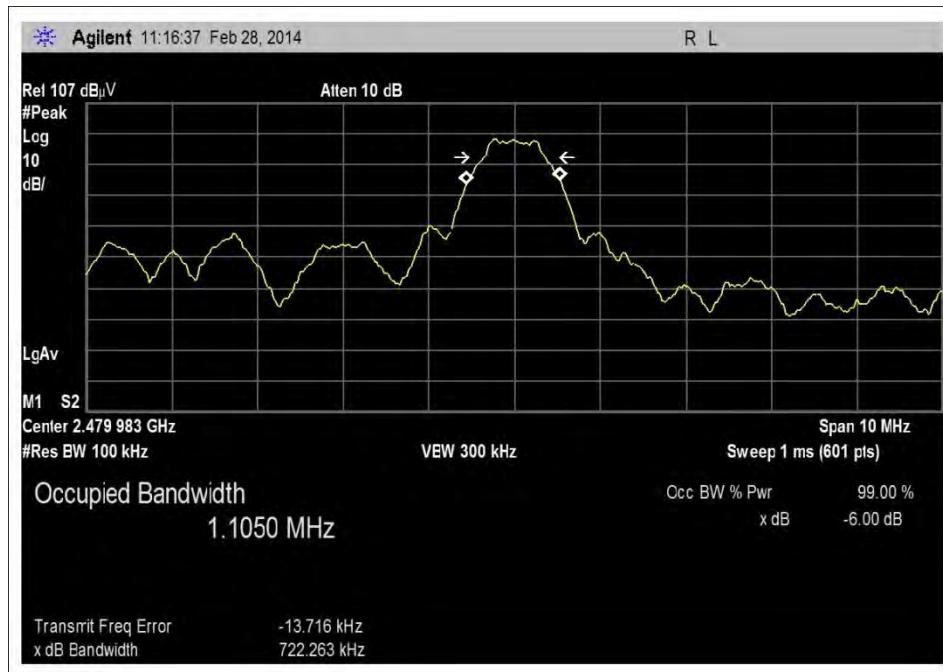

Asset #	Description	Model	Manufacturer	Cal Date	Cal Due
00327	Horn Antenna	3115	EMCO	4/13/2012	4/13/2014
03360	Cable	32022-2-29094-36TC	Astrolab	2/4/2013	2/4/2015
03155	Preamp	83017A	HP	6/26/2013	6/26/2015
03355	Cable	32026-2-29094K-48TC	Astrolab	2/7/2013	2/7/2015
03358	Cable	32022-2-29094K-36TC	Astrolab	2/7/2013	2/7/2015
03359	Cable	32022-2-29094-36TC	Astrolab	2/4/2013	2/4/2015
P05904	Cable	32022-2-29094K-144TC	Astrolab	2/15/2013	2/15/2015

EUT Model	Frequency (MHz)	6dB Bandwidth (kHz)
3754	2402	740.00
3754	2440	714.84
3754	2480	732.83
3764	2402	736.77
3764	2440	732.44
3764	2480	722.26


Test Data


Low Frequency, 3754


Middle Frequency, 3754


High Frequency, 3754

Low Frequency, 3764

Middle Frequency, 3764

High Frequency, 3764

Test Setup Photo(s)

High Frequency, 3754

High Frequency, 3764

15.247(b)(3) Maximum Power Output

Test Conditions / Setup

Engineer Name: Eddie Mariscal

Test Conditions:

Temp: 18°C, Humidity: 35%, Pressure: 97.8kPa

Freq: 2402-2480MHz

RBW = 1MHz; VBW = 3MHz

The EUTs use a non-removable antenna, thus the data will be gathered through radiated measurements. The formula shown below will be used to calculate the Maximum Conducted Output Power. The EUT is located on top of a Styrofoam support, 80cm above the reference ground plane. The EUT is operating in Bluetooth mode during testing. Three orthogonal axes were investigated. The data presented represents the worst case orientation. The EUT battery is fully charged per FCC 15.31(e).

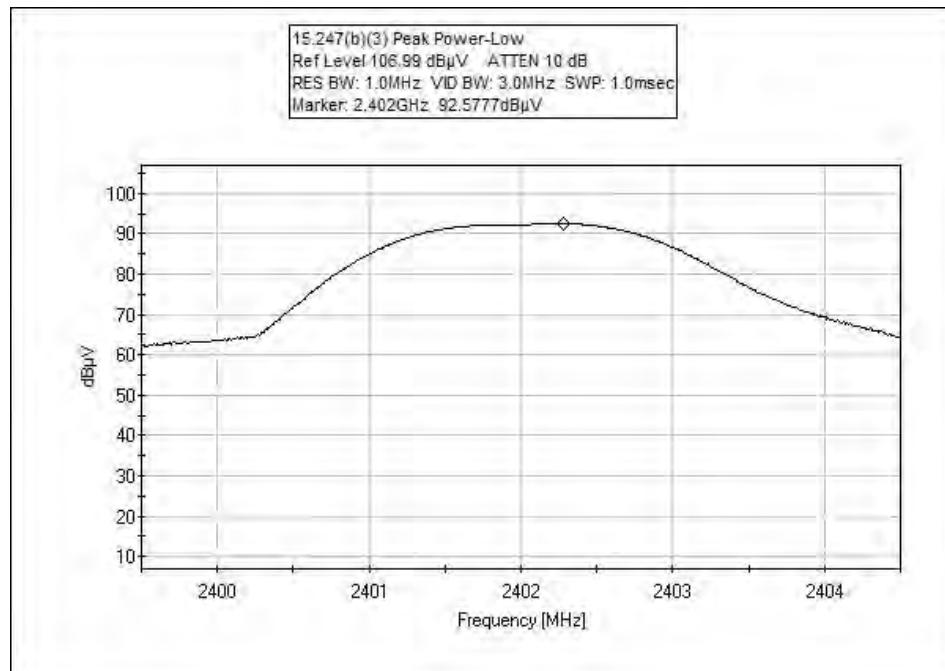
Plots do not have corrections applied. See correction factors in table below.

$$P = (E*d)^2 / (30 * G)$$

E = Field strength of the measurement converted to V/M

d = Measurement distance in meters

G = Numerical gain of the EUT's antenna relative to an isotropic radiator.


P = The power in watts for which we are solving.

Test Equipment

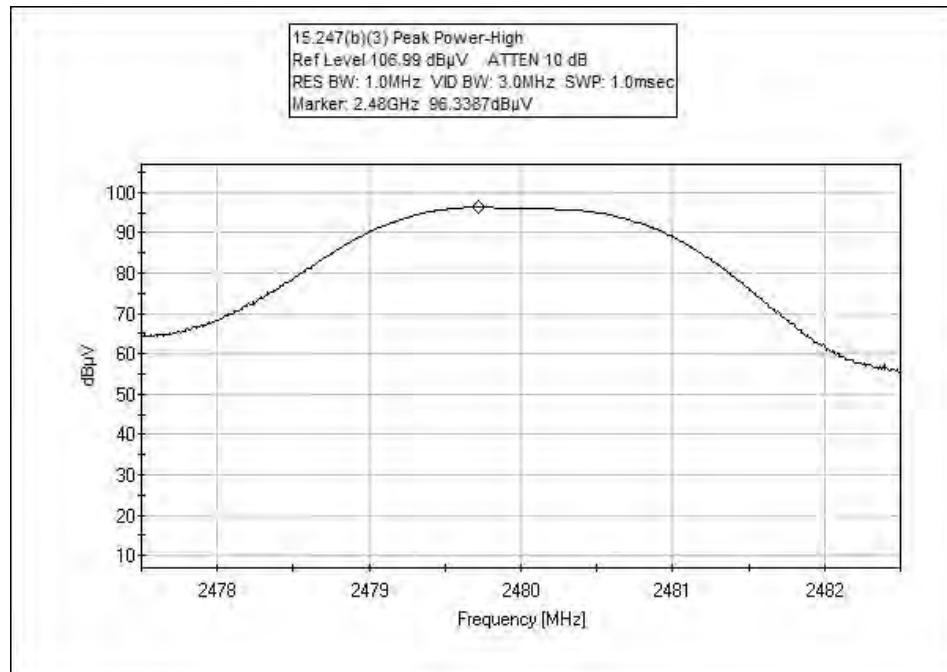
Asset #	Description	Model	Manufacturer	Cal Date	Cal Due
00327	Horn Antenna	3115	EMCO	4/13/2012	4/13/2014
03360	Cable	32022-2-29094-36TC	Astrolab	2/4/2013	2/4/2015
03155	Preamp	83017A	HP	6/26/2013	6/26/2015
03355	Cable	32026-2-29094K-48TC	Astrolab	2/7/2013	2/7/2015
03358	Cable	32022-2-29094K-36TC	Astrolab	2/7/2013	2/7/2015
03359	Cable	32022-2-29094-36TC	Astrolab	2/4/2013	2/4/2015
P05904	Cable	32022-2-29094K-144TC	Astrolab	2/15/2013	2/15/2015

EUT model	Frequency (MHz)	Spectrum Analyzer Measurement (dBuV)	Corrections due to cables, Amplifiers and antennas (dB)	Corrected Reading (dBuV)	Antenna Gain (dBi)	Conducted Power (mW)	Limit (mW)
3754	2402	92.58	+0.0	92.58	-0.7	0.638	1000
3754	2440	92.60	+0.3	92.90	-0.7	0.687	1000
3754	2480	90.75	+0.5	91.25	-0.7	0.470	1000
3764	2402	98.78	+0.0	98.78	-1.7	3.351	1000
3764	2440	96.88	+0.3	97.18	-1.7	2.318	1000
3764	2480	96.34	+0.5	96.84	-1.7	2.144	1000

Test Data

Low Frequency, 3754

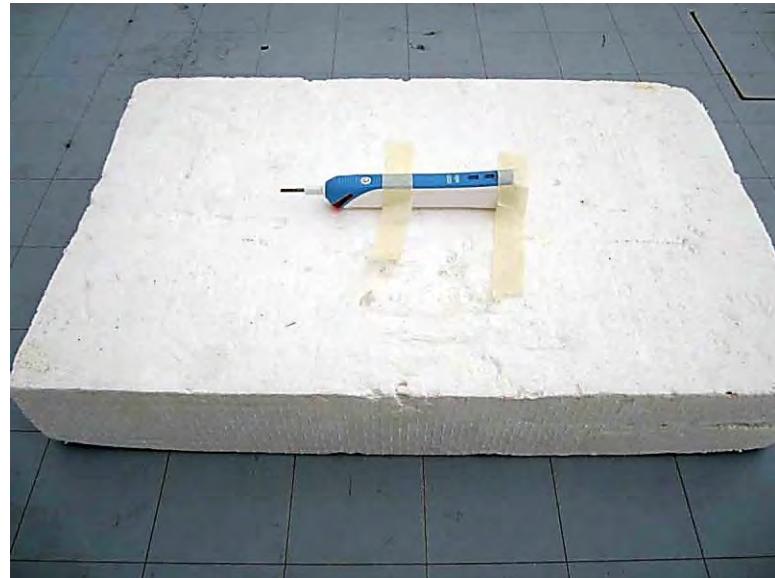
Middle Frequency, 3754


High Frequency, 3754

Low Frequency, 3764

Middle Frequency, 3764

High Frequency, 3764


Test Setup Photo(s)

X - Axis, 3754

Y - Axis, 3754

Z - Axis, 3754

High Frequency, 3754

X - Axis, 3764

Y - Axis, 3764

Z - Axis, 3764

High Frequency, 3764

15.247(d) Field Strength of Radiated Spurious Emissions & Band Edge

Test Data

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: **VDE Testing and Certification Institute**
 Specification: **15.247(d) / 15.209 Radiated Spurious Emissions**
 Work Order #: **95313** Date: **3/28/2014**
 Test Type: **Maximized Emissions** Time: **16:27:23**
 Equipment: **Toothbrush** Sequence#: **2**
 Manufacturer: **Braun** Tested By: **Eddie Mariscal**
 Model: **3754**
 S/N: **None**

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	4/13/2012	4/13/2014
T2	AN03360	Cable	32022-2-29094- 36TC	2/4/2013	2/4/2015
T3	AN03155	Preamp	83017A	6/26/2013	6/26/2015
T4	AN03355	Cable	32026-2-29094K- 48TC	2/7/2013	2/7/2015
T5	AN03358	Cable	32022-2-29094K- 36TC	2/7/2013	2/7/2015
T6	AN03359	Cable		2/4/2013	2/4/2015
T7	ANP05904	Cable	32022-2-29094K- 144TC	2/15/2013	2/15/2015
T8	AN02660	Spectrum Analyzer	E4446A	8/23/2012	8/23/2014
T9	AN00226	Loop Antenna	6502	3/28/2012	3/28/2014
T10	AN00062	Preamp	8447D	6/6/2012	6/6/2014
T11	AN01991	Biconilog Antenna	CBL6111C	3/7/2014	3/7/2016
T12	ANP06230	Cable	CXTA04A-50	8/16/2012	8/16/2014
	AN02046	Horn Antenna-ANSI	MWH-1826/B C63,5 (2006) 3m (dB)	2/4/2013	2/4/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Toothbrush	Braun	3754	Test_SW
Toothbrush	Braun	3764	Test_SW

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

EUT is placed atop Styrofoam support atop wooden nonconductive turntable of height 80cm. EUT is operating in Bluetooth mode, with 100% duty cycle. EUT employs integral antenna.

EUT was investigated about three orthogonal axes. Reported data represents the worst case of all orientations.

Tested in accordance with 15.31(e). EUT is battery operated, so testing was performed with freshly charged battery.

For model 3764, low band edge compliance was confirmed after applying the marker-delta method.

Frequency range of Interest:

0.009-25GHz

0.009-0.15MHz RBW = 200Hz; VBW > 200Hz

0.15-30MHz RBW = 9kHz; VBW > 9kHz

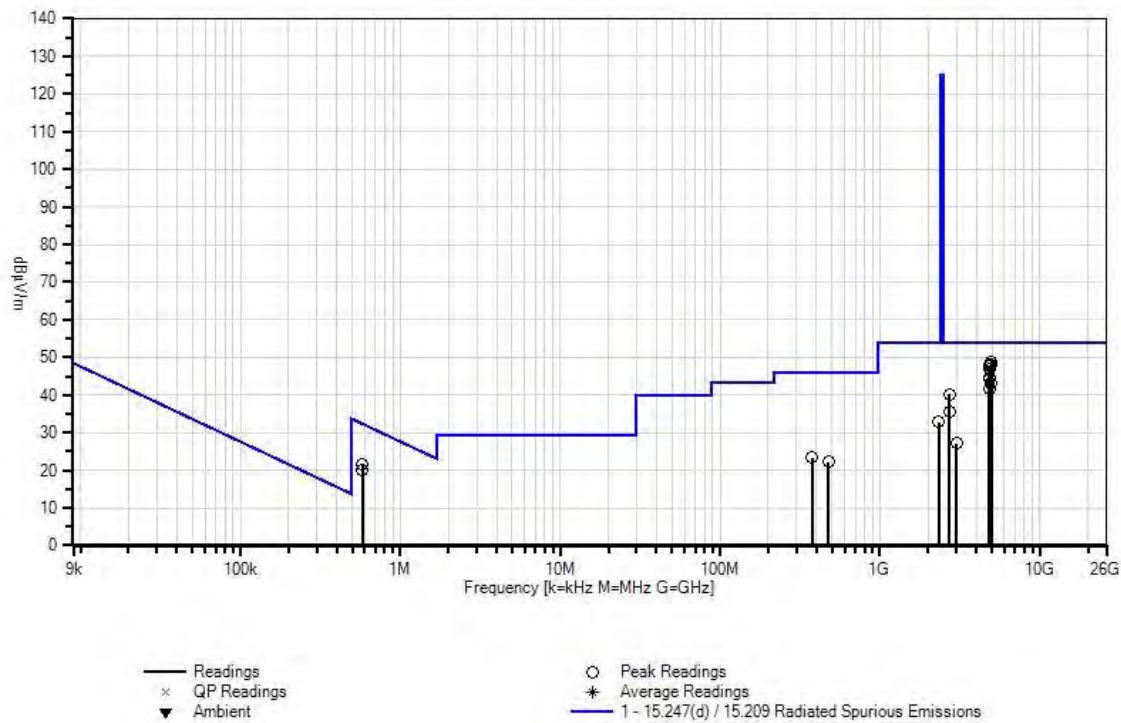
30-1000MHz RBW = 120kHz; VBW > 120kHz

1000-25000MHz RBW = 1MHz; VBW > 1MHz

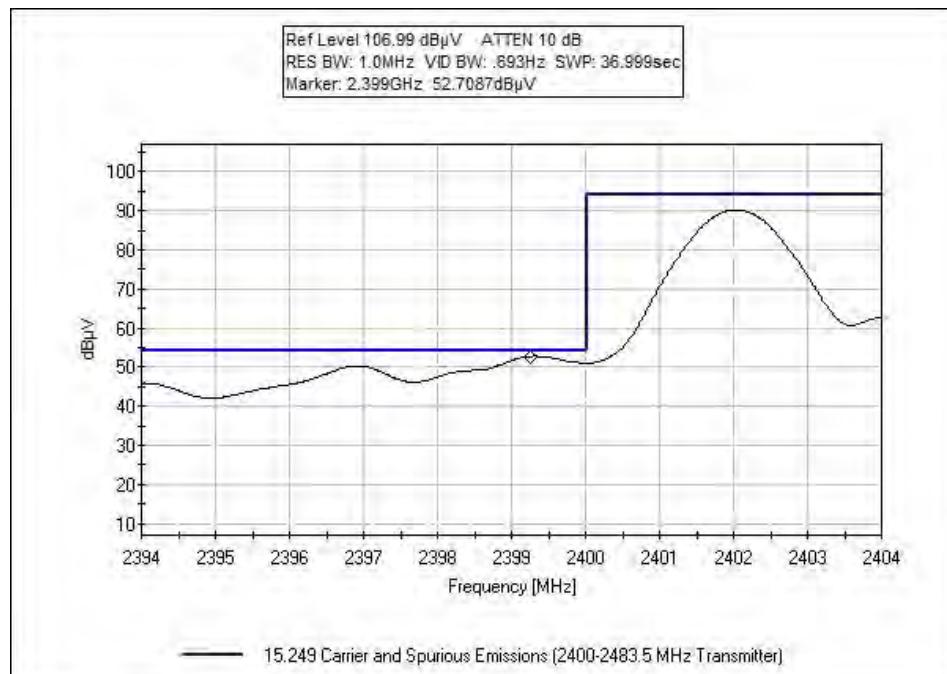
Environmental Conditions:

Temperature: 18°C

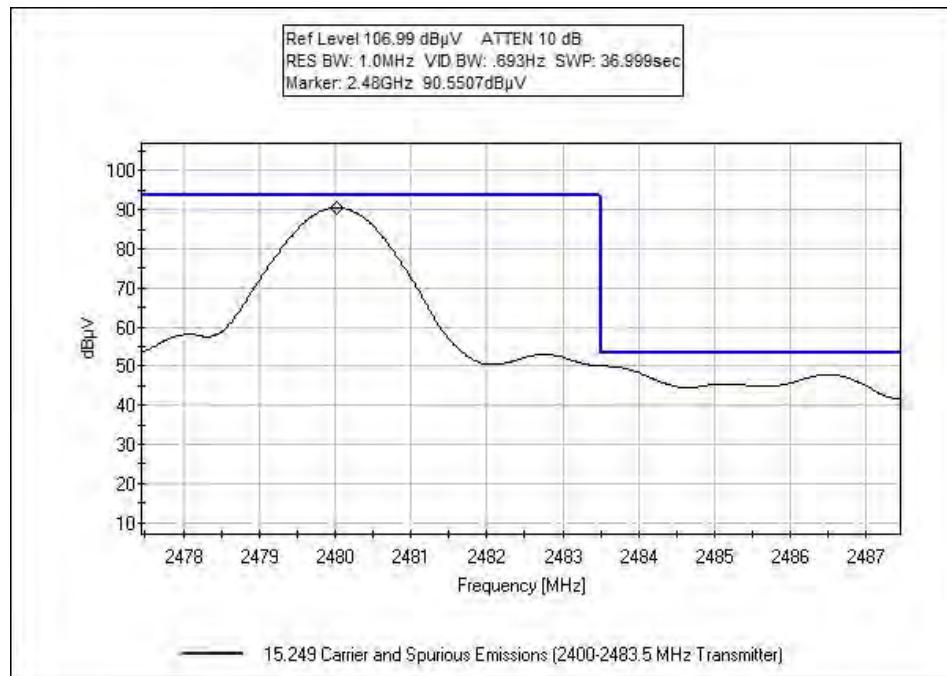
Relative Humidity: 35%


Atmospheric Pressure: 97.8kPa

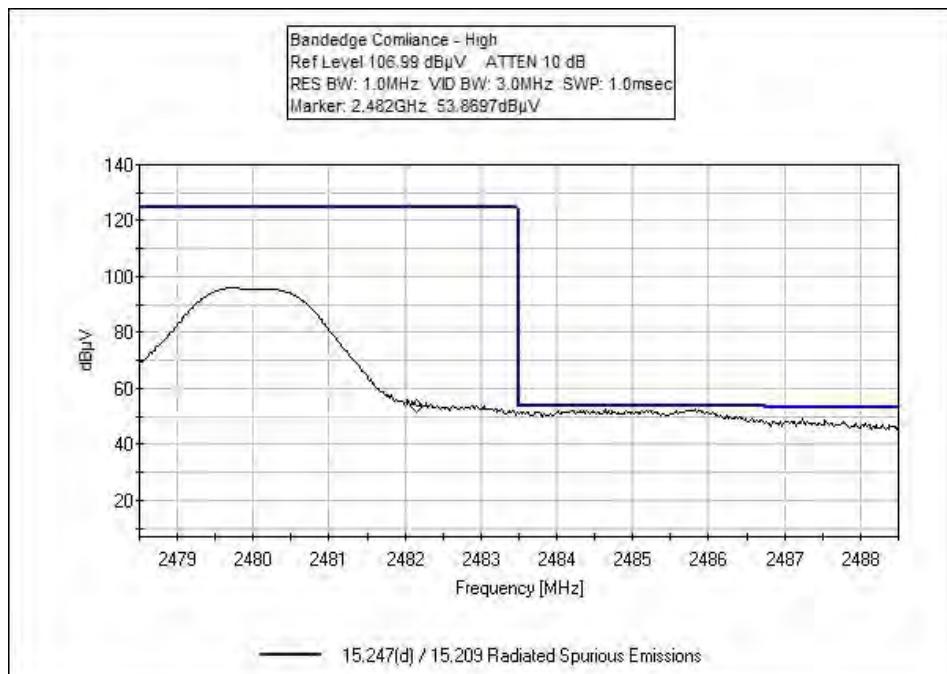
Ext Attn: 0 dB


Measurement Data:			Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dB μ V	dB	dB	dB	dB	Table	dB μ V/m	dB μ V/m	dB	Ant
1	4958.033M	43.3	+31.5	+1.0	-33.0	+0.8	+0.0	48.9	54.0	-5.1	Horiz
			+1.2	+0.8	+3.3	+0.0					Transmit high 3754
			+0.0	+0.0	+0.0	+0.0					
2	4957.970M	42.4	+31.5	+1.0	-33.0	+0.8	+0.0	48.0	54.0	-6.0	Vert
			+1.2	+0.8	+3.3	+0.0					Transmit high 3764
			+0.0	+0.0	+0.0	+0.0					
3	4806.030M	42.3	+31.6	+0.9	-33.0	+0.8	+0.0	47.9	54.0	-6.1	Horiz
			+1.2	+0.9	+3.2	+0.0					Transmit low 3754
			+0.0	+0.0	+0.0	+0.0					
4	4882.033M	42.1	+31.6	+1.0	-32.9	+0.8	+0.0	47.8	54.0	-6.2	Horiz
			+1.2	+0.8	+3.2	+0.0					Transmit mid 3754
			+0.0	+0.0	+0.0	+0.0					
5	4881.970M	42.0	+31.6	+1.0	-32.9	+0.8	+0.0	47.7	54.0	-6.3	Vert
			+1.2	+0.8	+3.2	+0.0					Transmit mid 3764
			+0.0	+0.0	+0.0	+0.0					
6	4882.030M	41.4	+31.6	+1.0	-32.9	+0.8	+0.0	47.1	54.0	-6.9	Vert
			+1.2	+0.8	+3.2	+0.0					Transmit mid 3754
			+0.0	+0.0	+0.0	+0.0					
7	4805.960M	41.5	+31.6	+0.9	-33.0	+0.8	+0.0	47.1	54.0	-6.9	Vert
			+1.2	+0.9	+3.2	+0.0					Transmit low 3764
			+0.0	+0.0	+0.0	+0.0					
8	4806.033M	39.1	+31.6	+0.9	-33.0	+0.8	+0.0	44.7	54.0	-9.3	Vert
			+1.2	+0.9	+3.2	+0.0					Transmit low 3754
			+0.0	+0.0	+0.0	+0.0					

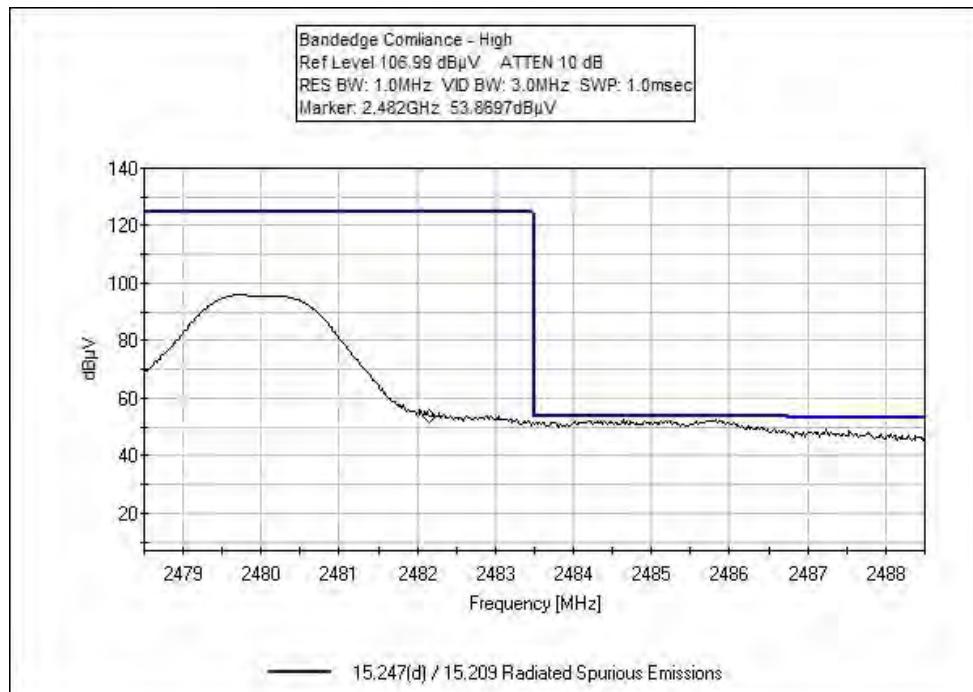
9	4881.960M	38.6	+31.6	+1.0	-32.9	+0.8	+0.0	44.3	54.0	-9.7	Horiz
			+1.2	+0.8	+3.2	+0.0					Transmit mid 3764
			+0.0	+0.0	+0.0	+0.0					
10	582.100k	51.4	+0.0	+0.0	+0.0	+0.0	-40.0	21.5	32.3	-10.8	Vert
			+0.0	+0.0	+0.0	+0.0					Transmit low 3754
			+10.0	+0.0	+0.0	+0.1					
11	4958.000M	37.4	+31.5	+1.0	-33.0	+0.8	+0.0	43.0	54.0	-11.0	Horiz
			+1.2	+0.8	+3.3	+0.0					Transmit high 3764
			+0.0	+0.0	+0.0	+0.0					
12	4805.700M	36.1	+31.6	+0.9	-33.0	+0.8	+0.0	41.7	54.0	-12.3	Horiz
			+1.2	+0.9	+3.2	+0.0					Transmit low 3764
			+0.0	+0.0	+0.0	+0.0					
13	581.200k	49.9	+0.0	+0.0	+0.0	+0.0	-40.0	19.9	32.3	-12.4	Vert
			+0.0	+0.0	+0.0	+0.0					Transmit low 3764
			+0.0	+0.1	+9.9	+0.0					
14	2725.000M	40.6	+27.5	+0.7	-32.9	+0.5	+0.0	40.1	54.0	-13.9	Vert
			+0.8	+0.6	+2.3	+0.0					Transmit low 3754
			+0.0	+0.0	+0.0	+0.0					
15	2725.000M	36.0	+27.5	+0.7	-32.9	+0.5	+0.0	35.5	54.0	-18.5	Vert
			+0.8	+0.6	+2.3	+0.0					Transmit mid 3754
			+0.0	+0.0	+0.0	+0.0					
16	2323.300M	33.4	+28.1	+0.7	-33.0	+0.5	+0.0	32.9	54.0	-21.1	Vert
			+0.5	+0.6	+2.1	+0.0					Transmit mid 3754
			+0.0	+0.0	+0.0	+0.0					
17	375.005M	34.8	+0.0	+0.3	+0.0	+0.0	+0.0	23.3	46.0	-22.7	Vert
			+0.0	+0.0	+0.0	+0.0					Transmit low 3754
			+0.0	-29.6	+15.5	+2.3					
18	477.247M	31.7	+0.0	+0.3	+0.0	+0.0	+0.0	22.2	46.0	-23.8	Vert
			+0.0	+0.0	+0.0	+17.6					Transmit low 3764
			-30.0	+2.6	+0.0	+0.0					
19	2998.300M	28.5	+26.0	+0.8	-32.8	+0.5	+0.0	27.1	54.0	-26.9	Vert
			+0.9	+0.7	+2.5	+0.0					Transmit low 3754
			+0.0	+0.0	+0.0	+0.0					
20	16.228M	30.1	+0.0	+0.0	+0.0	+0.0	-40.0	-0.4	29.5	-29.9	Vert
			+0.0	+0.0	+0.0	+0.0					Transmit low 3754
			+9.1	+0.0	+0.0	+0.4					


CKC Laboratories, Inc. Date: 3/28/2014 Time: 16:27:23 VDE Testing and Certification Institute WO#: 95313
 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Sequence#: 2 Ext ATTN: 0 dB

Band Edge Plot(s)



Low Frequency- Average, 3754



High Frequency- Average, 3754

Low Frequency -Average, 3764

High Frequency- Peak, 3764

Test Setup Photo(s)

Low Frequency, 3754

Middle Frequency, 3754

High Frequency, 3754 – View 1

High Frequency, 3754 – View 2

Low Frequency, 3764

Middle Frequency, 3764

High Frequency, 3764 – View 1

High Frequency, 3764 – View 2

15. 247(e) Power Spectral Density

Test Conditions / Setup

Engineer Name: Eddie Mariscal

Test Conditions:

Temp: 18°C, Humidity: 35%, Pressure: 97.8kPa

Freq: 2402-2480MHz

RBW = 30kHz; VBW = 100kHz

The EUT's use a non-removable antenna, thus the data will be gathered through radiated measurements. The formula shown below will be used to calculate the Power Spectral Density. The EUT is located on top of a Styrofoam support, 80cm above the reference ground plane. The EUT is operating in Bluetooth mode during testing. Three orthogonal axes were investigated. The data presented represents the worst case orientation. The EUT battery is fully charged per FCC 15.31(e).

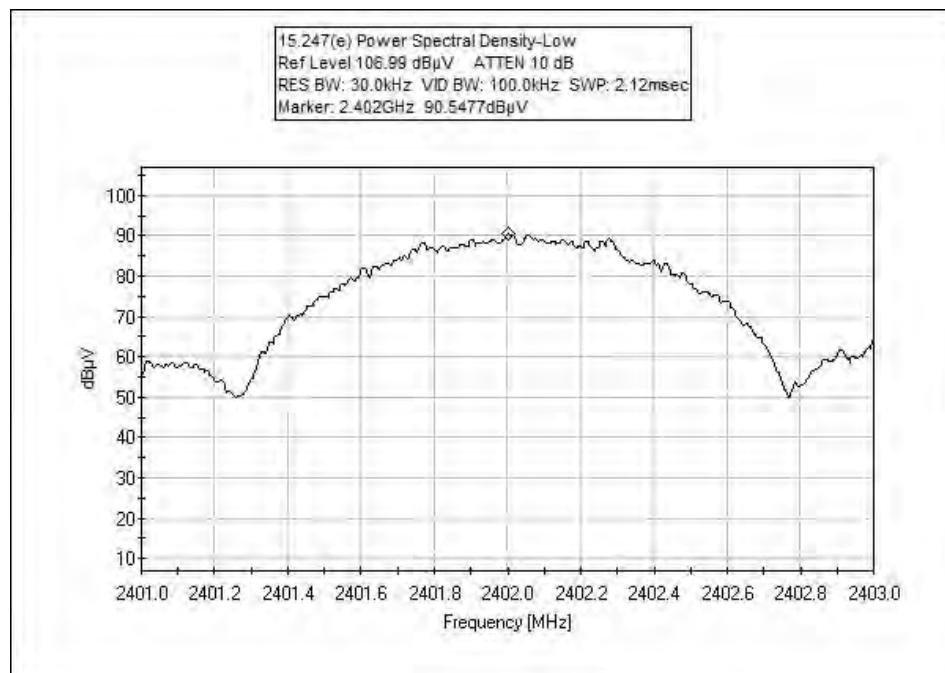
Plots do not have corrections applied. See correction factors in table below.

$$P = (E \cdot d)^2 / (30 \cdot G)$$

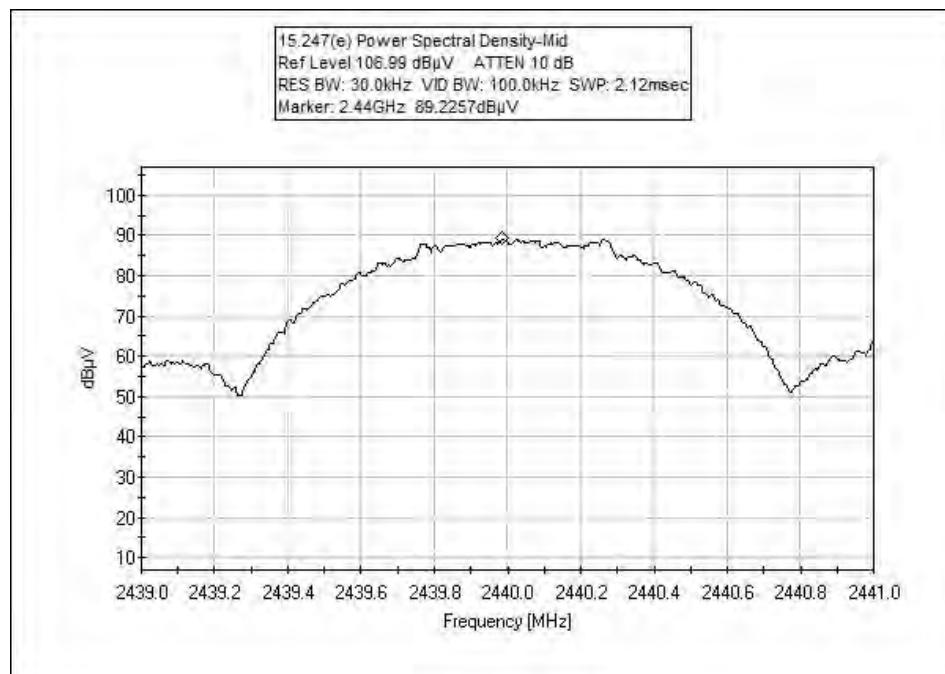
E = Field strength of the measurement converted to V/M

d = Measurement distance in meters

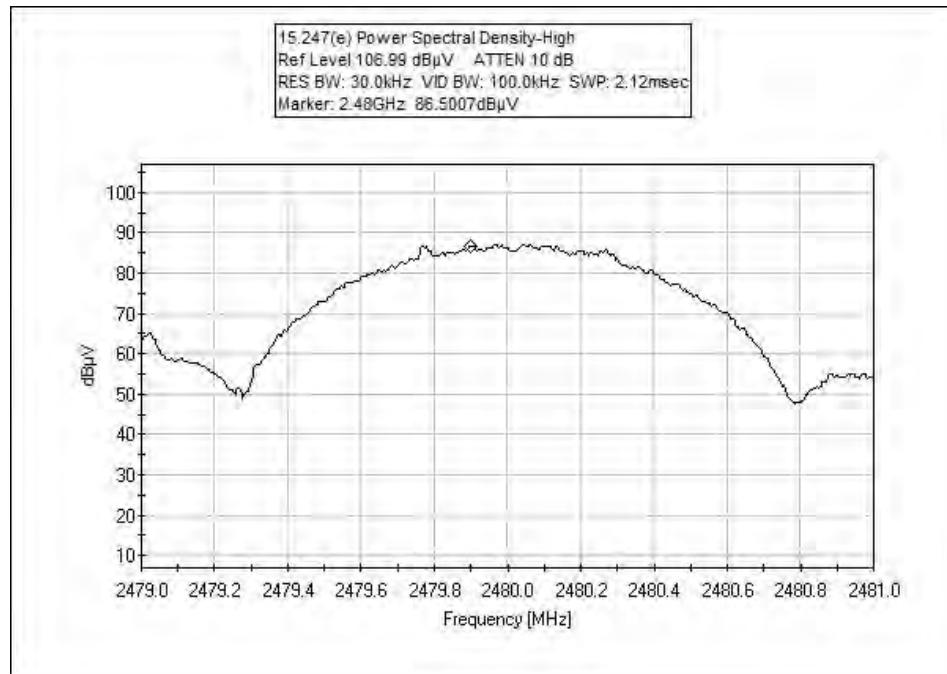
G = Numerical gain of the EUT's antenna relative to an isotropic radiator.

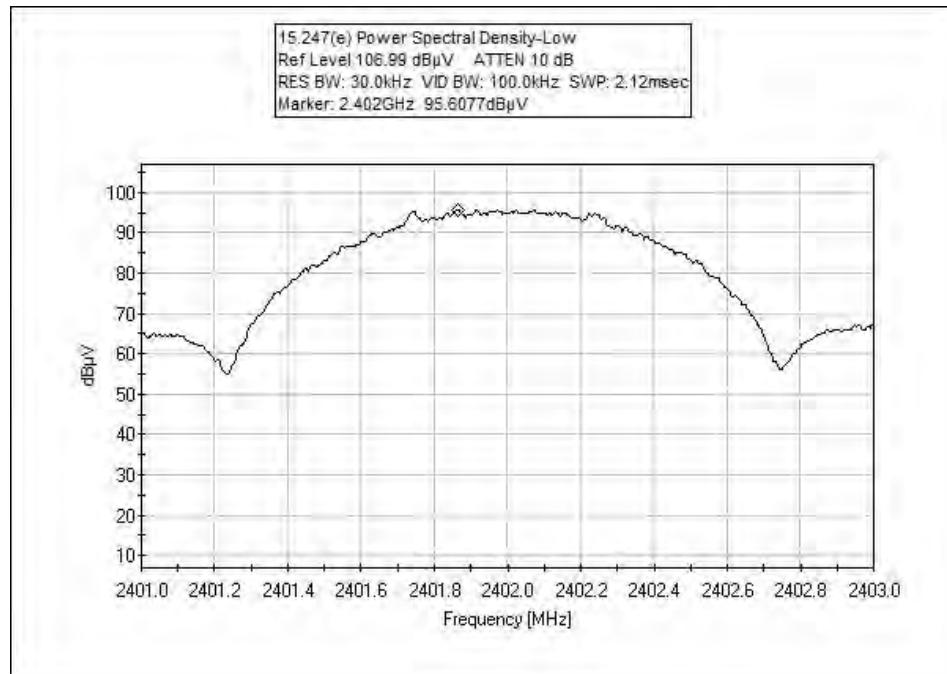

P = The power in watts for which we are solving.

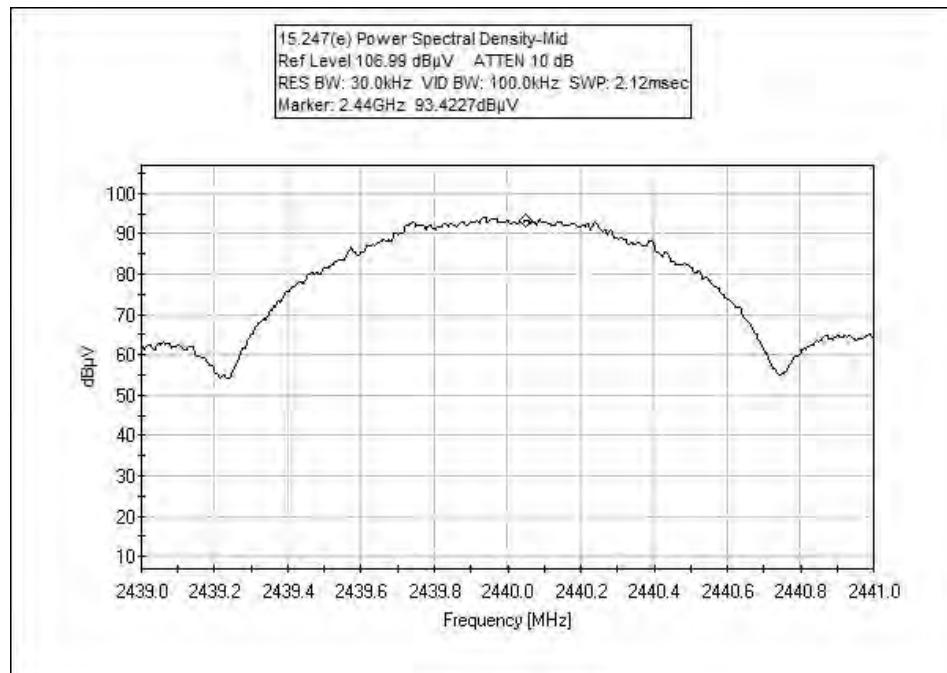
Test Equipment

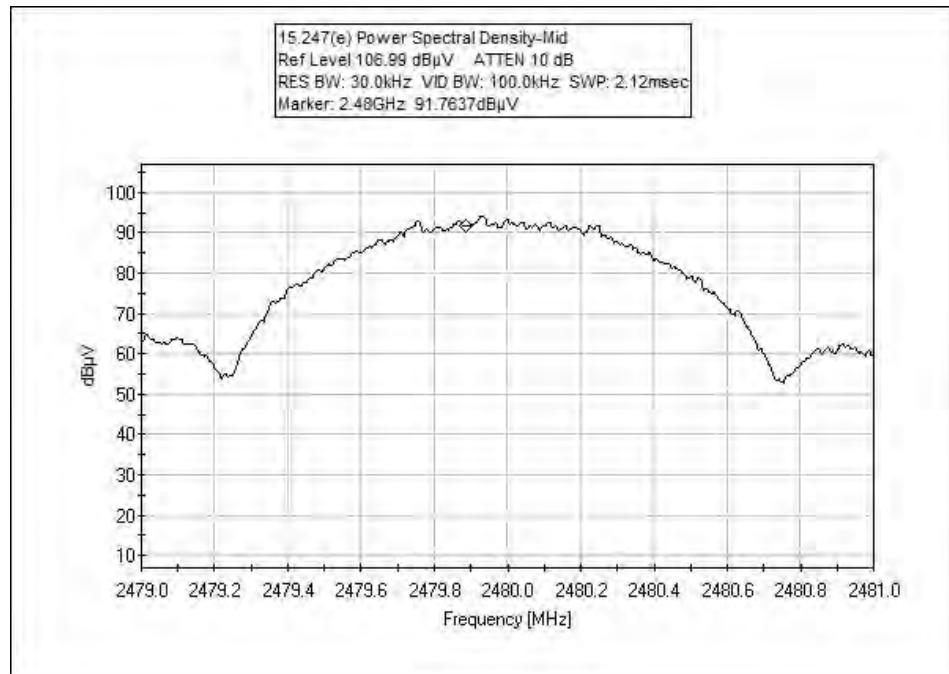

Asset #	Description	Model	Manufacturer	Cal Date	Cal Due
00327	Horn Antenna	3115	EMCO	4/13/2012	4/13/2014
03360	Cable	32022-2-29094-36TC	Astrolab	2/4/2013	2/4/2015
03155	Preamp	83017A	HP	6/26/2013	6/26/2015
03355	Cable	32026-2-29094K-48TC	Astrolab	2/7/2013	2/7/2015
03358	Cable	32022-2-29094K-36TC	Astrolab	2/7/2013	2/7/2015
03359	Cable	32022-2-29094-36TC	Astrolab	2/4/2013	2/4/2015
P05904	Cable	32022-2-29094K-144TC	Astrolab	2/15/2013	2/15/2015

EUT model	Frequency (MHz)	Spectrum Analyzer Measurement (dBuV)	Corrections due to cables, Amplifiers and antennas (dB)	Corrected Reading (dBuV)	Antenna Gain (dBi)	Power Spectral density (dBm/3kHz)	Limit (dBm/3kHz)
3754	2402	90.55	+0.0	90.55	-0.7	-3.98	8
3754	2440	89.23	+0.3	89.53	-0.7	-5.00	8
3754	2480	86.50	+0.5	87.00	-0.7	-7.53	8
3764	2402	95.61	+0.0	95.61	-1.7	2.08	8
3764	2440	93.42	+0.3	93.72	-1.7	0.19	8
3764	2480	91.76	+0.5	92.26	-1.7	-1.27	8


Test Data


Low Frequency, 3754


Middle Frequency, 3754


High Frequency, 3754

Low Frequency, 3764

Middle Frequency, 3764

High Frequency, 3764

Test Setup Photo(s)

High Frequency, 3754

High Frequency, 3764

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\text{dB}\mu\text{V}/\text{m}$, the spectrum analyzer reading in $\text{dB}\mu\text{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS	
Meter reading	(dB μ V)
+ Antenna Factor	(dB)
+ Cable Loss	(dB)
- Distance Correction	(dB)
- Preamplifier Gain	(dB)
= Corrected Reading	(dB μ V/m)

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.