

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

Report No. : SRMC2009-H024-E0014 Product Name: GSM/GPRS/EDGE Tribands/WCDMA Digital Mobile Phone Product Model: H31IA Applicant: Inventec Appliances (Jiangning) Corporation Manufacture: Inventec Appliances (Jiangning) Corporation Specification: FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01) 47CFR 2.1093 FCC ID: UPMW310001

The State Radio Monitoring Center State Radio Spectrum Monitoring and Testing Center No.80 Beilishi Road Xicheng District Beijing, China Tel: 86-10-68009202 Fax: 86-10-68009205

Executive Summary

The H31IA is a GSM/GPRS/EDGE Tribands/WCDMA Digital Mobile Phone. The phone can operate in the PCS1900MHz frequency range. The device has an internal integrated antenna. The system concepts used are the GSM1900 and GPRS1900 (Class 12) standards.

The objective of the measurements done by SRMC (The State radio monitoring center) was the dosimetric assessment of one device in the GSM1900 standards. The examinations have been carried out with the dosimetric assessment system, "DASY4".

The measurements were made according to FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01) and 47CFR 2.1093 Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. All measurements have been performed in accordance to the recommendations given by SPEAG.

The maximum SAR of the H31IA mobile phone is

Mode	CH/f(MHz)	Power	Position	Limit (mW/g)/1g	Measured (mW/g)	Result
GPRS1900	810/1909.8	29.9dBm	Towards ground	1.6	0.940	PASS

2435 **Checked By: Tested By:**

This Test Report Is Issued By:

Issued date: 2009.10.21

Tables of Contents

1. General information	3
1.1 Notes of the test report	3
1.2 Information about the testing laboratory	3
1.3 Applicant's details	3
1.4 Manufacturer's details	3
1.5 Application details	4
1.6 Information of Test Sample	4
1.7 Auxiliary Equipment (AE)	4
1.8 Reference	5
2. Subject of Investigation	6
2.1 The Standard IEC 62209-1-2005	6
2.2 Distinction Between Exposed Population, Duration of Exposure and Frequencies	6
2.3 Distinction between Maximum Permissible Exposure and SAR Limits	7
3 The IEC 62209-1-2005 Measurement Requirements	8
3.1 General Requirements	8
3.2 Phantom specifications (shell and liquid)	8
3.3 Specifications of the SAR measurement equipment	9
3.4 Scanning system specifications	9
3.5 Mobile phone holder specifications	9
4. Measurement preparation	9
4.1 General preparation	9
4.2 Simplified performance checking	.10
4.3 Preparation of the mobile phone under test	.10
4.4 Position of the mobile phone in relation to the phantom	.10
4.5Tests to be performed	.11
5. The Measurement system	12
5.1 DASY4 Information	.12
5.2Test Equipments:	.14
5.3 Uncertainty Assessment	.15
6. Test Results	.16
6.1Test Environment:	.16
6.2Test Method and Procedure	.16
6.3Test Configuration	.17
6.4Test Results	.17
7. Appendix	20
7.1 Administrative Data	.20
7.2 Device under Test and Test Conditions	20
7.3 Tissue Recipes	.22
7.4 Material Parameters	.22
7.5 Simplified Performance Checking	24
7.6Setup for System Performance Check	

The State Radio Monitoring Center State Radio Spectrum Monitoring and Testing Center	No.: SRMC2009-H024-E0014 FCC ID: UPMW310001		
Tel: 86-10-68009202 68009203 fax: 86-10-68009195	68009205	Page 2 of 54	
7.7Test Results			
7.8 Pictures of the device under test			
7.9 Test Positions for the Device under test			
7.10 Picture to demonstrate the required liquid depth			
7.11 Certificate of conformity	40		

1. General information

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio Monitoring Center.

The test results relate only to individual items of the samples which have been tested.

1.2 Information about the testing laboratory

Company:	The State Radio Monitoring Center			
	State Radio Spectrum Monitoring and Testing Center			
Address:	No.80 Beilishi Road, Xicheng District, Beijing China			
City:	Beijing			
Country or Region:	or Region: China			
Contacted person:	Wang Junfeng			
Tel	+86 10 68009181 +86 10 68009202			
Fax:	+86 10 68009195 +86 10 68009205			
Email:	Wangjf@srrc.org.cn			

1.3 Applicant's details

Company:	Inventec Appliances (Jiangning) Corporation			
Address:	133, Jiangjun Road, Jiangning Economic and Technological			
	Development Zone			
City:	Nanjing, Jiangsu			
Country or Region: P.R. China				
Contacted persor	n: William Zhang			
Tel:	+86 25 52262313			
Fax:	+86 25 52218366			
Email:	zhang.william@inventec-inc.com			

1.4 Manufacturer's details

Company:	Inventec Appliances (Jiangning) Corporation
Address:	133, Jiangjun Road, Jiangning Economic and Technological
	Development Zone
City:	Nanjing, Jiangsu
Country or Regior	n: P.R.China
Contacted person	: William Zhang
Tel:	+86 25 52262313
Fax:	+86 25 52218366
Email:	zhang.william@inventec-inc.com

1.5 Application details

Date of receipt of test samples: 2009.7.30

Date of test: 2009.10.15

1.6 Information of Test Sample

□Name EUT	GSM/GPRS/EDGE Digital Mobile Phone with Bluetooth		
□type	H31IA		
	PCS1900:		
□Frequency range	Tx:1850~1910MHz Rx:1930~1990MHz		
	Bluetooth: 2402-2480MHz		
	PCS1900:0 (30dBm)		
□Power Level	GPRS1900: 0(30dBm)		
	EDGE 1900:2(26 dBm)		
	GSM/GPRS/EDGE: 200kHz		
□Channel spacing	Bluetooth: 1MHz		
	GSM: 1:8		
□Duty Cycle	GPRS/EDGE: 1:4		
⊓Modulation	GSM/GPRS/EDGE: GMSK/8PSK		
	Bluetooth: GFSK		
□Power supply	3.7V		
□Test condition of declaration	Normal		
Product Stage	production unit		
□IMEI Number	35575303000001		

1.7 Auxiliary Equipment (AE)

AE	Name	Model	Manufacturer	Serial Number
No.				
AE 1	Adapter	APW305UB-03-06	SHENZHEN ANTHIN POWER	
			SUPPLY CO., LTD.	
AE 2	Battery	PBH31IAZ10	Leung's commumnication	
			& electric	
			products(guangzhou)	
			ltd.	

1.8 Reference

IEC 62209-1-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

47CFR 2.1093

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

"SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas--Sept 2008"- 648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05

[DAY4]

Schmid & partner Engineering AG: DAY4 Manual. Nov.2003

2. Subject of Investigation

The H31IA is a GSM/GPRS/EDGE Tribands/WCDMA Digital Mobile Phone. The phone can operate in the PCS1900MHz frequency range. The device has a internal integrated antenna. The system concepts used are the GSM1900 and GPRS1900 (Class 12) standards.

Fig 1: picture of the device under test

The objective of the measurements done by SRMC was the domestic assessment of one device in the GSM 1900 standard. The examinations have been carried out with the domestic assessment system "DASY4" described below.

2.1 The Standard IEC 62209-1-2005

IEC 62209-1-2005 is Basic standard for Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

2.2 Distinction Between Exposed Population, Duration of Exposure and Frequencies

The European Standard [CENELEC2001] distinguishes between controlled and uncontrolled environment. Controlled environments are locations where there is exposure that may be incurred by persons who are aware of the potential for exposure as a concomitant of employment or by other cognizant persons-Uncontrolled environments are locations where there is the exposure of individuals who have no knowledge or control of their exposure. The exposures may occur m living quarters or workplaces. For exposure in controlled environments higher field strengths are admissible .In addition the duration of exposure is considered.

Due to the influence of frequency on important parameters, as the penetration depth of the electromagnetic fields into the human body and the absorption capability of different tissues, the limits in general vary with frequency.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 mm of the user in the uncontrolled environment.

2.3 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its pads-The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity σ and the mass density p of the biological tissue:

$$SAR = \frac{\sigma E_{i}^{2}}{\rho}$$
$$SAR = c_{i} \frac{dT}{dt} \Big|_{t = 0}$$

The specific absorption rate describes the initial rate of temperature rise dT/dt as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits .The limits for E, H and

the SAR limits. The limits for E, H and S have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.

For the relevant frequency range the maximum permissible exposure may be exceeded if the exposure can be shown by appropriate techniques to produce SAR values below the corresponding limits.

3 The IEC 62209-1-2005 Measurement Requirements

This basic standard applies to any electromagnetic field (EM) transmitting devices intended to be used with the radiating part of the equipment in close proximity to the human ear including mobile phones, cordless phones, etc. The frequency range is 300 MHz to 3 GHz.

The objective of the standard is to specify the method for demonstration of compliance with the Specific absorption rate (SAR) limits for such equipment. The measurement system is composed of the phantom, the SAR measurement equipment, the scanning system and the mobile phone holder.

3.1 General Requirements

The test shall be performed using a miniature probe that is automatically positioned to measure the internal E-field distribution in a phantom model representing the human head exposed to the EM fields produced by mobile phones. From the measured E-field values, the SAR distribution and the maximum mass averaged SAR value shall be calculated.

The test shall be performed in a laboratory conforming to the following environmental conditions:

- the ambient temperature shall be in the range of 15 °C to 30°C and the variation shall not exceed 2 °C during the test;
- the mobile phone shall not interact with the local mobile networks;
- care shall be taken to avoid significant influence on SAR measurements by ambient EM sources;
- care shall be taken to avoid significant influence on SAR measurements by any reflection from the environment (such as floor, positioner, etc.).
- Validation of the system shall be done at least once a year according to the protocol defined in annex D of IEC 62209-1-2005 Standard.

3.2 Phantom specifications (shell and liquid)

Phantom requirements

The physical characteristics of the phantom model (size and shape) shall resemble the head and neck of a user since the shape is a dominant parameter for exposure. The phantom shall be made from material with dielectric properties similar to those of head tissues. To enable field scanning within it, the material shall be liquid contained in a head and neck shaped shell model. The shell model acts as a shaped container and shall be as unobtrusive as possible. The hand shall not be modeled.

The shell of the phantom shall be made of low loss and low permittivity material: *tan* (δ) \leq 0,05 and $\epsilon \leq$ 5. The thickness of the phantom is defined in the CAD files and the tolerance shall be ± 0, 2 mm in the area defined in the CAD files (where the phone touches the head).

Reference points on the phantom:

The probe positioning shall be defined in relation to three well defined points on the phantom. These points R1, R2 and R3 shall be used to calibrate the positioning system. Three other points, M for mouth, LE for left ear and/or RE for right ear (maximum acoustic coupling), shall be defined on the phantom(s) (see Figure 2). These points shall be used to allow reproducible positioning of the mobile phone in relation to the phantom.

3.3 Specifications of the SAR measurement equipment

The measurement equipment shall be calibrated as a complete system. The probe shall be calibrated together with the amplifier, measurement device and data acquisition system.

The measurement equipment shall be calibrated in each tissue equivalent liquid at the appropriate operating frequency and temperature according to the methodology defined in IEC 62209-1-2005 .The minimum detection limit shall be lower than 0,02 W/kg and the maximum detection limit shall be higher than 100 W/kg. The linearity shall be within 0,5 dB over the SAR range from 0,02 to 100 W/kg. The isotropy shall be within 1 dB. Sensitivity, linearity and isotropy shall be determined in the tissue equivalent liquid. The response time shall be specified.

3.4 Scanning system specifications

The scanning system holding the probe shall be able to scan the whole exposed volume of the phantom in order to evaluate the three-dimensional SAR distribution. The mechanical structure of the scanning system shall not interfere with the SAR measurements.

The accuracy of the probe tip positioning over the measurement area shall be less than 0,2 mm. The sampling resolution shall be 1 mm or less.

3.5 Mobile phone holder specifications

The mobile phone holder shall permit the phone to be positioned according to a tolerance of 1° in the tilt angle. It shall be made of low loss and low permittivity material(s): *tan* (δ) ≤ 0, 05 and ϵ ≤ 5.

4. Measurement preparation

4.1 General preparation

The dielectric properties of the tissue equivalent materials shall be measured prior to the SAR measurements and at the same temperature with a tolerance of 2° C. The measured values shall comply with the values defined at the specific frequencies in IEC 62209-1-2005 6.1.1. with a tolerance of 5 % for

relative permittivity and conductivity.

The phantom shell shall be filled with the tissue equivalent liquid. The depth of the tissue equivalent liquid inside the phantom and at the vertical position of the ear canal shall be at least 15 cm. The liquid shall be carefully stirred before the measurement and it shall be free of air bubbles. The coordinate system of the scanning system shall be aligned to the coordinate system of the phantom with a tolerance of 0,2 mm.

4.2 Simplified performance checking

The purpose of the simplified performance check is to verify that the system operates within its specifications, check is a simple test of repeatability to make sure that the system works correctly during the compliance test. The check shall be performed in order to detect possible drift over short time periods and other errors in the system,

The simplified performance check shall be carried out according to annex D of IEC 62209-1-2005. The simplified performance check shall be performed prior to compliance tests and the result shall be within \pm 10 % of the target value. After the system validation check. The simplified performance check shall be performed at a central frequency of each transmitting band of the mobile phone.

4.3 Preparation of the mobile phone under test

The tested mobile phone shall use its internal transmitter. The battery shall be fully charged before each measurement .The output power and frequency (channel) shall be controlled by 8960(base station simulator). H31IA transmit its highest output peak power level allowed by the system. , The BTS antenna shall be placed at least 50 cm from the phone. The signal emitted by the emulator at antenna feed point shall be lower than the output level of the phone by at least 30 dB.

4.4 Position of the mobile phone in relation to the phantom

The mobile phone shall be tested in the cheek and tilted positions on left and right sides of the phantom.

Definition of the cheek position:

a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE;

b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until the phone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Definition of the tilted position:

a) Position the device in the Tilt position described above;

b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost. (see Figure 2)

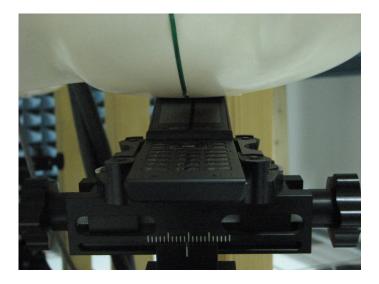


Fig 2 - Definition of the reference lines and points, on the phone and on the phantom and initial position

4.5Tests to be performed

Tests shall be performed with both phone positions described in 4.4, on the left and right sides of the head and using the centre frequency of each operating band. The configuration giving rise to the maximum mass-averaged SAR shall be used to test the low-end and the high-end frequencies of the transmitting band. If the mobile phone has a retractable antenna, all of the tests described above shall be performed both with .The antenna extended and with it retracted. When considering multi- mode and multi-band mobile phones, all of the above tests shall be performed in each transmitting mode/band with the corresponding maximum peak power level.

5. The Measurement system

5.1 DASY4 Information

DASY4 is an abbreviation of "Dosimetric Assessment System" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig3. Fig4 shows the installation in the SRMC laboratory [DASY2004].

- High precision robot with controller
- Measurement server(for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and altering)
- Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

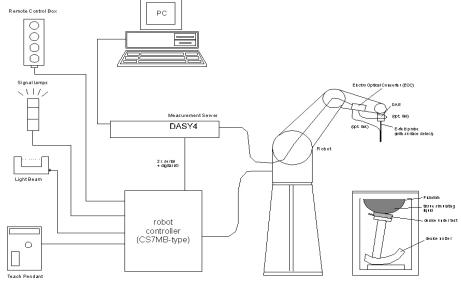


Fig3. The DASY4 measurement system

Fig 4. The measurement set-up with two SAM phantoms containing tissue simulating liquid

5.2Test Equipments:

Name		Serial Number	Last Cal. Data
DASY4 SYSTEM			
Software Version	V4.7	N/A	N/A
Dosimetric E-Field probe	ES3DV3	3128	2009.06
Data Acquisition Electronics	DAE4	725	2009.06
Phantom	SAM	1267	N/A
Phantom	SAM	1315	N/A
Performance checking			
System Validation Dipole	D835V2	473	2008.06
System Validation Dipole	D1900V2	5d024	2008.06
RF source	E4428C	MY45280865	2008.8
RF Amplifier	5S1G4	0323472	N/A
Power Meter	E4417A	MY45101182	2008.8
Power Meter probe	E4412A	MY41502214	2008.8
Power Meter probe	E4412A	MY41502130	2008.8
Attenuator	2	BM0059	2008.8
Attenuator	2	BM6452	2008.8
Attenuator	2	BM8993	2008.8
Directional Coupler	778D-012	13733	2008.8
Material Measurement			
Network Analyzer	8714ET	US40372083	2008.8
Dielectric Probe Kit	85070D	US33030365	N/A
General			
Radio Tester	8960	GB43194054	2008.8

Note: the Dipole Calibration interval is 24 months

Table 1. T	lest Equi	pments	lists
------------	-----------	--------	-------

5.3 Uncertainty Assessment

	DASY4				•			
	Accor	ding to	IEC 62	209-1 [3	3]	1	1	
Error description	Uncertainty value	Prob	Div.	(<i>c</i> _{<i>i</i>})	(c_{i})	Std.Unc (1g).	Std.Unc. (10g)	(<i>v_i</i>)
		Dist.		1g	10g			$V_{e\!f\!f}$
Measurement system								
Probe calibration	±5.9%	Ν	1	1	1	±5.9%	±5.9%	8
Axial isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	8
Hemispherical isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	x
Boundary effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	x
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	x
System detection limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF ambient noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF ambient reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max.SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	145
Device holder	±3.6%	Ν	1	1	1	±3.6%	±3.6%	5
Power drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	8
Phantom and Setup								
Phantom uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid conductivity(target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	x
Liquid conductivity(meas.)	±2.5%	Ν	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid conductivity(target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid onductivity(means.)	±2.5%	Ν	1	0.6	0.49	±1.5%	±1.2%	∞
Combined std. Uncertainty						±10.9%	±10.7%	387
Expanded STD Uncertainty						±21.9%	±21.4%	

Table	2.	Uncertainty	assessment
-------	----	-------------	------------

6. Test Results

6.1Test Environment:

Ambient Temperature: 24.0°C Relative Humidity: 35.5% Atmosphere: 101.0kPa

6.2Test Method and Procedure

a) Measure the local SAR at a test point within 10 mm of the inner surface of the phantom. The test point shall also be close to the ear;

b) verify that the measured SAR at the point used in item 1 is stable after 3 minutes within \pm 5 % in order to ensure that there is no drift due to the mobile phone electronics;

c) Measure the SAR distribution within the phantom. The spatial grid step shall be less than 20 mm. If surface scanning is used, then the distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be constant within \pm 0,5 mm and less than 8 mm. If volume scanning is performed, then the scanning volume shall be as close as possible to the inner surface of the phantom (less than 8 mm), the grid step shall be 5 mm or less, the grid shall extend to a depth of 25 mm and then go directly to item 6;

d) From the scanned SAR distribution, identify the position of the maximum SAR value, as well as the positions of any local maxima with SAR values of more than 50 % of the maximum value;

e) Measure SAR with a grid step less than 5 mm in a volume with a minimum size of 30 mm by 30 mm and 25 mm in depth. Separate grids shall be centred on each of the local SAR maxima;

f) Use interpolation and extrapolation procedures defined in annex C of IEC 62209-1-2005 to determine the local SAR values at the spatial resolution needed for mass averaging;

g) Repeat the SAR measurement at the initial test point used in item 1. If the two results differ by more than ± 5 % from the final value obtained in item 2, the measurements shall be repeated with a fully charged battery or the actual drift shall be included in the uncertainty evaluation.

Tests shall be performed with both phone positions of cheek and tilted, on the left and right sides of the head and using the centre frequency of each operating band. Then the configuration giving rise to the maximum mass-averaged SAR shall be used to test the low-end and the high-end frequencies of the transmitting band. If the mobile phone has a retractable antenna, all of the tests described above shall be performed both with the antenna extended and with it retracted. When considering multi- mode and multi-band mobile phones, all of the above tests shall be performed in each transmitting mode/band with the corresponding maximum peak power level.

6.3Test Configuration

The test shall be performed in the shield room.

Please refer to chapter 7.8; 7.9 of this test report for photo of this test setup.

6.4Test Results

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power and ERP for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Refer to "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas--Sept 2008" When stand-alone SAR evaluation is not required and the antenna is \geq 5 cm from other antennas, simultaneous transmission SAR evaluation is also not required for that antenna. Therefore, it does not need to be included in the simultaneous transmission evaluation of other antennas that require it. so Bluetooth would not be included in the SAR report.

Mode: GSM1900

f_L(MHz)=1850.2MHz

f_M(MHz)=1880.0MHz

f_H(MHz)=1909.8MHz

SAR Values (Head, 1900MHz Band)

Limit of SAR (W/kg)	1 g Average 1.6
Test Case	Measurement Result (mW/g)
	1 g Average
Left hand, Touch cheek , f _H	
Left hand, Touch cheek, f _M	0.129
Left hand, Touch cheek , f _L	
Left hand, Tilt 15 Degree, f _M	0.052
Right hand, Touch cheek , f _H	
Right hand, Touch cheek, f _M	0.116
Right hand, Touch cheek f _L	
Right hand, Tilt 15 Degree, f _M	0.041

So, the maximum SAR is

SAR(mW/g)

The State Radio Monitoring State Radio Spectrum Monit Tel: 86-10-68009202 680092	oring and Testing Center	FCC ID:	MC2009-H024-E0014 UPMW310001 Page 18 of 54	
Configuration	Position	f _L (MHz)	f _M (MHz)	f _H (MHz)
Left Side	cheek		0.129	

Note1: Please refer to 7.7 of this test report for graphical results.

Table 3. SAR Results

Mode: GSM1900

f_L(MHz)=1850.2MHz f_M(MHz)=1880.0MHz f_H(MHz)=1909.8MHz

SAR Values (Body, 1900MHz Band) with the headset

Limit of SAR (W/kg)	1g Average1.6
Test Case	Measurement Result (mW/g) 1g Average
Towards ground f _H	
Towards ground f _M	0.156
Towards ground f _L	
Back ground f _H	
Back ground f _M	0.138
Back ground f _L	

So, the maximum SAR is

Phantom	SAR(mW/g)					
Configuration	f _L (MHz) f _M (MHz) f _H (MHz)					
Towards ground		0.156				

Mode: GPRS 1900/EDGE 1900

 $f_L(MHz)=1850.2MHz$ $f_M(MHz)=1880.0MHz$ $f_H(MHz)=1909.8MHz$

SAR Values (Body, 1900MHz Band with Bluetooth)

Lii	1g Average 1.6	
	Measurement Result (mW/g) 1g Average	
Towards ground	f _H GPRS	0.940
Towards ground	f _M GPRS	0.660
Towards ground	f _L GPRS	0.828
Towards ground	f _H EDGE	
Towards ground	f _M EDGE	0.514
Towards ground	f _L EDGE	

So, the maximum SAR is

Phantom	SAR(mW/g)					
Configuration	f _L (MHz) f _M (MHz) f _H (MHz)					
Towards ground		0.940				

Table	5.	SAR	Results
10010	•••	•	11004110

7. Appendix

7.1 Administrative Data

Date of validation:	2009.7.30
Date of measurement:	2009.7.30
Data stored:	SRMC2009-H024-E0014

7.2 Device under Test and Test Conditions

TYPE: H31IA

Date of receipt: 2009.7.30

IMEI: 35575303000001

Equipment class: Portable device

Power Class: GSM1900 tested with power level 0 (30dBm) GPRS1900 tested with power level 0 (30dBm) EDGE 1900 tested with power level 2(26 dBm) RF exposure environment: General Population Power supply: Internal Battery (Other batteries not available) Measurement Standards: GSM1900 Method to establish a call: GSM1900: Base station simulator, using the air interface Modulation: GMSK / 8PSK TX range: GSM1900:1850~1910MHz RX range: GSM1900:1930~1990MHz

Used TX Channels: L: ch512; M: ch661; H: ch810 (refer to the table 5)

Mode	GSM850(Head/Body) Duty cycle: 1:8(12.5%)			GSM1900(Head/Body) Duty cycle: 1:8(12.5%)		
Channel				512	661	810
Frequency(MHz)				1850.2	1880.0	1909.8
Measured Power(dBm)				29.7	29.7	29.7

The State Radio Monitoring Center							
State Radio Spectrum Monitoring and Testing Center							
Tel: 86-10-68009202	68009203	fax: 86-10-68009195	68009205				

Mode	GPRS850(Body) Duty cycle: 1:4(25%)				RS1900(B cycle: 1:4	
Channel				512	661	810
Frequency(MHz)				1850.2	1880.0	1909.8
Measured Power(dBm)				29.8	29.6	29.9

Mode	EDGE850 Duty cycle: 1:2(50%)			EDGE1900 Duty cycle: 1:2(50%)		
Channel				512	661	810
Frequency(MHz)				1850.2	1880.0	1909.8
Measured Power(dBm)				24.2	24.1	24.0

Note: The GPRS Mode is tested with a duty cycle of 1:4 (25%) in the worst case configuration in each band, and the EDGE Mode is tested with a duty cycle of 1:2 (50%) in the worst case configuration in each band.

Table 6. Frequency and Measured power of EUT's Tx channels

Used Phantom: SAM Twin Phantom V4.0, as defined by IEC 62209-1-2005 and delivered by Schmid&Parb1er Engineering AG

7.3 Tissue Recipes

Head Tissue Simulant

The following recipes are provided in percentage by weight.

1900 MHz:

44,45 %	2-(2-butoxyethoxy) ethanol
55.24 %	de-ionised water
0.31 %	NaCl salt

Body Tissue Simulant

The following recipes are provided in percentage by weight.

1900MHz:

70.17%	de-ionised water
29.44%	DGBE
0.39 %	Salt

7.4 Material Parameters

For the measurement of the following parameters the HP 85070D dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure. Liquid temperature during the test: 22.3°C, tested date 2009.7.30.

Head				Temperature	
		εr	σ[S/m]	Ambient [℃]	Liquid [°C]
1000MH-7	Recommended Value	40±1.9	1.40±0.07	15-30	-
1900MHz Measured Value		39.0	1.44	24.0	22.3

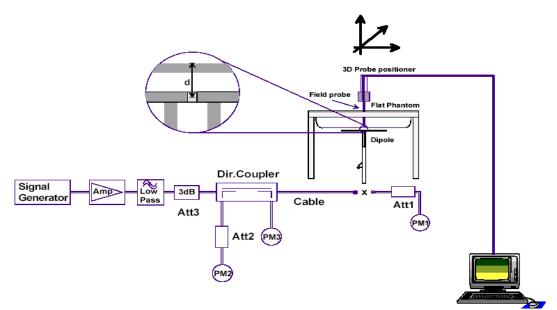
Body				Temperature	
		εr	σ[S/m]	Ambient [℃]	Liquid [°C]
1900MHz	Recommended Value	53.3±2.7	1.52±0.08	15-30	-
Measured Value		54.6	1.49	24.0	22.3

Table7: Parameters of the head tissue simulating liquids

7.5 Simplified Performance Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

The target values were adopted from the manufactures calibration certificates which are attached in the appendix. Table 9 includes the uncertainty assessment for the system performance checking which was suggested by the IEC 62209-1-2005 and determined by Schmid & Partner Engineering AG. The expanded uncertainty is assessed to be \pm 21.9%. Liquid temperature during the test: 22.3°C. System validation date: 2009.7.30


		SAR _{1g}	E	a[S/m]	σ[S/m]	
		[w/kg]	٤r	o[3/iii]	Ambient[℃]	Liquid[℃]
1900MHz	Target Value	39.7	40±1.9	1.40±0.07	15-30	-
190010112	Measured Value	39.9	39.0	1.44	24.0	22.3

All SAR values are normalized to 1W forward power。Plot of the system checking scans are given in Appendix7.7

Table 8: Validation results, 1900 MHz

7.6Setup for System Performance Check

(see also Chapter 16 System Performance Check of DAY 4 System handbook)

Fig5.Setup for system performance Check

First the power meter PM1 is connected to the cable and it measures the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the (Att1) value) and the power meter PM2 is read at that level. Then after connecting the cable to the dipole, the signal generator is readjusted for the same reading at the power meter PM2. If the signal generator does not allow a setting in 0,01 dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole and ensures that the value is not changed from the previous value. The reflected power should be 20 dB below the forwarded power.

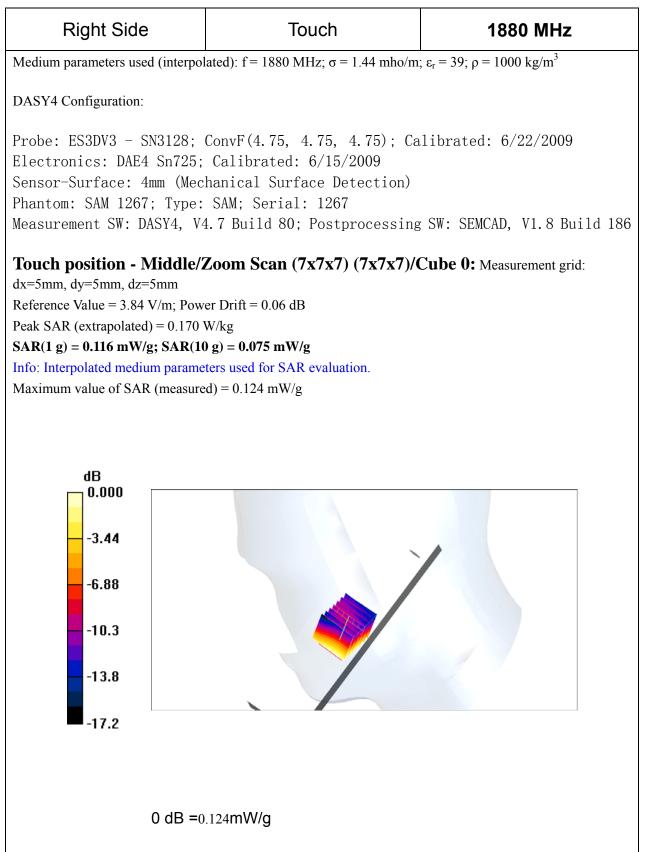
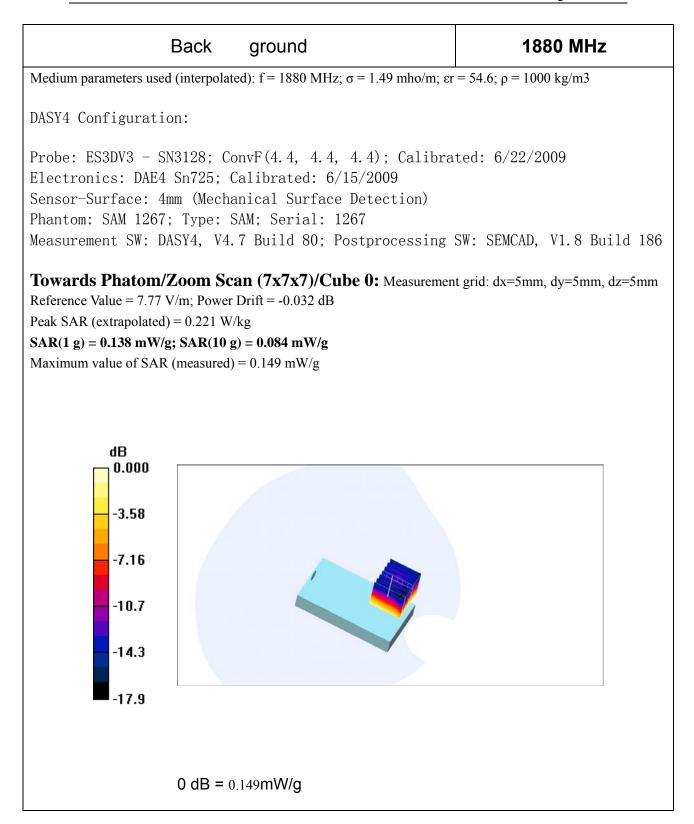

Error description	ToL.	Prob. Dist.	Div.	(<i>c_i</i>) 1g	(<i>c_i</i>) 10g	Std.Unc (1g).	Std.Unc (10g)	(<i>v</i> _i)
				19	log		(109)	$V_{\it eff}$
Measurement system			I	1	I	1		I
Probe calibration	±5.9%	N	1	1	1	±5.9%	±5.9%	∞
Axial isotropy	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
Hemispherical isotropy	±9.6%	R	$\sqrt{3}$	0	0	0	0	8
Boundary effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System detection limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration time	0	R	$\sqrt{3}$	1	1	0	0	∞
RF ambient noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF ambient reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Algorithms for Max.SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	x
Dipole								
Dipole Axis to Liquid Distance	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	8
Input power and SAR drift meas.	±4.7%	N	1	1	1	±2.7%	±2.7%	∞
Phantom and Tissue Param	1					1		
Phantom uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid conductivity(target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid conductivity(meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid conductivity(target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid conductivity (means.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined std. Uncertainty	·					±9.2%	±8.9%	∞
Coverage Factor for 95%		$k_p = 2$						
Expanded STD Uncertainty						±18.4%	±17.8%	

 Table 9:Uncertainty Budget for the system performance check

7.7Test Results

SYSTEM CHECKING SCANS	1900 MHz					
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d113 Medium parameters used (interpolated): f = 1900 MHz; σ = 1.44 mho/m; ϵ_r = 39; ρ = 1000 kg/m ³						
DASY4 Configuration: Probe: ES3DV3 - SN3128; ConvF(4.75, 4.75, 4.75); Calibrated: 6/22/2009 Electronics: DAE4 Sn725; Calibrated: 6/15/2009 Sensor-Surface: 4mm (Mechanical Surface Detection) Phantom: SAM 1267; Type: SAM; Serial: 1267 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD,	V1.8 Build 186					
d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube	0: Measurement grid: dx=5mm,					
dy=5mm, dz=5mm Reference Value = 92.3V/m; Power Drift = -0.047 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.32 mW/g Maximum value of SAR (measured) = 11.6 mW/g						
dB -3.62 -7.24 -10.9 -14.5 -18.1						
0 dB =11.6 mW/g						

GSM (1900MHz/Head)

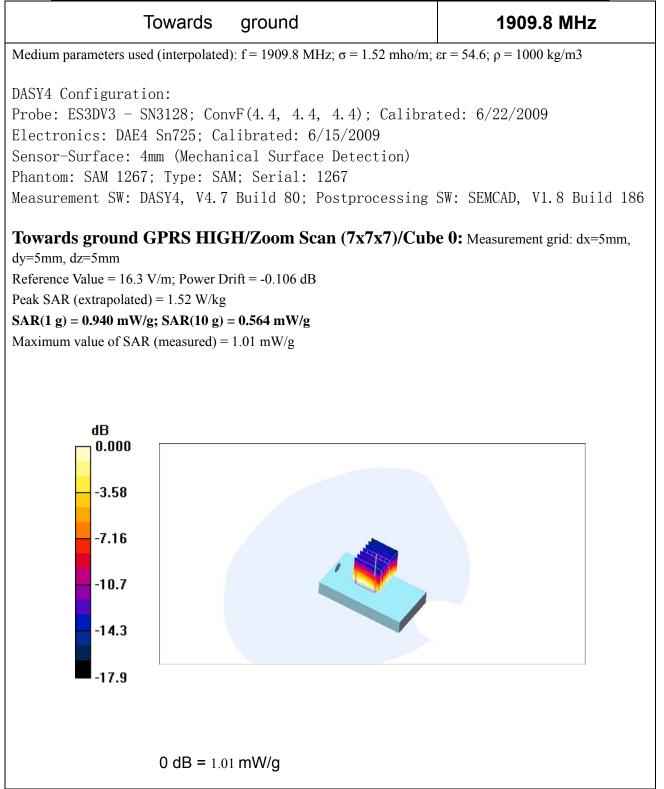

Right Side	Tilt	1880 MHz				
Medium parameters used (interpolated): $f = 1880 \text{ MHz}$; $\sigma = 1.44 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$						
DASY4 Configuration:						
Electronics: DAE4 Sn725; Sensor-Surface: 4mm (Mec Phantom: SAM 1267; Type:	hanical Surface Detection)					
_	om Scan (7x7x7) (7x7x7)/Cu	be 0: Measurement grid: dx=5mm,				
dy=5mm, dz=5mm Reference Value = 5.19 V/m; Pow	er Drift = 0.023 dB					
Peak SAR (extrapolated) = 0.064 V						
SAR(1 g) = 0.041 mW/g; SAR(10)	-					
Info: Interpolated medium parame	ters used for SAR evaluation.					
Maximum value of SAR (measure	d) = 0.046 mW/g					
dB 0.000 -3.44 -6.88 -10.3 -13.8 -17.2						
0 dB =	0.046 mW/g					

Left Side	Cheek	1880 MHz
Medium parameters used (interpo	lated): $f = 1880 \text{ MHz}; \sigma = 1.44 \text{ mho/m}; a$	$\epsilon r = 39; \rho = 1000 \text{ kg/m3}$
DASY4 Configuration:		
	(4.75, 4.75, 4.75); Calibrated: 6/22/2009)
Electronics: DAE4 Sn725; Calibra	ated: 6/15/2009	
Sensor-Surface: 4mm (Mechanica		
Phantom: SAM 1267; Type: SAM		D V1 0 D:14 10/
Measurement Sw. DAS14, v4./	Build 80; Postprocessing SW: SEMCAI	D, v1.8 Bulla 180
Touch position - Middle/	Zoom Scan (7x7x7) (7x7x7)/C	ube 0: Measurement grid:
dx=5mm, dy=5mm, dz=5mm		
Reference Value = 1.37 V/m ; Pow		
Peak SAR (extrapolated) = 0.188 SAR(1 g) = 0.129 mW/g; SAR(1	-	
Info: Interpolated medium parame		
Maximum value of SAR (measure		
dB		
0.000		
-3.88	1 - 1	
-7.76		
11.0		
-11.6	V +++	
-15.5	VIII V	
-15.5		
-19.4		
-13,4		
- db -	0.140 mW/g	
0 UD -	0.140 11100/9	

Tel: 86-10-68009	9202 6800920	03 fax: 86-10-68009195	68009205	Page 31 of 54
Left Side	е	Tilt		1880 MHz
Medium parameters u	sed (interpola	ted): $f = 1880MHz; \sigma = 1.4$	4 mho/m; ε	$er = 39; \rho = 1000 \text{ kg/m}3$
DASY4 Configuration	n:			
		4.75, 4.75, 4.75); Calibrated	d: 6/22/2009	9
Electronics: DAE4 Sr Sensor-Surface: 4mm				
Phantom: SAM 1267;		,		
Measurement SW: DA	ASY4, V4.7 B	uild 80; Postprocessing SW	: SEMCAI	D, V1.8 Build 186
-	iddle/Zoo	m Scan (7x7x7) (7x7	′x7)/Cub	be 0: Measurement grid: dx=5mm,
dy=5mm, dz=5mm Reference Value = 4.4	1 V/m: Power	r Drift = 0.114 dB		
Peak SAR (extrapolat				
SAR(1 g) = 0.052 mV	-			
Info: Interpolated med Maximum value of SA	-	ers used for SAR evaluation () = 0.056 mW/g	1.	
	X	, .		
dB 0.000				
0.000				
-3.44				
-6.88				
		· · · ·		
-10.3		ш.		
-13.8				
-17.2				
-17.2				
	0 dB = 0.03	56 mW/g		
		J		

GSM (1900MHz/Body) with the headset

T	owards ground	1880 MHz
Medium parameters used	(interpolated): $f = 1880$ MHz; $\sigma = 1.49$ mho/m; ε	$r = 54.6; \rho = 1000 \text{ kg/m3}$
DASY4 Configurati	.on:	
Electronics: DAE4 Sensor-Surface: 4m Phantom: SAM 1267;	M3128; ConvF(4.4, 4.4, 4.4); Calibra Sn725; Calibrated: 6/15/2009 m (Mechanical Surface Detection) Type: SAM; Serial: 1267 MSY4, V4.7 Build 80; Postprocessing	
0	Coom Scan (7x7x7)/Cube 0: Measuremen 7/m; Power Drift = -0.202 dB = 0.230 W/kg	t grid: dx=5mm, dy=5mm, dz=5mm
	; SAR(10 g) = 0.101 mW/g	
Maximum value of SAR	(measured) = 0.169 mW/g	
dB 0.000		
-3.58		
-7.16		
-10.7		
-14.3		
-17.9		
	0 dB = 0.169 mW/g	

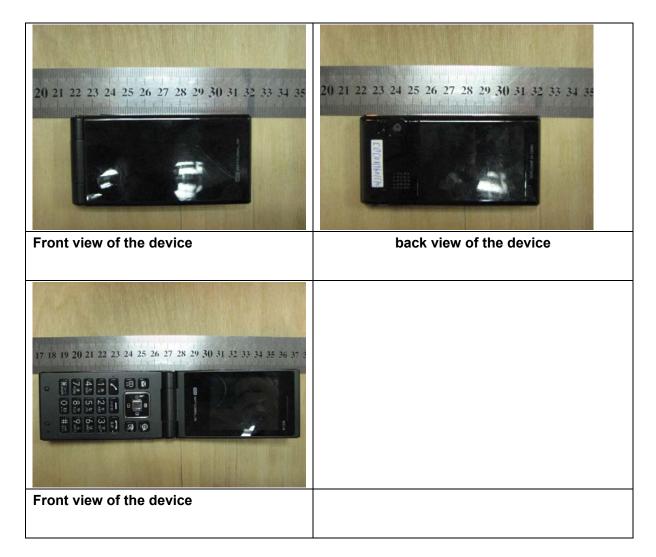


GPRS (1900MHz/Body) with the headset

Towards ground	1880 MHz					
Medium parameters used (interpolated): $f = 1880 \text{ MHz}$; $\sigma = 1.49 \text{ mho/m}$; $\epsilon r = 54.6$; $\rho = 1000 \text{ kg/m}$ 3						
DASY4 Configuration:						
Probe: ES3DV3 - SN3128; ConvF(4.4, 4.4, 4.4); Calib Electronics: DAE4 Sn725; Calibrated: 6/15/2009 Sensor-Surface: 4mm (Mechanical Surface Detection) Phantom: SAM 1267; Type: SAM; Serial: 1267 Measurement SW: DASY4, V4.7 Build 80; Postprocessing						
Towards ground GPRS Mid/Zoom Scan (7x7x7)/Cut dy=5mm, dz=5mm Reference Value = 17.3 V/m; Power Drift = -0.220dB Peak SAR (extrapolated) = 1.07 W/kg	De 0: Measurement grid: dx=5mm,					
SAR(1 g) = 0.660 mW/g ; SAR(10 g) = 0.405 mW/g						
Maximum value of SAR (measured) = 0.718 mW/g						
-3.58						
-7.16 -10.7						
-14.3						
-17.9						
0 dB = 0.718 mW/g						

Towards ground	1850.2 MHz
Medium parameters used (interpolated): $f = 1850.2 \text{ MHz}$; $\sigma = 1.46 \text{ mho/m}$; a	$er = 53.8; \rho = 1000 \text{ kg/m3}$
DASY4 Configuration: Probe: ES3DV3 - SN3128; ConvF(4.4, 4.4, 4.4); Calibrat Electronics: DAE4 Sn725; Calibrated: 6/15/2009 Sensor-Surface: 4mm (Mechanical Surface Detection) Phantom: SAM 1267; Type: SAM; Serial: 1267 Measurement SW: DASY4, V4.7 Build 80; Postprocessing S	
Towards ground GPRS LOW/Zoom Scan (7x7x7)/Cube dy=5mm, dz=5mm Reference Value = 15.7 V/m; Power Drift = -0.210 dB	0: Measurement grid: dx=5mm,
Peak SAR (extrapolated) = 1.33 W/kg	
SAR(1 g) = 0.828 mW/g ; SAR(10 g) = 0.502 mW/g Info: Interpolated medium parameters used for SAR evaluation.	
Maximum value of SAR (measured) = 0.897 mW/g	
dB 0.000 -3.58 -7.16 -10.7 -14.3 -17.9	
0 dB = 0.897 mW/g	

The State Radio Monitoring CenterState Radio Spectrum Monitoring and Testing CenterTel:86-10-6800920268009203fax: 86-10-6800919568009205



EDGE (1900MHz/Body) with the headset

Towards ground	1880 MHz
Medium parameters used (interpolated): $f = 1880 \text{ MHz}$; $\sigma = 1.49 \text{ mho/m}$; $\epsilon r = 1.49 mho/m$	= 54.6; $\rho = 1000 \text{ kg/m3}$
DASY4 Configuration: Probe: ES3DV3 - SN3128; ConvF(4.4, 4.4, 4.4); Calibrat Electronics: DAE4 Sn725; Calibrated: 6/15/2009 Sensor-Surface: 4mm (Mechanical Surface Detection) Phantom: SAM 1267; Type: SAM; Serial: 1267 Measurement SW: DASY4, V4.7 Build 80; Postprocessing S	
Towards ground EDGE/Zoom Scan $(7x7x7)$ /Cube 0: Meas dz=5mm Reference Value = 15.3 V/m; Power Drift = -0.033 dB Peak SAR (extrapolated) = 0.921 W/kg SAR(1 g) = 0.514 mW/g; SAR(10 g) = 0.321 mW/g Maximum value of SAR (measured) = 0.559 mW/g	surement grid: dx=5mm, dy=5mm,
dB 0.000 -3.58 -7.16 -10.7 -14.3	
-14.3 -17.9 0 dB = 0.559mW/g	

7.8 Pictures of the device under test

the device under test

7.9 Test Positions for the Device under test

Test Positions for the Device under test

7.10 Picture to demonstrate the required liquid depth

the liquid depth in the used SAM phantoms

Liquid depth for SAR Measurement

7.11 Certificate of conformity

-68009202 680092	ring and Testing 03 fax: 86-10	g Center 0-68009195 6800920	FCC ID: UPMW31000 5 Page
Calibration Laborator Schmid & Partner Engineering AG _{Zeughausstrasse} 43, 8004 Zurici		BOC MRA RACE MRA CRUBRATO	S Schwelzerlscher Kalibrierdien Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Service Multilateral Agreement for the re	is one of the signatories	to the EA	itation No.: SCS 108
Client SRMC (PTT)		Certific	ate No: DAE4-725_Jun09
CALIBRATION C	ERTIFICATE	ing the second is a	
Object	DAE4 - SD 000 D	04 BJ - SN: 725	
Calibration procedure(s)	QA CAL-06.v12 Calibration procee	dure for the data acquisitior	electronics (DAE)
Calibration date:	June 15, 2009		
Condition of the calibrated item This calibration certificate docum	In Tolerance	onal standards, which realize the physic	
Condition of the calibrated item This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Fluke Process Calibrator Type 70	In Tolerance ents the traceability to natio rtainties with confidence pr eted in the closed laborator rE critical for calibration) ID # 2 SN: 6295803	Cal Date (Certificate No.) 30-Sep-08 (No: 7673)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-09
Condition of the calibrated item This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards	In Tolerance ents the traceability to nation rtainties with confidence pro- sted in the closed laborator rE critical for calibration)	obability are given on the following pay facility: environment temperature (2 Cal Date (Certificate No.)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration
Condition of the calibrated item This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Fluke Process Calibrator Type 70	In Tolerance ents the traceability to nation rtainties with confidence pr sted in the closed laborator rE critical for calibration) ID # ID # SN: 6295803 SN: 0810278 ID #	Cal Date (Certificate No.) 30-Sep-08 (No: 7673)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-09
Condition of the calibrated item This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&- Primary Standards Fluke Process Calibrator Type 70 Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	In Tolerance ents the traceability to nation rtainties with confidence pro- ted in the closed laborator rE critical for calibration) ID # IZ SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004	obability are given on the following pa y facility: environment temperature (2 <u>Cal Date (Certificate No.)</u> 30-Sep-08 (No: 7673) 30-Sep-08 (No: 7670) <u>Check Date (in house)</u> 05-Jun-09 (in house check) Function	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-09 Sep-09 Scheduled Check In house check: Jun-10 Signature
Condition of the calibrated item This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Fluke Process Calibrator Type 70 Keithley Multimeter Type 2001 Secondary Standards	In Tolerance ents the traceability to nation rtainties with confidence pro- ted in the closed laborator. TE critical for calibration) ID # 2 SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004	obability are given on the following pa y facility: environment temperature (2 <u>Cal Date (Certificate No.)</u> 30-Sep-08 (No: 7673) 30-Sep-08 (No: 7670) <u>Check Date (in house)</u> 05-Jun-09 (in house check)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-09 Sep-09 Scheduled Check In house check: Jun-10 Signature
Condition of the calibrated item This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&- Primary Standards Fluke Process Calibrator Type 70 Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	In Tolerance ents the traceability to nation rtainties with confidence pro- ted in the closed laborator rE critical for calibration) ID # IZ SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004	obability are given on the following pa y facility: environment temperature (2 <u>Cal Date (Certificate No.)</u> 30-Sep-08 (No: 7673) 30-Sep-08 (No: 7670) <u>Check Date (in house)</u> 05-Jun-09 (in house check) Function	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-09 Sep-09 Scheduled Check In house check: Jun-10
Condition of the calibrated item This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&: Primary Standards Fluke Process Calibrator Type 70 Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1 Calibrated by: Approved by:	In Tolerance ents the traceability to natio rtainties with confidence pr eted in the closed laborator rE critical for calibration) ID # ID # ID # ID # SE UMS 006 AB 1004 Name Daniel Hess Fin Bornholt	obability are given on the following pa y facility: environment temperature (2 <u>Cal Date (Certificate No.)</u> 30-Sep-08 (No: 7673) 30-Sep-08 (No: 7670) <u>Check Date (in house)</u> 05-Jun-09 (in house check) Function Technician	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. <u>Scheduled Calibration</u> Sep-09 Scheduled Check In house check: Jun-10 Signature D. J.M. N.R. LUM Issued: June 18, 2009

No.: SRMC2009-H024-E0014 FCC ID: UPMW310001 Page 42 of 54

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst C Service suisse d'étalonnage

- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-725_Jun09

Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nom

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV .	full range =	-1+3mV

Calibration Factors	X	Y	Z
High Range	404.179 ± 0.1% (k=2)	404.931 ± 0.1% (k=2)	404.498 ± 0.1% (k=2)
Low Range	3.90830 ± 0.7% (k=2)	3.98545 ± 0.7% (k=2)	$3.98641 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system 236 ° ± 1 °

Certificate No: DAE4-725_Jun09

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	199999.9	0.00
Channel X + Input	20000	20008.43	0.04
Channel X - Input	20000	-19998.02	-0.01
Channel Y + Input	200000	200000	0.00
Channel Y + Input	20000	20006.27	0.03
Channel Y - Input	20000	-20001.56	0.01
Channel Z + Input	200000	200000	0.00
Channel Z + Input	20000	20005.16	0.03
Channel Z - Input	20000	-20002.80	0.01

Low Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000	0.00
Channel X + Input	200	199.84	-0.08
Channel X - Input	200	-199.88	-0.06
Channel Y + Input	2000	1999.9	0.00
Channel Y + Input	200	199.32	-0.34
Channel Y - Input	200	-200.12	0.06
Channel Z + Input	2000	2000.1	0.00
Channel Z + Input	200	199.14	-0.43
Channel Z - Input	200	-201.59	0.80

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	10.11	9.02
	- 200	-7.46	-8.62
Channel Y	200	-10.61	-10.93
	- 200	10.67	9.94
Channel Z	200	-3.58	-3.89
	- 200	2.46	2.29

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.29	0.66
Channel Y	200	1.63	-	4.98
Channel Z	200	-0.38	-0.06	-

Certificate No: DAE4-725_Jun09

Page 4 of 5

4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16213	14897
Channel Y	16224	15636
Channel Z	16106	16320

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (μV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.29	-1.24	1.43	0.33
Channel Y	-2.73	-3.64	-1.66	0.39
Channel Z	-1.10	-2.27	-0.24	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2001	200.5
Channel Y	0.2000	201.5
Channel Z	0.2000	200.0

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-725_Jun09

Page 5 of 5

<section-header><section-header> Schult Sungering Sungering Age Schult Sungering Schult Sungering Age</section-header></section-header>		ing and Testin 3 fax: 86-7	n g Center 10-68009195		No.: SRMC2009-H024- FCC ID: UPMW310001 Page 4
Schmid & Partner Engineering AG Zeughausstasse 43, 0094 Zurich, Switzerdan Image: Construction of the source of the signatories to the CA Switzerd at tractame while Calibration Service (SAS) Image: Construction of Calibration Carried Service Service and Service Service (SAS) Accreditation Service is one of the signatories to the EA Multitateral Agreement for the recognition of calibration certificates Image: Construction Carried Service (SAS) Calibration Device is one of the signatories to the EA Multitateral Agreement for the recognition of calibration certificates Image: Construction Carried Service Servic					
The Switzs Accreditation Service is one of the signatories to the EA Suitzleard Agreement for the recognition of calibration certificates Cherner RMC (PT) Cherner ES3DV3 - SN:3128 Object ES3DV3 - SN:3128 Calibration procedure(s) QA CAL-01.V6 and QA CAL-23.V3 Calibration procedure(s) QA CAL-01.V6 and QA CAL-23.V3 Calibration date: June 22, 2009 Condition of the calibrated item In Colerance The salabration Experiments and the uncertainties with confidence probability are given on the following pages and are part of the certificate Actibration Equipment used (M&TE critical for calibration) Scheduled Calibration Power sensor E4412A MY41496277 1-Agr-09 (No 21701030) Apr-10 Power sensor E4412A MY41496207 1-Agr-09 (No 21701030) Apr-10 Reference 30 dB Altenuator NY 5556 (20) 31-MAre-90 (No 21701023)	Schmid & Partner Engineering AG		lac-mRA	(g 🗊 z) 0	Service suisse d'étalonnage Servizio svizzero di taratura
Calibration procedure(s) CA CAL-01 v6 and QA CAL-23 v3 Calibration procedure(s) Calibration procedure(s) CA CAL-01 v6 and QA CAL-23 v3 Calibration procedure for dosimetric E-field probes Calibration date: June 22, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S), The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. Al calibration strifticate documents the traceability to national standards, which realize the physical units of measurements (S), The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. Al calibrations have been conducted in the closed laboratory facility. environment temperature (22 ± 3)*C and humidity < 70%.	The Swiss Accreditation Service	is one of the signatories to the EA		Accreditation No.: SCS 108	
Object ES3DV3 - SN:3128 Calibration procedure(s) QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes Calibration date: June 22, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards D # Cal Date (Certificate No.) Scheduled Calibration Apr-10 Power sensor E4412A MY41498277 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498277 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5054 (30) 31-Mar-09 (No. 217-01026) Mar-10 Reference 3 dB Attenuator SN: S5052 (30) 31-Mar-09 (No. 217-01026) Mar-10 Reference 3 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01026) Mar-10 Reference 3 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01026) Mar-10 Ref	Client SRMC (PTT)			Certificate N	lo: ES3-3128_Jun09
Calibration procedure(s) QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes Calibration date: June 22, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	CALIBRATION C	ERTIFICAT	E		
Calibration procedure for dosimetric E-field probes Calibration date: June 22, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.	Object	ES3DV3 - SN:3	128		
Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.	Calibration procedure(s)				95
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration date:	June 22, 2009			
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Condition of the calibrated item	In Tolerance			
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: \$5054 (3c) 31-Mar-09 (No. 217-01028) Mar-10 Reference 3 dB Attenuator SN: \$5056 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 20 dB Attenuator SN: \$5056 (20b) 31-Mar-09 (No. 217-01027) Mar-10 Reference 20 dB Attenuator SN: \$5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: \$5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8648C U33642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Calibrated by: Jeton Kastrati <	The measurements and the uncer	rtainties with confidence	probability are given on	the following pages a	nd are part of the certificate.
Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498277 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5056 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN: S5056 (20b) 31-Mar-09 (No. 217-01026) Mar-10 Reference 30 dB Attenuator SN: S5056 (20b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager					
Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 30 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01028) Mar-10 Reference 20 dB Attenuator SN: S5056 (2cb) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01028) Mar-10 Reference Probe ES3DV2 SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati Jeton Kastrati Approved by: Katja Pokovic Technical Manager June 22, 2009	Calibration Equipment used (M&T	E critical for calibration)			
Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 2 dB Attenuator SN: S5056 (2cb) 31-Mar-09 (No. 217-01026) Mar-10 Reference 3 dB Attenuator SN: S5056 (2cb) 31-Mar-09 (No. 217-01028) Mar-10 Reference 3 dB Attenuator SN: S5056 (2cb) 31-Mar-09 (No. 217-01028) Mar-10 Reference 3 dB Attenuator SN: S5056 (2cb) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013_Jan09) Jan-10 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Calibrated by: Jeton Kastrati Laboratory Technician Jeton Xastrati Approved by: Katja Pokovic Technical Manager Jeton Mathematical Manager Laboratory Technician Jesued: June 22, 2009 Jesued: June 22, 2009	Primary Standards	ID #		e No.)	
Reference 3 dB Attenuator SN: \$5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN: \$5056 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 20 dB Attenuator SN: \$5056 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 20 dB Attenuator SN: \$5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: \$5129 (30b) 31-Mar-09 (No. ES3-01027) Mar-10 DAE4 SN: \$600 9-Sep-08 (No. ES3-3013_Jan09) Jan-10 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Calibrated by: Jeton Kastrati Laboratory Technician Jate-04 Approved by: Katja Pokovic Technical Manager Jate-04 Issued: June 22, 2009 Issued: June 22, 2009 In house	Primary Standards Power meter E4419B	ID # GB41293874	1-Apr-09 (No. 217-	e No.) 01030)	Apr-10
Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013_Jan09) Jan-10 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Jetous UM Issued: June 22, 2009	Primary Standards Power meter E4419B Power sensor E4412A	ID # GB41293874 MY41495277	1-Apr-09 (No. 217- 1-Apr-09 (No. 217-	e No.) 01030) 01030)	Apr-10 Apr-10
Reference Probe ES3DV2 DAE4 SN: 3013 SN: 660 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Jan-10 Sep-09 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8648C Network Analyzer HP 8753E US3642U01700 US37390585 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 Calibrated by: Name Function Signature Approved by: Katja Pokovic Technical Manager Mathematical Manager Issued: June 22, 2009	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41495277 MY41498087	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217-	e No.) 01030) 01030) 01030)	Apr-10 Apr-10 Apr-10
DAE4 SN: 660 9-Sep-08 (No. DAE4-666_Sep08) Sep-09 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati Approved by: Katja Pokovic Technical Manager Jeton July Issued: June 22, 2009 June 22, 2009 June 22, 2009	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217-	e No.) 01030) 01030) 01030) 7-01026) 7-01028)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10
Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8848C US3842U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Calibrated by: Jeton Kastrati Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Jeton: Manager Issued: June 22, 2009 June 22, 2009 June 22, 2009	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b)	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217 31-Mar-09 (No. 217- 31-Mar-09 (No. 217-	e No.) 01030) 01030) 01030) 7-01026) 7-01028) 7-01027)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10
RF generator HP 8848C US3842U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Jesued: June 22, 2009	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Brobe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217- 2-Jan-09 (No. ES3-	e No.) 01030) 01030) 01030) 7-01026) 7-01028) 7-01027) -3013_Jan09)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10
Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Jesued: June 22, 2009	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (20b) SN: S5026 (20b) SN: S5129 (30b) SN: 3013 SN: 660	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 211 31-Mar-09 (No. 211 31-Mar-09 (No. 211 2-Jan-09 (No. ES3 9-Sep-08 (No. DAE	e No.) 01030) 01030) 7-01026) 7-01028) 7-01027) -3013_Jan09) 44-660_Sep08)	Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09
Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: June 22, 2009	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID #	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 211 31-Mar-09 (No. 211 2-Jan-09 (No. ES3 9-Sep-08 (No. DAE Check Date (in hou	e No.) 01030) 01030) 01030) 01030) 7-01026) 7-01028) 7-01027) 3013_Jan09) 34-660_Sep08) Ise)	Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check
Calibrated by: Jeton Kastrati Laboratory Technician Image: Calibrated by: Approved by: Katja Pokovic Technical Manager Image: Calibrated by: Calibrated b	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217- 2-Jan-09 (No. ES3- 9-Sep-08 (No. DAE Check Date (in house 4-Aug-99 (in house	e No.) 01030) 01030) 01030) 7-01026) 7-01028) 7-01027) -3013_Jan09) 44-660_Sep08) ise) check Oct-07)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09
Issued: June 22, 2009	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 660 ID # US3642U01700 US3642U01700 US37390585	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 211 31-Mar-09 (No. 211 3-Jan-09 (No. 211 2-Jan-09 (No. ES3 9-Sep-08 (No. DAE Check Date (in house 18-Oct-01 (in house	e No.) 01030) 01030) 01030) 7-01026) 7-01027) -3013_Jan09) 54-660_Sep08) ise) e check Oct-07) e check Oct-08)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09
	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US3642U01700 US37390585 Name	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 211 31-Mar-09 (No. 211 31-Mar-09 (No. 211 2-Jan-09 (No. ES3 9-Sep-08 (No. DAE Check Date (in hous 4-Aug-99 (in house 18-Oct-01 (in hous Function	e No.) 01030) 01030) 01030) 7-01026) 7-01028) 7-01027) 3015_Jan09) 34-660_Sep08) ise) icheck Oct-07) ic check Oct-07) ic check Oct-08) on	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09
the case and other not be reproduced except in the million written approval of the laboratory.	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 660 ID # US3642U01700 US37390585 Name Jeton Kastrati	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217- 2-Jan-09 (No. ES3- 9-Sep-08 (No. DAE Check Date (in house 18-Oct-01 (in house 18-Oct-01 (in house Labora	e No.) 01030) 01030) 01030) 7-01026) 7-01027) -3013_Jan09) 44-660_Sep08) ise) i: check Oct-07) e check Oct-07) e check Oct-08) on tory Technician	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09
	Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 660 ID # US3642U01700 US3642U01700 US37390585 Name Jeton Kastrati Katja Pokovic	1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 1-Apr-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. 217- 31-Mar-09 (No. ES3 9-Sep-08 (No. DAE Check Date (in house 18-Oct-01 (in house 18-Oct-01 (in house Labora Techni	e No.) 01030) 01030) 01030) 01030) 01030) 01030) 01030) 01030 7-01028) 7-01028) 7-01028) 7-01027) -3013_Jan09) 44-660_Sep08) ase) acheck Oct-07) acheck Oct-07) acheck Oct-07) acheck Oct-08) on cal Manager	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 Signature Market Market Signature Market Market Signature Market Market Market Signature Market Market Marke

No.: SRMC2009-H024-E0014 FCC ID: UPMW310001 Page 47 of 54

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- SWISS 0 REAT
- Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	θ rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v.z: DCP are numerical linearization parameters assessed based on the data of . power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3128_Jun09

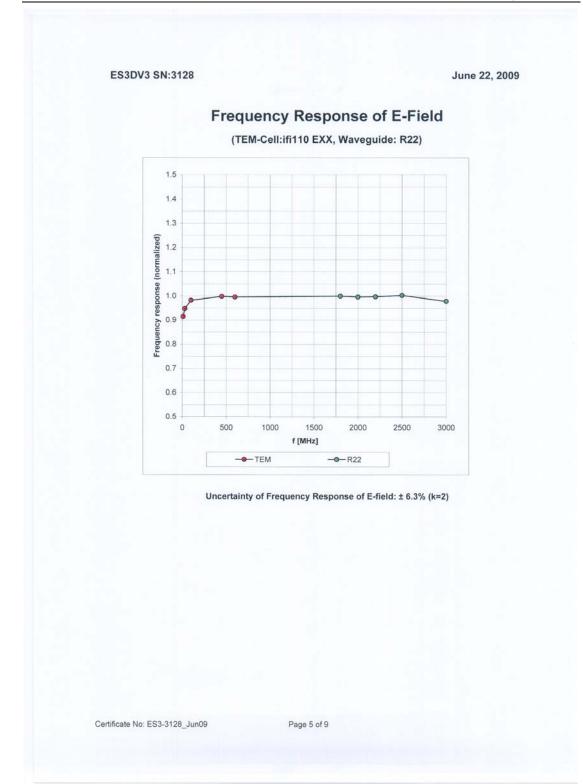
Page 2 of 9

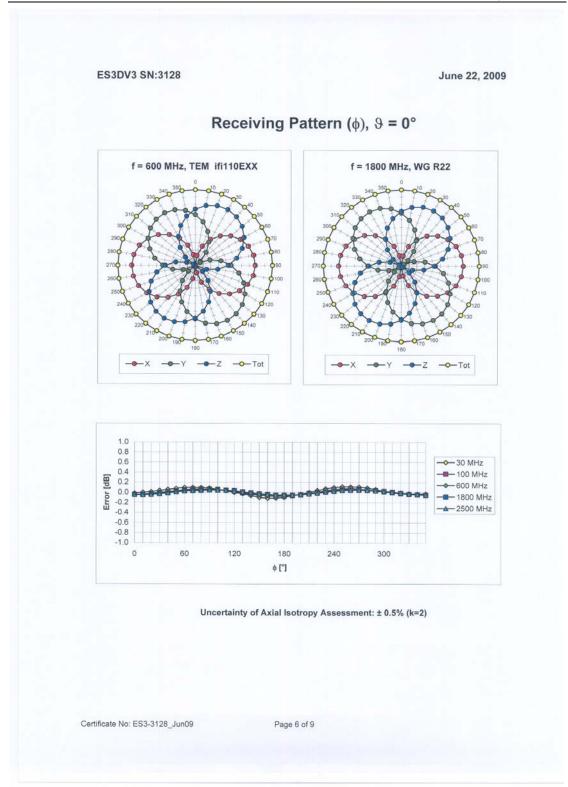
ES3DV3 SN:3128

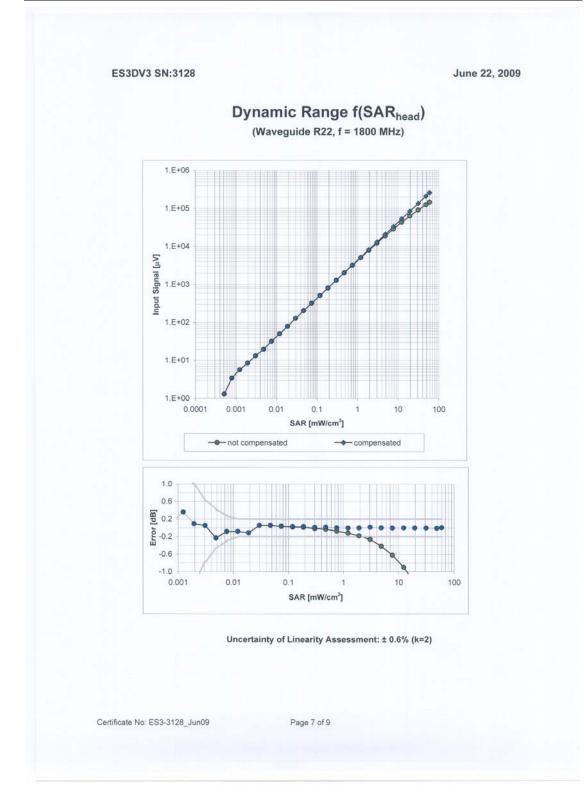
June 22, 2009

Probe ES3DV3

SN:3128

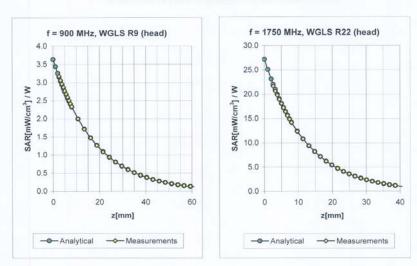

Manufactured: Last calibrated: Recalibrated: July 11, 2006 January 24, 2007 June 22, 2009


Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)


Certificate No: ES3-3128_Jun09

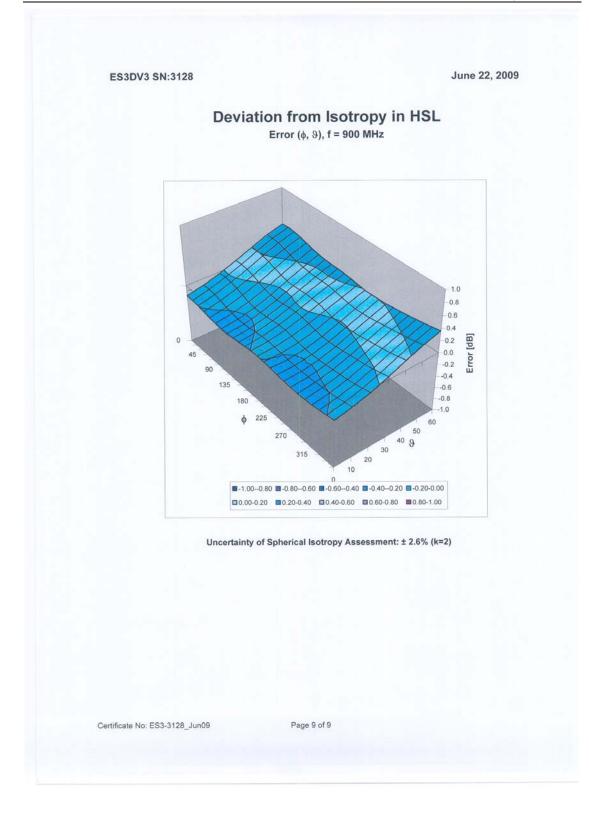
Page 3 of 9

Sensitivity in Fre	e Space ^A		Diode C	ompression ^B
	in the second second	N 110 11 - N2		S1241 1/22
NormX	1.26 ± 10.1%	$\mu V/(V/m)^2$	DCP X	92 mV
NormY	1.36 ± 10.1%	μV/(V/m) ² μV/(V/m) ²	DCP Y	94 mV
NormZ	1.32 ± 10.1%	μV/(V/m) ⁻	DCP Z	94 mV
Sensitivity in Tis	sue Simulating Li	quid (Conver	sion Factors)	
Please see Page 8.				
Boundary Effect				
	00 MHz Typical SA	AR gradient: 5 % g	oer mm	
	in a spectrum	ar gradent. o /o j		
	r to Phantom Surface D		3.0 mm 4.	
SAR _{be} [%]	Without Correction A	0		5.5
SAR _{be} [%]	With Correction Algo	nınm	0.7	0.5
'SL 17	50 MHz Typical SA	AR gradient: 10 %	per mm	
Sensor Cente	r to Phantom Surface D	istance	3.0 mm 4.	0 mm
SAR _{be} [%]	Without Correction A	Algorithm	8.9	5.2
SAR _{be} [%]	With Correction Algo	prithm	0.8	0.6
Sensor Offset				
Probe Tip to S	Sensor Center		2.0 mm	
	rtainty of measurem iplied by the coverage			
	overage probability			
The uncertainties of NormX	C,Y,Z do not affect the E2-field	uncertainty inside TSL	(see Page 8).	



ES3DV3 SN:3128

June 22, 2009


Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.94	1.06	5.68 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.83	1.11	5.52 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.52	1.43	4.93 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.52	1.46	4.75 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.42	1.60	4.69 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.74	1.21	5.72 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.79	1.15	5.58 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.37	1.93	4.60 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.36	2.06	4.40 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.38	2.04	4.46 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3128_Jun09

Page 8 of 9

Schmid & Partner Engineering AG s е а D q

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 C
Series No	TP-1150 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas; 6mm +/- 0.2mm at ERP	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions	DEGMBE based simulating liquids	Pre-series, First article, Samples

Standards

- [1] CENELEC EN 50361
- [2] IEEE Std 1528-200x Draft CD 1.1 (Dec 02)
 - [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

7.8.2003

Signature / Stamp

Schmid & Partner Fin Brudelt

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Engineering AG