Radio Frequency Exposure

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	TPMS for iPod,iPhone,iPad
Frequency band (Operating)	\square WLAN: $2.412 \mathrm{GHz} \sim 2.462 \mathrm{GHz}$ \square WLAN: $5.150 \mathrm{GHz} \sim 5.250 \mathrm{GHz}$ \square WLAN: $5.725 \mathrm{GHz} \sim 5.850 \mathrm{GHz}$ \boxtimes Bluetooth: $2.402 \mathrm{GHz} \sim 2.480 \mathrm{GHz}$
Device category	Portable (<20cm separation) Mobile ($>20 \mathrm{~cm}$ separation)
Exposure classification	\square Occupational/Controlled exposure ($\mathrm{S}=5 \mathrm{~mW} / \mathrm{cm}^{2}$) General Population/Uncontrolled exposure ($\mathrm{S}=1 \mathrm{~mW} / \mathrm{cm}^{2}$)
Antenna diversity	Single antenna Multiple antennas Tx diversity Rx diversity Tx/Rx diversity
Max. output power	GFSK: - $15.98 \mathrm{dBm}(0.0000252 \mathrm{~mW})$ $\pi / 4-$ DQPSK: $-15.95 \mathrm{dBm}(0.0000254 \mathrm{~mW})$ 8DPSK: -17.45Bm(0.0000180mW)
Antenna gain (Max)	0 dBi
Evaluation applied	MPE Evaluation* SAR Evaluation N/A
Remark: 1. The maximum output power is $-15.95 \mathrm{dBm}(0.0000254 \mathrm{~mW})$ at 2402 MHz (with numeric 0 antenna gain.) 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance. 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is $1.0 \mathrm{~mW} / \mathrm{cm}^{2}$ even if the calculation indicates that the power density would be larger.	

TEST RESULTS

No non-compliance noted.

Calculation

Given $E=\frac{\sqrt{30 \times P \times G}}{d} \& S=\frac{E^{2}}{3770}$
Where $E=$ Field strength in Volts / meter
$P=$ Power in Watts
$G=$ Numeric antenna gain
$d=$ Distance in meters
S = Power density in milliwatts / square centimeter
Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$
S=\frac{30 \times P \times G}{3770 d^{2}}
$$

Changing to units of mW and cm , using:

$$
\begin{aligned}
& P(m W)=P(W) / 1000 \text { and } \\
& d(\mathrm{~cm})=d(\mathrm{~m}) / 100
\end{aligned}
$$

Yields

$$
\begin{aligned}
& S=\frac{30 \times(P / 1000) \times G}{3770 \times(d / 100)^{2}}=0.0796 \times \frac{P \times G}{d^{2}} \\
& \text { Where } \quad \begin{aligned}
d & =\text { Distance in } \mathrm{cm} \\
P & =\text { Power in } \mathrm{mW}
\end{aligned} \\
& G=\text { Numeric antenna gain } \\
& S
\end{aligned}
$$

$$
\text { Equation } 1
$$

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance $(\mathbf{c m})$	Power density $(\mathbf{m W} / \mathbf{c m} 2)$	Limit $(\mathbf{m W} / \mathbf{c m 2})$
GFSK	$2402-2480$	-15.98	0	20	0	1
$\pi / 4-$ DQPSK	$2402-2480$	-15.95	0	20	0	1
8DPSK	$2402-2480$	-17.45	0	20	0	1

NOTE:

Total (Chain0+Chain1) , the formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 + \qquad etc. < 1
CPD = Calculation power density
LPD = Limit of power density

