

EMC & RF Test Report

As per

RSS-247 Issue 1:2015 & FCC Part 15 Subpart 15.247:2016

Unlicensed Intentional Radiators

on the

GFT3S

Issued by: TÜV SÜD Canada Inc.

11 Gordon Collins Dr, Gormley, ON, L0H 1G0

Canada

Ph: (905) 883-7255

Min Xie, EMC Project Engineer

atax

© TÜV SÜD Canada Inc. This test report shall not be reproduced except in full, without written approval of TÜV SÜD Canada Inc

C-4498, T-1246

Registration # CA6844

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Table of Contents

Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary Notes, Justifications, or Deviations Sample Calculation(s)	6
Applicable Standards, Specifications and Methods	8
Document Revision Status	9
Definitions and Acronyms	10
Testing Facility	11
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Results Section	13
6dB Bandwidth of Digitally Modulated Systems Maximum Conducted (Average) Output Power Antenna Spurious Conducted Emissions (-30 dBc Requirement) – 15.247 Radiated Emissions – 15.247 Maximum (Average) Conducted Power Spectral Density Power Line Conducted Emissions	18 23 27
Appendix A – EUT Summary	63

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Report Scope

This report addresses the EMC verification testing and test results of the **Artaflex, Model: GFT3S**, and is herein referred to as EUT (Equipment Under Test). The EUT was tested for compliance against the following standards:

RSS-247 Issue 1:2015

FCC Part 15 Subpart C 15.247:2016

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

This report does not imply product endorsement by any government, accreditation agency, or TÜV SÜD Canada Inc.

Opinions or interpretations expressed in this report, if any, are outside the scope of TÜV SÜD Canada Inc. accreditations. Any opinions expressed do not necessarily reflect the opinions of TÜV SÜD Canada Inc., unless otherwise stated.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Summary

The results contained in this report relate only to the item(s) tested.

EUT:	GFT3S
FCC Certification #, FCC ID:	UP2GFT3S
Industry Canada Certification #, IC:	6797A-GFT3S
EUT passed all tests performed	Yes
Tests conducted by	Min Xie

For testing dates, see "Testing Environmental Conditions and Dates".

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Test Results Summary

Standard/Method	Description	Class/Limit	Result	
FCC 15.203	Antenna Requirement	Unique	Pass See Justification	
FCC 15.205 RSS-GEN (Table 6)	Restricted Bands for Intentional Operation	QuasiPeak Average	Pass	
FCC 15.207 RSS-GEN (Table 3)	Power Line Conducted Emissions	QuasiPeak Average	Pass	
FCC 15.209 RSS-GEN (Table 4)	Spurious Radiated Emissions	QuasiPeak Average	Pass	
FCC 15.247(a)2 RSS-247 5.2(1)	6 dB Bandwidth	> 500 kHz	Pass	
FCC 15.247(b)2 RSS-247 5.4(4)	Max Output Power	< 1 Watt	Pass	
FCC 15.247(b)4 RSS-247 5.4(4)	Antenna Gain	< 6 dBi	Pass See Justifications	
FCC 15.247(d) RSS-247 5.5	Antenna Conducted Spurious	< 20 dBc	Pass	
FCC 15.247(e) RSS-247 5.2(2)	Spectral Density	< 8 dBm (3 kHz BW)	Pass	
FCC 15.247(i) RSS-102	RF Exposure	> 20 cm separation.	Pass See justification and Calculations	
	Overall Result			

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Notes, Justifications, or Deviations

The following notes, justifications for tests not performed or deviations from the above listed specifications apply:

For the Antenna requirement specified in FCC 15.203 (RSS-247 section 5.5), the unit uses 1.5 dBi gain PCB antenna which meets the less than 6 dBi antenna requirement.

For the Restricted Bands of operation, the EUT is designed to only operate between 2400 - 2483.5 MHz.

The EUT is not a hybrid system and FCC 15.247 (f) does not apply to it. However the 15.247 (d) requirement of power density were met and are detailed later in this test report.

For maximum permissible exposure, this device operates at less than 1 Watt at 2400 – 2483.5 MHz and is designed for portable operation. No testing is required, however worst case calculated exposure compliance follows later in this report. See RF exposure exhibits for details.

For the scope of this test report, the EUT was mounted in three orthogonal axis to maximize emissions. Worst case results are presented.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Sample Calculation(s)

Radiated Emission Test

Margin = Limit – (Received Signal + Antenna Factor + Cable Loss – Pre-Amp Gain)

Margin = $50.5 dB\mu V/m - (50 dB\mu V + 10 dB + 2.5 dB - 20 dB)$

Margin = 8.0 dB (pass)

Power Line Conducted Emission Test

 $Margin = Limit - (Received\ Signal + Attenuation\ Factor + Cable\ Loss + LISN\ Factor)$

 $Margin = 73.0dB\mu V - (50dB\mu V + 10dB + 2.5dB + 0.5dB)$

Margin = 10.0 dB (pass)

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Applicable Standards, Specifications and Methods

ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10:2013	American National Standard For Testing Unlicensed Wireless Devices
CFR 47 FCC 15 Subpart C:2016	Code of Federal Regulations – Radio Frequency Devices, Intentional Radiators
CISPR 22:2008	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
FCC KDB 558074: 2016	FCC KDB 558074 Digital Transmission Systems, measurements and procedures
ICES-003 Issue 6 2016	Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
RSS-GEN Issue 4 2014	General Requirements and Information for the Certification of Radio Apparatus
RSS-247 Issue 1:2015	Issue 1: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
ISO 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Document Revision Status

Revision 1 - December 1, 2016 Initial Release

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AE – Auxiliary Equipment. A digital accessory that feeds data into or receives data from another device (host) that in turn, controls its operation.

BW – Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.

EMC – Electro-Magnetic Compatibility. The ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment.

EMI – Electro-Magnetic Immunity. The ability to maintain a specified performance when the equipment is subjected to disturbance (unwanted) signals of specified levels.

EUT – Equipment Under Test. A device or system being evaluated for compliance that is representative of a product to be marketed.

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line Impedance Stabilization Network

NCR – No Calibration Required

RF – Radio Frequency

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Testing Facility

Testing for EMC on the EUT was carried out at TÜV SÜD Canada labs near Toronto, Ontario. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on an EUT that has a maximum width or length of up to 2m and a height of up to 3m. The chamber is equipped with a turntable that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120Vac and 240Vac single phase, or devices that are rated for a 208Vac 3 phase input. DC capability is also available for testing. The chamber is equipped with a mast that controls the polarization and height of the antenna. Control of the mast occurs in the control room adjoining the shielded chamber. Radiated emission measurements are performed using a BiLog antenna and a Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN and using the Vertical Ground plane if applicable.

Calibrations and Accreditations

The 3m semi-anechoic chamber is registered with Federal Communications Commission (FCC, CA6844), Industry Canada (IC, 6844A-3) and Voluntary Control Council for Interference (VCCI, R-4023, G-506, C-4498, and T-1246). This chamber was calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. The NSA data is kept on file at TÜV SÜD Canada. For radiated susceptibility testing, a 16 point field calibration has been performed on the chamber. The field uniformity data is kept on file at TÜV SÜD Canada. TÜV SÜD Canada Inc is accredited to ISO 17025 by A2LA with Testing Certificate #2555.01. The laboratory's current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or biannual basis as listed for each respective test.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Testing Environmental Conditions and Dates

Following environmental conditions were recorded in the facility during time of testing

Date	Test	Initials	Temperature (°C)	Humidity (%)	Pressure (kPa)
2016/6/10	Radiated Emissions	MX	20 – 24	40 – 51	98.0 – 102.0
2016/7/8	Antenna Conducted Emissions	MX	20 – 24	40 – 51	98.0 – 102.0
2016/8/16	Power Line Conducted Emission	MX	20 – 24	40 – 51	98.0 – 102.0

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Detailed Test Results Section

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

6dB Bandwidth of Digitally Modulated Systems

Purpose

The purpose of this test is to ensure that the bandwidth occupied exceeds a stated minimum. This helps ensure the utilization of the frequency allocation is sufficiently wide. This also helps prevent corruption of data by ensuring adequate data separation to distinguish the reception of the intended information.

Limits and Methods

The Limit is as specified in FCC Part 15 and RSS 247.

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth (DTS Bandwidth) shall be at least 500 kHz. This should be measured with a 100 kHz RBW and a 300 kHz VBW.

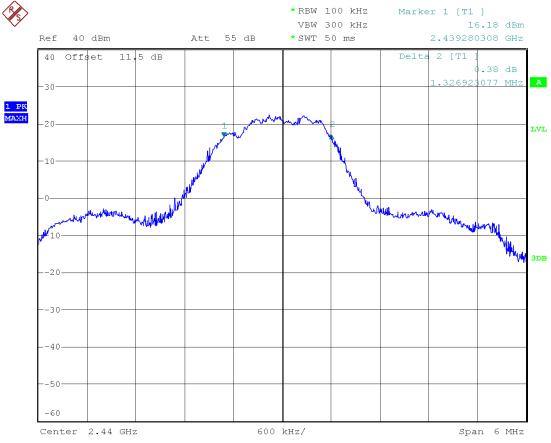
The method to measure the DTS Bandwidth is given in ANSI C63.10 Clause 11.8 and the method to measure 99% Occupied Bandwidth is given in Clause 6.9.3.

Results

The EUT passed. The minimum measured 6 dB BW was greater than 500 kHz.

Additionally, the 99% bandwidth were measured for information purpose. There is no requirement on 99% bandwidth.

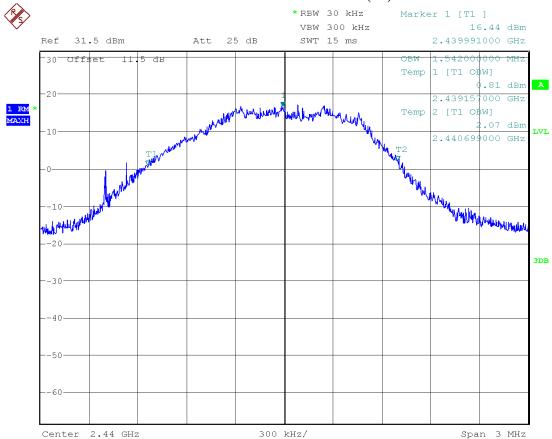
As per ANSI C63.10 Clause 5.6.2.1, the middle channel was measured. The measured DTS Bandwidth is at least 150% of the minimum. The following table show the 6 dB and 99% bandwidth:


Bandwidth					
Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	99% Bandwidth (MHz)		
39	2440	1326.90	1.54		

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Graph(s)

The graphs showed below shows the OBW during the operation of the device. This is measured by a max hold on the spectrum analyzer and the highest resolution bandwidth that is sufficiently low to exhibit the 6 dB bandwidth of a channel during operation of the EUT. This measurement is a peak measurement. Max hold is performed for a duration of not less than 1 minute.


6 dB Bandwidth Mid Channel (Channel 39)

Date: 7.JUL.2016 15:59:31

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

99% BW – Mid Channel (39)

Date: 6.JUL.2016 20:16:55

Note: See 'Appendix B-EUT & Test Setup Photographs' for photos showing the test setup.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
10 dB attenuator	605-10-1F18	Meca Electronics, Inc.	Jun 3, 2016	Jun 3, 2017	GEMC 225

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Maximum Conducted (Average) Output Power

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified. This ensures that if the end-user replaces the antenna, that the maximum power does not exceed an amount which may create an excessive power level.

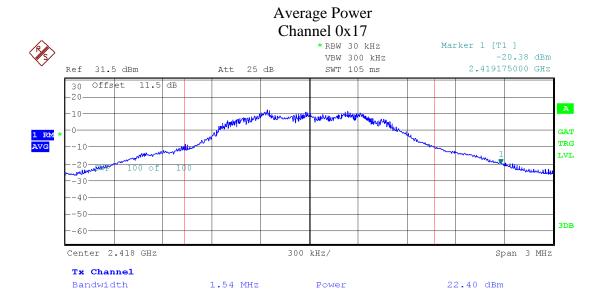
Limits and Methods

The limits are defined in FCC Part 15.247(b) and RSS 247. For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the limit is 1 watt.

The method is given in ANSI C63.10 Clause 11.9.2.2.2 Method AVGSA-1.

Results

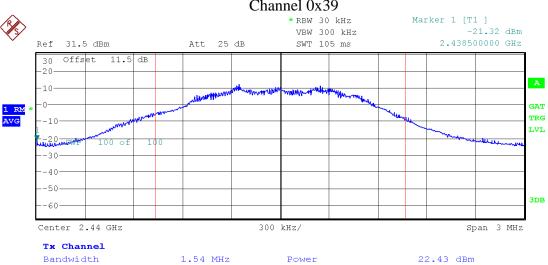
The EUT passed. The maximum conducted (Average) power of the EUT was measured with the EUT set to transmit at maximum power. Three Channels were measured. The following table show the maximum conducted (Average) output power:


Maximum Conducted Power					
Channel	Frequency (MHz)	Maximum Conducted Power (dBm)	Maximum Conducted Power (mW)		
17	2418	22.4	173.78		
39	2440	22.43	174.98		
62	2463	22.49	177.42		

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

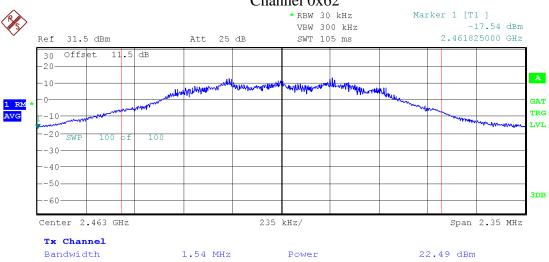
Readings

The plots shown below shows the maximum conducted (Average) output power of the device during the antenna conducted measurement during transmit operation of the EUT. The external attenuator and cable loss are accounted for as reference offset in the spectrum analyzer.


Sweep triggering and signal gating measurement technique was used to measure the power of the EUT. The gate length is set to the transmit length and the Spectrum Analyzer is set to trigger at highest level.

Date: 7.JUL.2016 13:18:01

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada


Average Power Channel 0x39

Date: 7.JUL.2016 13:24:24

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Average Power Channel 0x62

Date: 7.JUL.2016 13:12:06

Note: See 'Appendix B-EUT & Test Setup Photographs' for photos showing the test setup.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
10 dB attenuator	605-10-1F18	Meca Electronics, Inc.	Jun 3, 2016	Jun 3, 2017	GEMC 225

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Antenna Spurious Conducted Emissions (-30 dBc Requirement) – 15.247

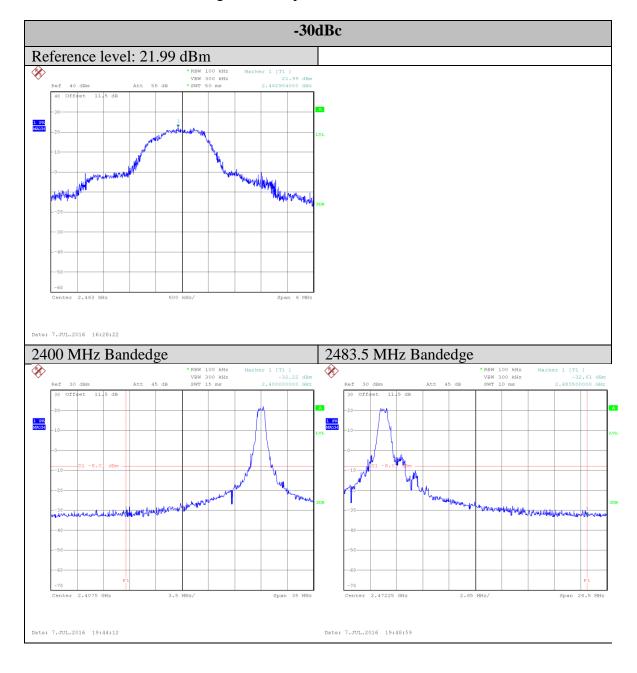
Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified. This ensures that the only the intended signal is delivered to the radiating element.

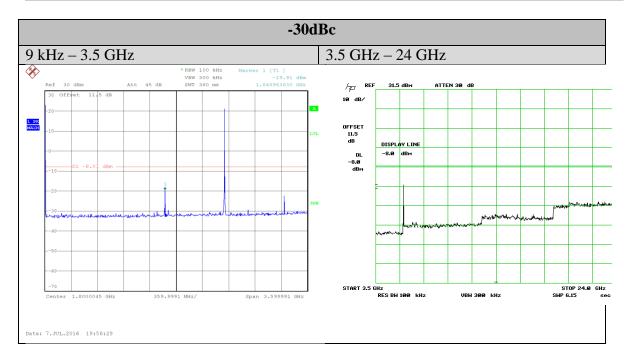
Limits and Methods

The limits are defined in 15.247(d). In any 100 kHz band, the peak spurious harmonics emissions must be at least 30 dB below the fundamental. Spurious Conducted emissions are to be evaluated up to the 10th harmonic. This -30 dBc requirement also applies at the 'band edge' or 2.4 GHz and 2.4835 GHz.

The method is given in ANSI C63.10 Clause 11.11.


Results

The EUT passed the limits. Low, middle and high channels were measured. The worst case was presented as a graph for the spectrum. The -30 dBc requirement is shown for the lower band edge at 2.4 GHz in the low band. The -30 dBc requirement is also shown for the higher band edge at 2.4835 GHz in the high band.


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Graph(s)

The graphs shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Note: See 'Appendix B-EUT & Test Setup Photographs' for photos showing the test setup.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	8566B	HP	Nov 27, 2015	Nov 27, 2017	GEMC 190
Quasi Peak Adapter	85650A	HP	Nov 27, 2015	Nov 27, 2017	GEMC 191
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
10 dB attenuator	605-10-1F18	Meca Electronics, Inc.	Jun 3, 2016	Jun 3, 2017	GEMC 225

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

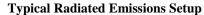
Radiated Emissions - 15.247

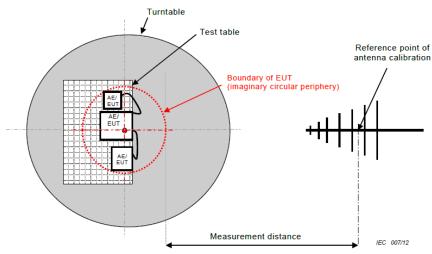
Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit and Method

The method is given in Section 12.1 of FCC KDB 558074 and ANSI C 63.10 The limits are as defined in FCC Part 15, Section 15.209:


The limits, as defined in 15.247(d) for unintentional radiated emissions apply for those emissions that fall in the restricted bands, as defined in Section 15.205(a). These emissions must comply with the radiated emission limits specified in Section 15.209(a).


All unintentional emissions must also meet the 'Spurious Conducted Emissions' requirements of -20 dBc or greater. See also 'Spurious Conducted Emissions' for further details.

```
0.009 MHz – 0.490 MHz, 2400/F (kHz) uV/m at 300 m<sup>1</sup> 0.490 MHz – 1.705 MHz, 24000/F (kHz) uV/m at 30 m<sup>1</sup> 1.705 MHz – 30 MHz, 30 uV/m at 30 m<sup>1</sup> 30 MHz – 88 MHz, 100 uV/m (40.0 dBuV/m<sup>1</sup>) at 3 m 88 MHz – 216 MHz, 150 uV/m (43.5 dBuV/m<sup>1</sup>) at 3 m 216 MHz – 960 MHz, 200 uV/m (46.0 dBuV/m<sup>1</sup>) at 3 m Above 960 MHz, 500 uV/m (54.0 dBuV/m<sup>1</sup>) at 3 m Above 1000 MHz, 500 uV/m (54 dBuV/m<sup>2</sup>) at 3m Above 1000 MHz, 500 uV/m (74 dBuV/m<sup>3</sup>) at 3 m
```

¹Limit is with Quasi Peak detector with bandwidths as defined in CISPR-16-1-1 ²Limit is with 1 MHz measurement bandwidth and using an Average detector ³Limit is with 1 MHz measurement bandwidth and using a Peak detector

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

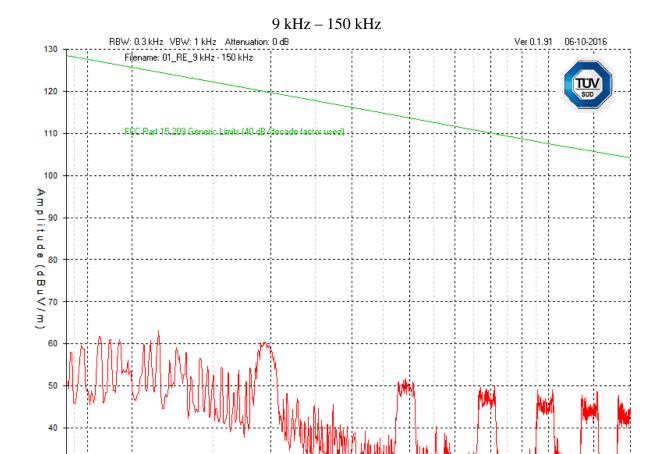
Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-4.4 dB with a 'k=2' coverage factor and a 95% confidence level.

Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater then the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.

In accordance with FCC Part 15, Subpart A, Section 15.33, the device was scanned to the 10th harmonic (a minimum of a 24.835 GHz).


Devices scanned may be scanned at alternate test distances, and in accordance with FCC Part 15, Subpart A, Section 15.31, an extrapolation factor of 20 dB/decade was used above 30 MHz and 40 dB/decade below 30 MHz. For example for 1 meter measurements, an extrapolation factor 9.5 dB from 20 Log (1m / 3m) is applied.

Low, middle and high channels were measured, each in three orthogonal axes were checked; however the worst case graphs are presented.

Page 28 of 64	Report Issued: 12/1/2016	Report File #: 7169000966-000(GFT)

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Band edge measure graphs were shown for illustrations purpose. See final measurement section for all measurements.

0.025

0.009 0.01

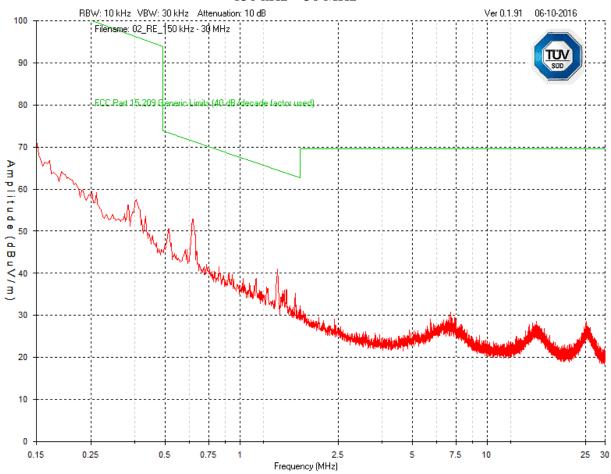
0.0125

0.0375

Frequency (MHz)

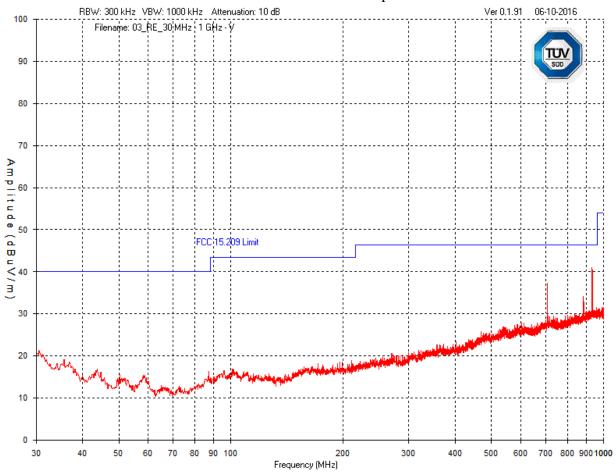
0.05

0.0625

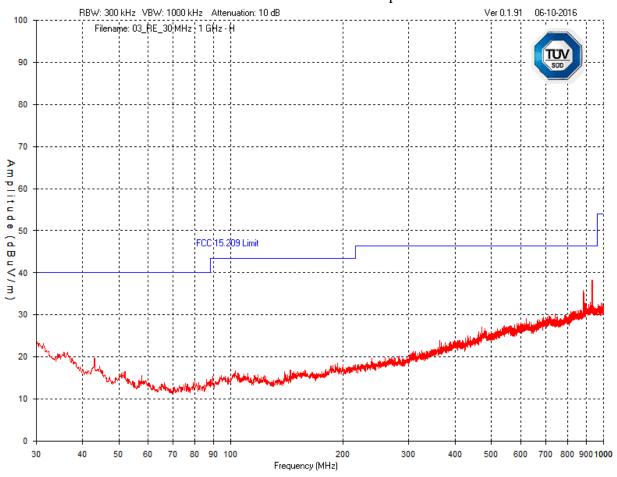

0.075 0.0875 0.1

0.125

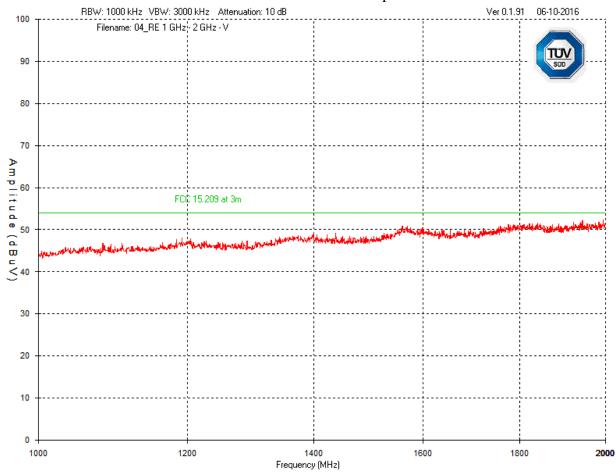
0.15


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

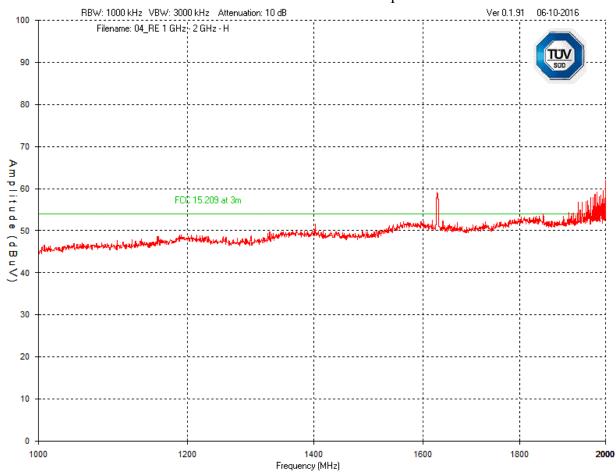
150 kHz - 30 MHz


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

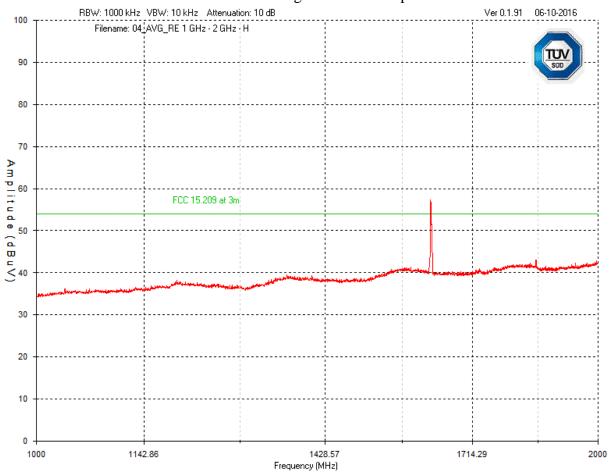
Mid Channel - 30 MHz - 1 GHz Vertical - Peak Emission Graph


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

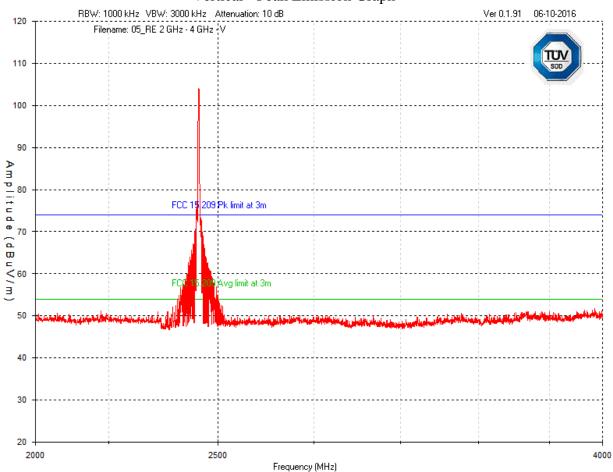
Mid Channel – 30 MHz – 1 GHz Horizontal - Peak Emission Graph


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 1 GHz – 2 GHz Vertical - Peak Emission Graph

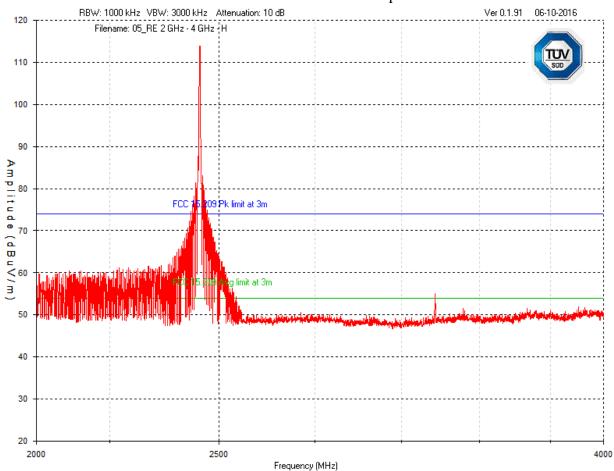

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 1 GHz – 2 GHz Horizontal - Peak Emission Graph

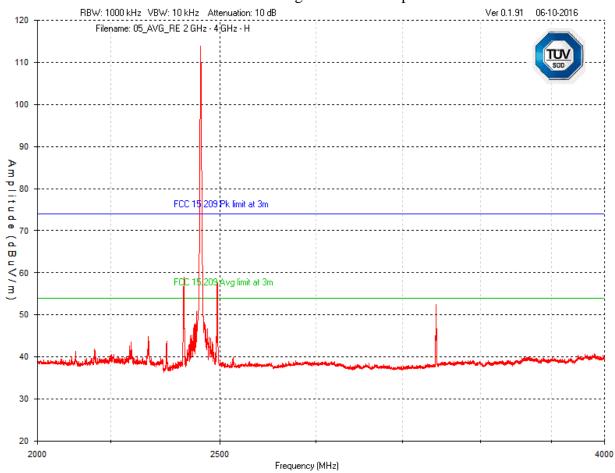

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 1 GHz – 2 GHz Horizontal - Average Emission Graph

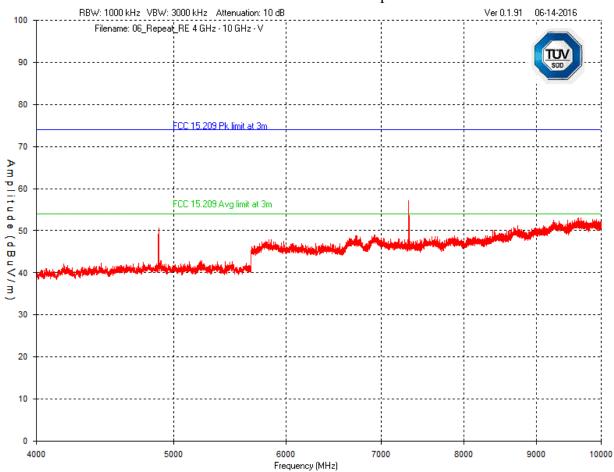
Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada


Mid Channel – 2 GHz – 4 GHz Vertical - Peak Emission Graph

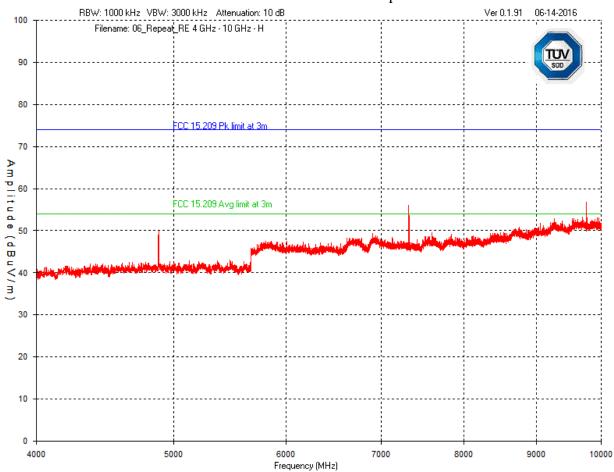
Note: See Final Measurements and Results section starting on page 49 for measurements.


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

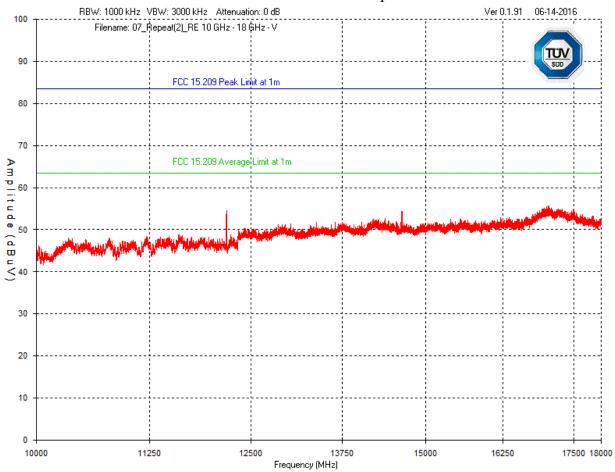
Mid Channel – 2 GHz – 4 GHz Horizontal - Peak Emission Graph


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

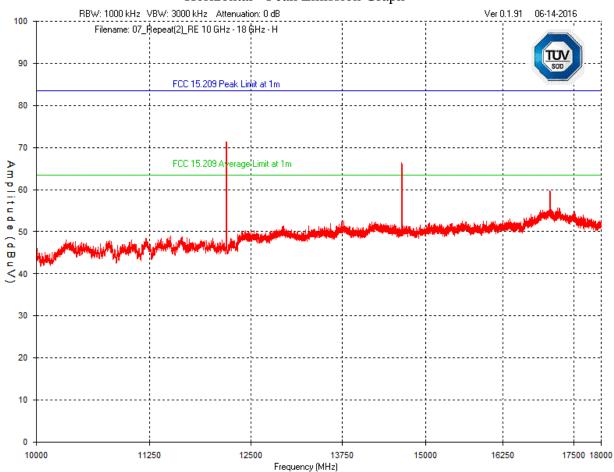
Mid Channel – 2 GHz – 4 GHz Horizontal - Average Emission Graph


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

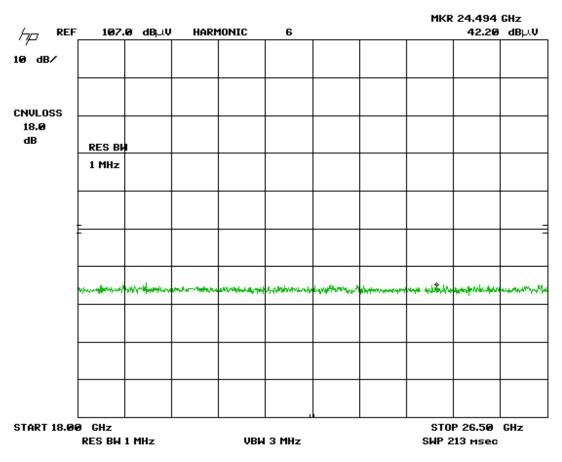
Mid Channel – 4 GHz – 10GHz Vertical - Peak Emission Graph


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 4 GHz – 10 GHz Horizontal - Peak Emission Graph

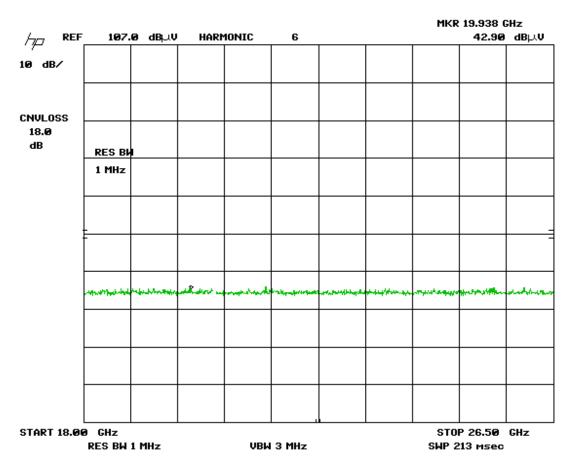

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 10 GHz – 18 GHz Vertical - Peak Emission Graph


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 10 GHz – 18 GHz Horizontal - Peak Emission Graph

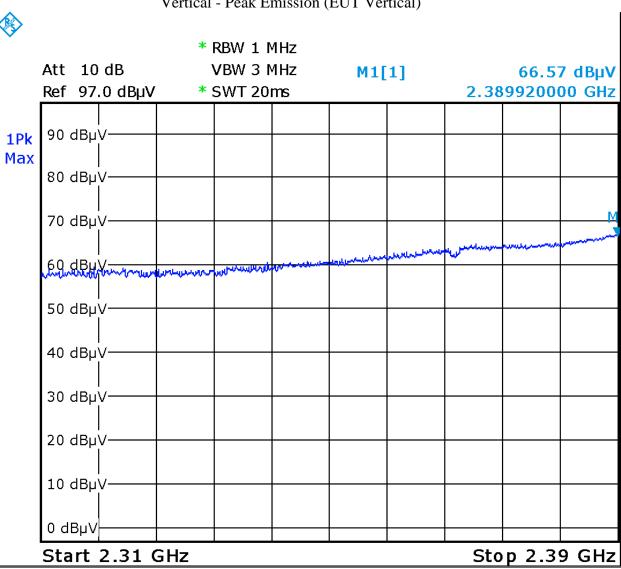
Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada


Mid Channel – 18 GHz – 26 GHz Horizontal - Peak Emission Graph

Plot was taken at 1 meter distances. All emissions shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Mid Channel – 18 GHz – 26 GHz Vertical - Peak Emission Graph

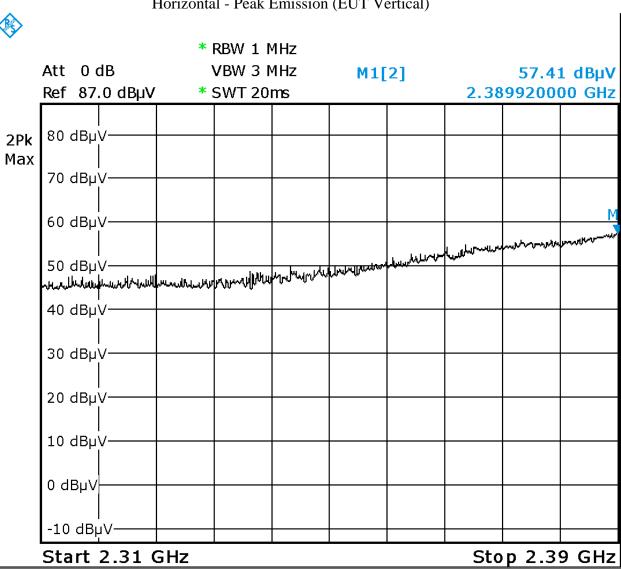


Plot was taken at 1 meter distances. All emissions shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Band Edge Measurements

Band Edge – Low Channel Vertical - Peak Emission (EUT Vertical)

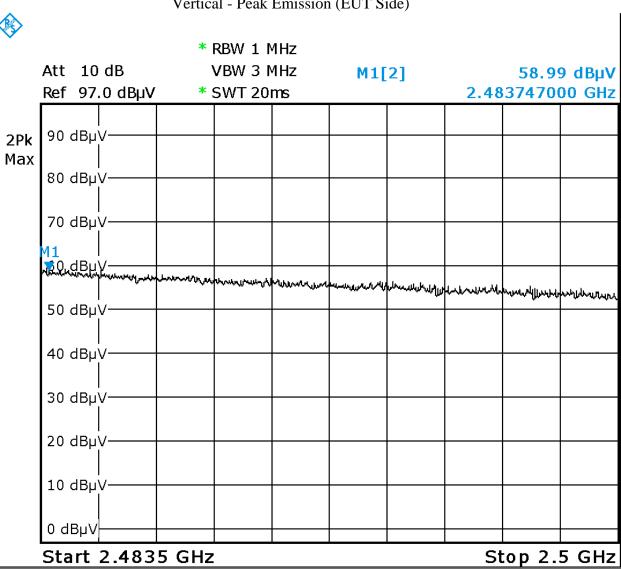


Date: 13.JUN.2016 16:45:08

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section starting on page 49 for corrected values.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Band Edge – Low Channel Horizontal - Peak Emission (EUT Vertical)

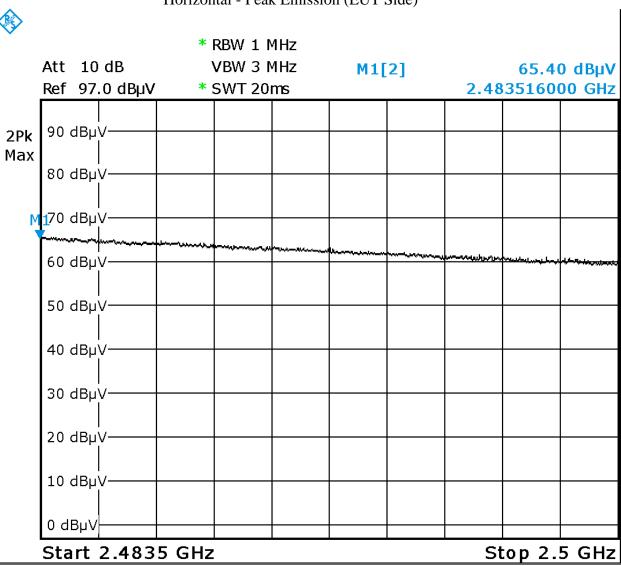

Date: 13.JUN.2016 17:00:24

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section starting on page 49for corrected values.

Page 46 of 64 Report Issued: 12/1/2016 Report File #: 7169000966-000(GFT)	
---	--

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Band Edge – Hi Channel Vertical - Peak Emission (EUT Side)


Date: 13.JUN.2016 18:29:17

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section starting on page 49 for corrected values.

Page 47 of 64 Report Issued: 12/1/2016	Report File #: 7169000966-000(GFT)
--	------------------------------------

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Band Edge – Hi Channel Horizontal - Peak Emission (EUT Side)

Date: 13.JUN.2016 18:21:34

Note: Bandedge plots were taken with 3 m measurements distance. The marker shows the raw value; see Final Measurements and Results section starting on page 49 for corrected values.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Final Measurements and Results

The EUT passed the limits. Low, middle and high bands were measured.

In accordance with 15.247(d), only frequencies exceeding the 15.209 limit that occur within the bands listed in 15.205, need to be verified with a final detector. Emission outside the restricted bands were measured for information purpose.

The measurements were maximized by rotating the turn table over a full 0-360 rotation and the antenna height was varied from 1 m to 4 m.

Emissions at 1.6 GHz and at 3.2 GHz are related to the transmitter. It has the same pulse timing characteristics as the transmitter. According to ANSI C63.10 Section 7.4 a Duty Cycle correction factor was added to these emissions to derive the Average emission from peak emissions.

Horizontal Emission Table								
Frequency (MHz)	Detector	Raw (dBuV)	Correction Factors (dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail	
1627.33	AVG,	36.8	5.6	42.4	54.0	11.6	Pass	
2392.67	AVG,	40.4	4.6	45.0	54.0	9.0	Pass	
2492	AVG,	37.7	4.6	42.3	54.0	11.7	Pass	
3254.67	AVG,	23.2	5.6	28.8	54.0	25.2	Pass	

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
				Low Char	nel (17)	PA7 Fla	at				
2418	Peak	Horz	108.2	26.1	3.8	13.0	35.8	115.3			PASS
2418	Avg	Horz	82.0	26.1	3.8	13.0	35.8	89.1			PASS
2418	Peak	Vert	98.8	26.1	3.8	13.0	35.8	105.9			PASS
2418	Avg	Vert	72.6	26.1	3.8	13.0	35.8	79.7			PASS
2390	Peak	Horz	64.9	26.1	3.8	13.0	35.8	72.0	74.0	2.0	PASS
2390	Avg	Horz	38.7	26.1	3.8	13.0	35.8	45.8	54.0	8.2	PASS
2390	Peak	Vert	55.2	26.1	3.8	13.0	35.8	62.3	74.0	11.7	PASS
2390	Avg	Vert	29.0	26.1	3.8	13.0	35.8	36.1	54.0	17.9	PASS
				Low Chan	nel (17)	PA7 Sid	de				
2418	Peak	Horz	108.3	26.1	3.8	13.0	35.8	115.4			PASS
2418	Avg	Horz	82.1	26.1	3.8	13.0	35.8	89.2			PASS
2418	Peak	Vert	100.8	26.1	3.8	13.0	35.8	107.9			PASS
2418	Avg	Vert	74.6	26.1	3.8	13.0	35.8	81.7			PASS
2390	Peak	Horz	65.9	26.1	3.8	13.0	35.8	73.0	74.0	1.0	PASS
2390	Avg	Horz	39.6	26.1	3.8	13.0	35.8	46.7	54.0	7.3	PASS
2390	Peak	Vert	60.4	26.1	3.8	13.0	35.8	67.5	74.0	6.5	PASS
2390	Avg	Vert	34.2	26.1	3.8	13.0	35.8	41.3	54.0	12.7	PASS
				Low Chann	el (17) P	A7 Vert	ical				
2418	Peak	Horz	99.2	26.1	3.8	13.0	35.8	106.3			PASS
2418	Avg	Horz	73.0	26.1	3.8	13.0	35.8	80.1			PASS
2418	Peak	Vert	108.1	26.1	3.8	13.0	35.8	115.2			PASS
2418	Avg	Vert	81.9	26.1	3.8	13.0	35.8	89.0			PASS
2390	Peak	Horz	57.4	26.1	3.8	13.0	35.8	64.5	74.0	9.5	PASS
2390	Avg	Horz	31.2	26.1	3.8	13.0	35.8	38.3	54.0	15.7	PASS
2390	Peak	Vert	66.6	26.1	3.8	13.0	35.8	73.7	74.0	0.3	PASS
2390	Avg	Vert	40.4	26.1	3.8	13.0	35.8	47.5	54.0	6.5	PASS

Note: A duty cycle correction factor of -26.2 dB was used to derive Average emissions from peak emissions.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
, ,		(7	. (1.)	Mid Obas	L (20)	DAZ EL	4	. u ,	. (1 /		
0440	Deels	l laws	400.4	Mid Char	/	_		440.5			DACC
2440	Peak	Horz	109.4	26.1	3.8	13.0	35.8	116.5			PASS
2440	Avg	Horz	83.2	26.1	3.8	13.0	35.8	90.3			PASS
2440	Peak	Vert	104.3	26.1	3.8	13.0	35.8	111.4			PASS
2440	Avg	Vert	78.0	26.1	3.8	13.0	35.8	85.1			PASS
4880	Peak	Horz	52.7	28.1	5.8	0.0	35.3	51.3	74.0	22.7	PASS
4880	Avg	Horz	26.5	28.1	5.8	0.0	35.3	25.1	54.0	28.9	PASS
4880	Peak	Vert	55.8	28.1	5.8	0.0	35.3	54.4	74.0	19.6	PASS
4880	Avg	Vert	29.6	28.1	5.8	0.0	35.3	28.2	54.0	25.8	PASS
7320	Peak	Vert	57.4	28.9	7.1	0.0	35.5	57.9	74.0	16.1	PASS
7320	Avg	Vert	31.2	28.9	7.1	0.0	35.5	31.7	54.0	22.3	PASS
7320	Peak	Horz	60.3	28.9	7.1	0.0	35.5	60.8	74.0	13.2	PASS
7320	Avg	Horz	34.1	28.9	7.1	0.0	35.5	34.6	54.0	19.4	PASS
9760	Peak	Horz	52.3	31.3	8.7	0.0	36.1	56.2	74.0	17.8	PASS
9760	Avg	Horz	26.1	31.3	8.7	0.0	36.1	30.0	54.0	24.0	PASS
9760	Peak	Vert	53.4	31.3	8.7	0.0	36.1	57.3	74.0	16.7	PASS
9760	Avg	Vert	27.2	31.3	8.7	0.0	36.1	31.1	54.0	22.9	PASS
12200	Peak	Horz	65.4	31.7	9.6	0.0	35.1	71.6	83.5	11.9	PASS
12200	Avg	Horz	39.2	31.7	9.6	0.0	35.1	45.4	63.5	18.1	PASS
12200	Peak	Vert	58.7	31.7	9.6	0.0	35.1	64.9	83.5	18.6	PASS
12200	Avg	Vert	32.5	31.7	9.6	0.0	35.1	38.7	63.5	24.8	PASS
14640	Peak	Horz	62.0	32.3	9.6	0.0	34.1	69.8	83.5	13.7	PASS
14640	Avg	Horz	35.8	32.3	9.6	0.0	34.1	43.6	63.5	19.9	PASS
14640	Peak	Vert	60.4	32.3	9.6	0.0	34.1	68.2	83.5	15.3	PASS
14640	Avg	Vert	34.2	32.3	9.6	0.0	34.1	42.0	63.5	21.5	PASS
				High Chan	nel (62)	PA7 SI	DE				
2463	Peak	Horz	108.3	26.1	3.8	13.0	35.8	115.4			PASS
2463	Avg	Horz	82.0	26.1	3.8	13.0	35.8	89.1			PASS
2463	Peak	Vert	103.3	26.1	3.8	13.0	35.8	110.4			PASS
2463	Avg	Vert	77.1	26.1	3.8	13.0	35.8	84.2			PASS
2483.5	Peak	Horz	65.4	26.1	3.8	13.0	35.8	72.5	74.0	1.5	PASS
2483.5	Avg	Horz	39.2	26.1	3.8	13.0	35.8	46.3	54.0	7.7	PASS
2483.5	Peak	Vert	59.0	26.1	3.8	13.0	35.8	66.1	74.0	7.9	PASS
2483.5	Avg	Vert	32.8	26.1	3.8	13.0	35.8	39.9	54.0	14.1	PASS

Note: A duty cycle correction factor of -26.2 dB was used to derive Average emissions from peak emissions.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	8566B	HP	Nov 27, 2015	Nov 27, 2017	GEMC 190
Quasi Peak Adapter	85650A	HP	Nov 27, 2015	Nov 27, 2017	GEMC 191
Spectrum Analyzer	ESL6	Rohde & Schwarz	Nov 25, 2015	Nov 25, 2017	GEMC 160
Loop Antenna	EM 6871	Electro-Metrics	Feb 3, 2015	Feb 5, 2017	GEMC 70
Loop Antenna	EM 6872	Electro-Metrics	Feb 3, 2015	Feb 5, 2017	GEMC 71
BiLog Antenna	3142-C	ETS	Sept 8, 2014	Sept 8, 2016	GEMC 8
Attenuator 10 dB	8493B	Agilent	Feb 11, 2016	Feb 11, 2017	GEMC 133
4GHZ-12GHz High Pass filter	11SH10- 4000/T12000- 0/0	K & L Microwave	Apr 9, 2015	Apr 9, 2016	GEMC 119
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Sept 9, 2014	Sept 9, 2016	GEMC 6403
Q-Par Horn Antenna (2 to 18 GHz)	WBH218HN	Q-par	Feb 12, 2016	Feb 12, 2018	GEMC 6375
Horn Antenna 18 GHz - 26.5 GHz	SAS-572	A.H. Systems	Sept 9, 2014	Sept 9, 2016	GEMC 6371
18.0-26.5 GHz Harmonic Mixer	11970K	HP	Feb 8, 2016	Feb 8, 2018	GEMC 158
1-26G pre-amp	HP 8449B	HP	Sept 9, 2014	Sept 9, 2016	GEMC 6351
2.0-8.0 GHz Amplifier	11975A	HP	Feb 8, 2016	Feb 8, 2018	GEMC157
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	Feb 1, 2016	Feb 1, 2017	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	Feb 1, 2016	Feb 1, 2017	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	Feb 1, 2016	Feb 1, 2017	GEMC 31

This report module is based on GEMC template "FCC - 15.209 - Radiated Emissions_Rev1.doc"

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Maximum (Average) Conducted Power Spectral Density

Purpose

The purpose of this test is to ensure that the maximum power spectral density to the radiating element does not exceed the limits specified. This ensures that the modulation is significantly wide enough, or low enough in power that it will allow for co-operation of other wireless devices operating within this frequency allocation.

Limits and Methods

The limits are defined in 15.247(e) and RSS 247.

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

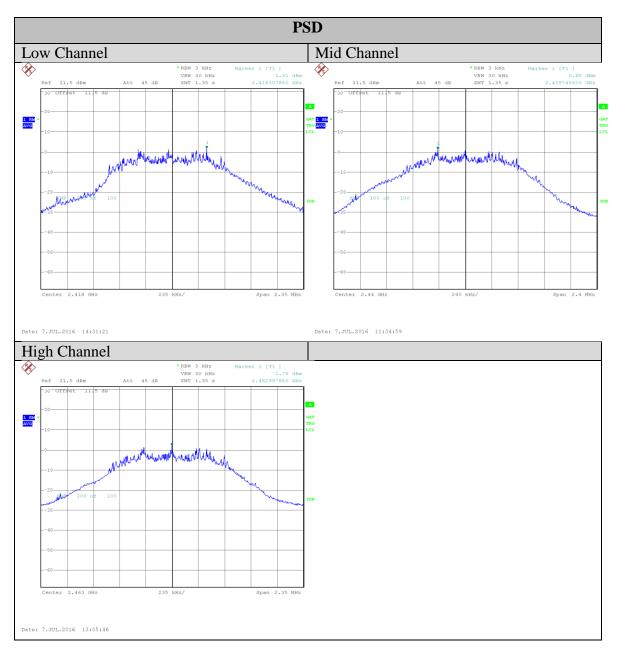
The method is given in ANSI C63.10 Section 11.10.3.

Results

The EUT passed. The EUT was set to transmit at maximum power. Three Channels were measured. The following table show the maximum (average) conducted power spectral density level:

Maximum (Average) Conducted PSD								
Channel	Frequency (MHz)	Limit (dBm/3kHz)	Pass/Fail					
17	2418	1.31	8	Pass				
39	2440	0.85	8	Pass				
62	2463	1.75	8	Pass				

Graph(s)


The graphs shown below show the power spectral density of the device. This is measured by a max hold on the spectrum analyzer using a RBW of 3 kHz. Max hold is performed for a duration of not less than 1 minute.

Low, middle, and high channel was investigated.

External attenuator and cable loss were accounted for as reference offset in the spectrum analyzer.

Page 53 of 64	Report Issued: 12/1/2016	Report File #: 7169000966-000(GFT)

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Note: See 'Appendix B-EUT & Test Setup Photographs' for photos showing the test setup.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
10 dB attenuator	605-10-1F18	Meca Electronics, Inc.	Jun 3, 2016	Jun 3, 2017	GEMC 225

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Power Line Conducted Emissions

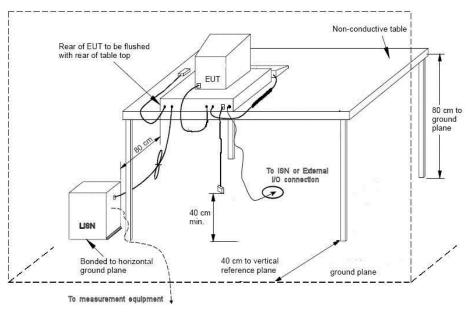
Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT's power line does not exceed the limits listed below as defined in the applicable test standard and measured from a LISN. This helps protect lower frequency radio services such as AM radio, shortwave radio, amateur radio, maritime radio, CB radio, and so on, from unwanted interference.

Limits & Method

The method is as defined in ANSI C63.10. The limits are as defined in FCC Part 15 Section 15.207 and RSS-GEN:

Average Limits		Quasi-Peak	Limits
150 kHz – 500 kHz	56 to 46* dBμV	150 kHz – 500 kHz	66 to 56* dBµV
500 kHz – 5 MHz	46 dBμV	500 kHz – 5 MHz	56 dBµV
5 MHz – 30 MHz	50 dBμV	5 MHz – 30 MHz	60 dBµV


^{*} Decreases linearly with the logarithm of the frequency

Both Quasi-Peak and Average limits are applicable and each is specified as being measured with a resolution bandwidth of 9 kHz. For Quasi-Peak, a video bandwidth at least three times greater than the resolution bandwidth is used.

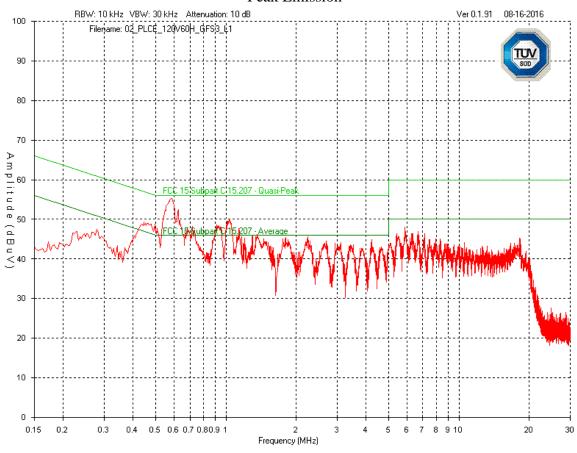
If the Peak or Quasi-Peak detector measurements do not exceed the Average limits, then the EUT is deemed to have passed the requirements.

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Typical Setup Diagram

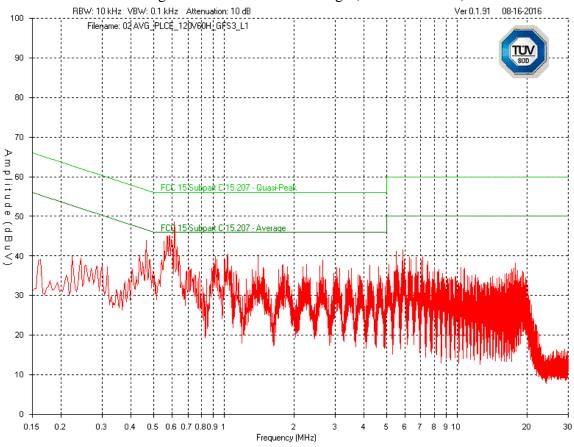
Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is $\pm 2.91 dB$ with a 'k=2' coverage factor and a 95% confidence level.

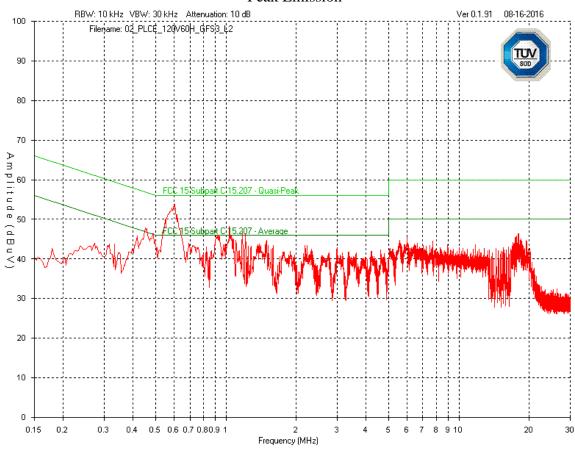

Preliminary Graphs

The graphs shown below are maximized peak measurement graphs measured with a resolution bandwidth greater than or equal to the final required detector. This peaking process is done as a worst case measurement and enables the detection of frequencies of concern for final measurement. For final measurements with the appropriate detector, where applicable, please refer to the tables under Final Measurements.

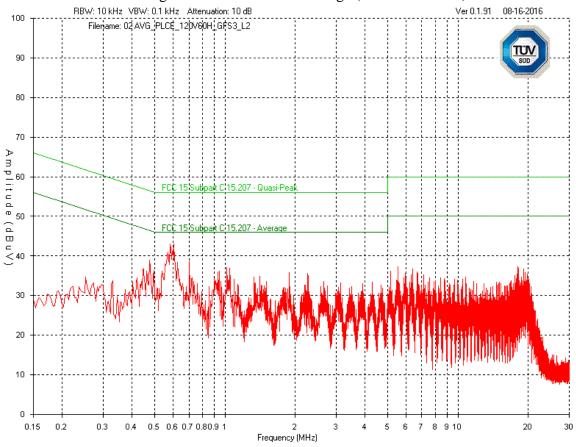
Two additional average graphs were taken. The average emission graphs were taken with a VBW of 100 Hz. Average emission were then measured with a final detector and then compared to the limit.


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Line (L1) – 120Vac 60Hz Peak Emission


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Line (L1) – 120Vac 60Hz Average Emission – Video Average (VBW = 100 Hz)


Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Neutral (L2) – 120Vac 60Hz Peak Emission

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Neutral (L2) – 120Vac 60Hz Average Emission – Video Average (VBW = 100 Hz)

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Final Measurements

Suppl	у	120 Vac 60 Hz					
	Line Emission Table						
Frequency (MHz)	Detector	Raw (dBuV)	Factors (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Pass/Fail
0.611	AVG	28.9	10.1	39.0	46.0	7.0	Pass
0.5845	AVG	34.0	10.1	44.1	46.0	1.9	Pass
0.4651	AVG	27.4	10.1	37.5	46.6	9.1	Pass
0.6309	AVG	29.3	10.1	39.4	46.0	6.6	Pass
0.5812	QP	41.7	10.1	51.8	56.0	4.2	Pass
Neutral Emission Table							
0.5812	AVG	30.7	10.1	40.8	46.0	5.2	Pass
0.7039	AVG	28.5	10.1	38.6	46.0	7.4	Pass
0.475	AVG	28.8	10.1	38.9	46.4	7.5	Pass
1.019	AVG	26.9	10.1	37.0	46.0	9.0	Pass
0.4949	AVG	26.3	10.1	36.4	46.1	9.7	Pass
0.6044	QP	39.3	10.1	49.4	56.0	6.6	Pass

See 'Appendix B - EUT, Peripherals and Test Setup Photos' for photos showing the test set-up for the highest line conducted emission

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESL 6	Rohde & Schwarz	Nov. 25, 2015	Nov. 25, 2017	GEMC 160
LISN	FCC-LISN- 50/250- 16-2-01	FCC	Jan. 15, 2015	Jan. 15, 2017	GEMC 65
RF Cable 7m	LMR-400-7M- 50Ω-MN-MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50Ω-MN-MN	LexTec	NCR	NCR	GEMC 29
10dB Attenuator	FP-50-10	Trilithic	NCR	NCR	GEMC 42
Emissions Software	0.1.91	Global EMC	NCR	NCR	GEMC 58

This report module is based on report template 'FCC_ICES003_CE_Rev1'

Page 62 of 64 Report Issued: 12/1/2016 Report File #: 7169000966-000(GFT	Γ)
--	----

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

Appendix A – EUT Summary

Client	Artaflex	
Product	GFT3S	TÜV
Standard(s)	RSS 247 Issue 1:2015 FCC Part 15 Subpart 15.247:2016	Canada

For further details for filing purposes, refer to filing package.

General EUT Description

Client			
Ourseinstian / Address			
Organization / Address	Artaflex		
	174 W. Beaver Creek Rd.		
	Richmond Hill, ON L4B 1B4		
Contact	Gerry Iuliano		
Phone	905-4700109		
Email	Gerry_iuliano@artaflex.com		
	EUT Details		
EUT Name	GFT3S		
FCC ID	UP2GFT3S		
Industry Canada #	6769A-GFT3S		
Equipment Category	2.4 GHz wireless transmitter		
Input Voltage and	Battery powered		
Frequency			
Rated Input Current	< 100 mA		
Connectors available on	None		
EUT			
Peripherals Required for	None		
Test			
Release type	Final		
Intentional Radiator	Yes		
Frequency			
EUT Configuration	Wireless configured to transmit continuously at		
	maximum duty cycle		

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B-EUT and Test Setup Photos'.

Page 64 of 64 Report Issued: 12/1/2016 Report File #: 7169000966-000(GFT)	Page 64 of 64	Report Issued: 12/1/2016	Report File #: 7169000966-000(GFT)
---	---------------	--------------------------	------------------------------------