

COMPLIANCE WORLDWIDE INC. TEST REPORT 346-22

In Accordance with the Requirements of

Federal Communications Commission CFR Title 47 Part 15.247, Subpart C Digital Transmission Systems Frequency Hopping

Issued to PICA Product Development, LLC 4 Ash Street Extension Derry, NH 03038

> for the Skyhawk Hub Model: HUBPVZGFH

FCC ID: UOXSKYHAWKHUBTYP2

Report Issued on April 27, 2023

Tested by Sean P. Defelice

Reviewed by

K. St Larry

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.

Table of Contents

1. Scope	
2. Product Details	. 3
2.1. Manufacturer	. 3
2.2. Model Number	. 3
2.3. Serial Number	. 3
2.4. Description of EUT	. 3
2.5. Power Source	. 3
2.6. EMC Modifications	. 3
3. Product Configuration	. 4
3.1. Support Equipment	. 4
3.2. Cables	. 4
3.3. Operational Characteristics & Software	. 4
3.4. Block Diagram	. 4
4. Measurements Parameters	
4.1. Measurement Equipment Used to Perform Test	. 5
4.2. Measurement & Equipment Setup	. 6
4.3. Measurement Procedure	. 6
4.4. Measurement Uncertainty	. 6
5. Choice of Equipment for Test Suites	. 7
5.1. Choice of Model	. 7
5.2. Presentation	
5.3. Choice of Operating Frequencies	. 7
5.4. EUT Positions for Emissions Measurements	. 7
6. Measurement Summary	. 8
7. Measurement Data	. 9
7.1. Antenna Requirement	. 9
7.2. Frequency Hopping Requirements	
7.3. Maximum Peak Conducted Output Power	15
7.4. Operation with directional antenna gains greater than 6 dBi	
7.5. Emissions Outside of the Frequency Band	18
7.6. Transmitter Spurious Radiated Emissions	20
7.7. Spurious Radiated Emissions – Harmonic Emissions	31
7.8. Conducted Emissions	32
8. Test Site Description	33
9. Test Setup Photographs	
Appendix A	40

1. Scope

This test report certifies that The PICA Product Development Skyhawk Hub, as tested, meets the FCC Part 15, Subpart C requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

2. Product Details

- 2.1. Manufacturer: PICA Product Development
- 2.2. Model Number: HUBPVZGFH
- 2.3 Serial Number: SHH224800002
- **2.4 Description of EUT:** Skyhawk's Hub is a cost-effective multi-trap monitoring solution that allows rodent control technicians to monitor deployed traps and bait stations more efficiently.
- **2.5 Power Source:** 4.5 VDC (3 AA Batteries)
- 2.6 Hardware Revision: Rev E
- 2.7 Software Revision: N/A
- 2.8. Modulation Type: Frequency Hopping Spread Spectrum
- 2.9. Operating Frequencies: 906-923.5 MHz
- 2.10. EMC Modifications: None

3. Product Configuration

3.1. EUT Hardware

Manufacturer	Model	Serial Number	Input Volts	Freq (Hz) Or DC	Description/Function
PICA Product Development	HUBPVZGFH	SHH224800002	4.5	1.1.	Monitoring station for animal trap sensors
Quectel Wireless Solutions	Quectel BG96				PCS Module FCC ID: XMR201707BG96

3.2. Support Equipment

Device	Manufacturer	Model	Serial No.	Comment
None				

3.3. Cables

Cable Type	Length	Shield	From	То
None				

3. Product Configuration

3.4. Operational Characteristics & Software

The EUT was configured for continuous transmit operation once the batteries are installed and the button is pushed.

3.5. Block Diagram

SI	kyhawk Hub	

4. Measurements Parameters

4.1. Measurement Equipment Used to Perform Test

Device	Manufacturer	Model No.	Serial No.	Cal Due	Interval
EMI Test Receiver, 9kHz - 7GHz ¹	Rohde & Schwarz	ESR7	101156	10/26/2023	2 Years
EMI Test Receiver, 10 Hz - 7GHz ¹	Rohde & Schwarz	ESR7	101770	7/23/2023	2 Years
Spectrum Analyzer, 2 Hz to 26.5 GHz ²	Rohde & Schwarz	FSW26	102057	6/24/2023	2 Years
Spectrum Analyzer, 9 kHz to 40 GHz ³	Rohde & Schwarz	FSV40	100899	8/12/2023	3 Years
Spectrum Analyzer 10 Hz – 40 GHz ¹	Rohde & Schwarz	FSVR40	100909	9/18/2023	3 Years
Biconilog Antenna, 30 MHz - 2 GHz	Sunol Sciences	JB1	A050913	7/1/2023	2 Years
Loop Antenna 9 kHz - 30 MHz	EMCO	6512	9309-1139	4/14/2024	2 Years
Dbl Ridged Guide Antenna 1- 18 GHz	ETS-Lindgren	3117	00143292	5/11/2024	2 Years
Dbl Ridged Guide Antenna 1- 18 GHz	ETS-Lindgren	3117	00227631	4/21/2024	2 Years
Preamplifier, 1 GHz to 26.5 GHz	Hewlett Packard	8449B	3008A01323	11/30/2023	2 Years
Preamplifier, 1 GHz to 26.5 GHz	Hewlett Packard	8449B H02	3008A00329	1/20/2024	2 Years
1.8 GHz - 9.3 GHz Passband Filter	Mini-Circuits	VHP-16	0341	3/30/2023	1 Years
Digital Barometer	Control Company	4195	ID236	1/27/2024	2 Years
¹ ESR7 Firmware revision: V3.48 SP3, Date installed: 09/30/2020 Previous V3.48 SP2, installed 07/23/2020. ² FSW26 Firmware revision: V4.71 SP1, Date installed: 11/16/2020 Previous V4.61, installed 08/11/2020. ³ FSV40 Firmware revision: V2.30 SP4, Date installed: 05/04/2016 Previous V2.30 SP1, installed 10/22/2014.					

Previous V2.23,

installed 10/22/2014.

⁴ FSVR40 Firmware revision: V2.33 SP4, Date installed: 05/04/2016

4. Measurements Parameters (continued)

4.2. Measurement & Equipment Setup

Test Dates:

Test Engineers: Normal Site Temperature (15 - 35°C): Relative Humidity (20 -75%RH): Frequency Range: Measurement Distance:

EMI Receiver IF Bandwidth:

EMI Receiver Avg Bandwidth: Detector Function:

2/14/2023, 2/15/2023, 4/26/2023, 4/27/2023 Sean Defelice 21.2 33 30 kHz to 9.4 GHz 3 & 1 Meters 200 Hz - 30 to 150 kHz 9 kHz - 150 kHz to 30 MHz 120 kHz - 30 MHz to 1 GHz 1 MHz - Above 1 GHz ≥ 3 * RBW or IF(BW) Peak, Quasi-Peak & Average

4.3. Measurement Procedure

Testing was performed in accordance with the requirements detailed in ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. In addition, FCC DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems, was also referenced.

Test measurements were made in accordance with FCC Part 15.247, ANSI C63.10-2013.

The test methods used to generate the data in this test report is in accordance with ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices.

4.4. Measurement Uncertainty

The following uncertainties are expressed for an expansion/coverage factor of K=2.

RF Frequency	± 1x10 ⁻⁸
Radiated Emission of Transmitter	± 4.55 dB
Radiated Emission of Receiver	± 4.55 dB
Temperature	± 0.91° C
Humidity	± 5%

5. Choice of Equipment for Test Suites

5.1 Choice of Model

This test report is based on the test samples supplied by the manufacturer and are reported by the manufacturer to be equivalent to the production units.

5.2 Presentation

This test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for product equipment configuration.

5.3 Choice of Operating Frequencies

The product utilizes 50 channels in the 906 MHz to 923.5 MHz frequency range. In accordance with ANSI C63.10-2013, Section 5.6, three channels are detailed in this test report:

In accordance with ANSI C63.10-2013, Section 5.6, the choice of operating frequencies selected for the testing outlined in this report was based on the lowest, middle and highest operating frequencies. The frequencies selected were:

- Low Channel 906.00 MHz
- Middle Channel 912.75 MHz
- High Channel 923.50 MHz

5.4. EUT Positions for Emissions Measurements

The device under test was tested in two orthogonal positions in accordance with ANSI C63.10-2013, Section 5.10.1 to represent either wall or ceiling mounted configurations.

6. Measurement Summary

Test Requirement	FCC Part 15.247 Reference	Test Report Section	Result	Comment
Antenna Requirement	15.203	7.1	Compliant	
Frequency Hopping Requirements	45.047 (-)			
Minimum 20 dB Bandwidth	15.247 (a)			
Number of Hopping Channels	15 247 (0)	7.0	Compliant	
Channel Separation	15.247 (a)	7.2	Compliant	
Average Time of Occupancy per Period	15.247 (a)			
Maximum Peak Conducted Output Power	15.247 (b)	7.3	Compliant	
Operation with directional antenna gains greater than 6 dBi	15.247 (c)	7.4	N/A	Antenna gain <6 dBi
Lower and Upper Band Edge		7.5	Compliant	
Spurious Radiated Emissions	15.247 (d),	7.6	Compliant	
Spurious Radiated Emissions (> GHz) - Harmonic Measurements	15.209	7.7	Compliant	
Conducted Emissions	FCC 15.207	7.8	N/A	EUT operates on AA Batteries

Page 7 of 42

7. Measurement Data

7.1. Antenna Requirement (Section 15.203)

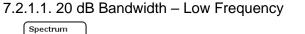
- Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.
- Status: The antenna is an external whip antenna connected via a reverse polarity SMA connector.

7.2. Frequency Hopping Requirements (Section 15.247 (a))

Requirements: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

7.2.1. 20 dB Bandwidth


Channel	Frequency (MHz)	20 dB Bandwidth (kHz)	Maximum 20 dB Bandwidth (kHz)	Result
Low	906.00	15.984	250	Compliant
Mid	912.75	15.784	250	Compliant
High	923.50	15.534	250	Compliant

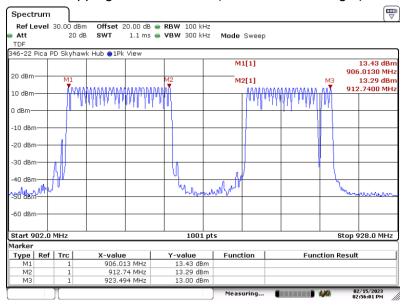
7.2. Frequency Hopping Requirements (Section 15.247 (a) (continued)

7.2.1. 20 dB Bandwidth (continued)

Date: 15.FEB.2023 11:50:44

7.2.1.2. 20 dB Bandwidth – Middle Frequency

Date: 15.FEB.2023 11:20:18


7.2. Frequency Hopping Requirements (Section 15.247 (a) (continued)

7.2.1. 20 dB Bandwidth (continued)

7.2.1.3. 20 dB Bandwidth – High Frequency

7.2.2. Number of Hopping Channels = 50 (28 on left, 22 on right)

Date: 15.FEB.2023 14:56:01

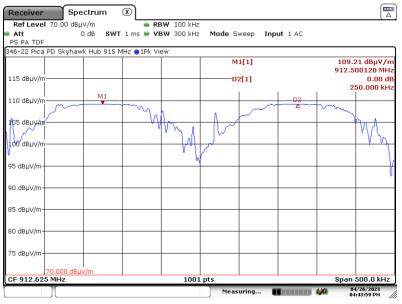
7.2. Frequency Hopping Requirements (Section 15.247 (a) (continued)

7.2.3. Channel Separation

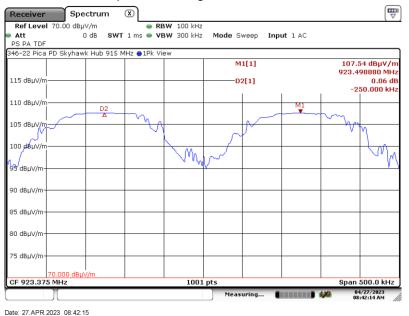
Channel	Channel Pair	Channel Separation (kHz)	Required Channel Separation (kHz)	Result	
Low	903.00	250	25	Compliant	
LOW	903.25	200	20		
Middle	912.50	250	25	Compliant	
Midule	912.75	230	25	Compliant	
High	923.25	250	25	Compliant	
High	923.50	200	20	Compliant	

7.2.3.1. Channel Separation - Low Channels

Date: 26.APR.2023 16:34:56



7.2. Frequency Hopping Requirements (Section 15.247 (a) (continued)


7.2.3. Channel Separation

Date: 26.APR.2023 16:43:59

7.2.3.3. Channel Separation - High Channels

7.2. Frequency Hopping Requirements (Section 15.247 (a) (continued)

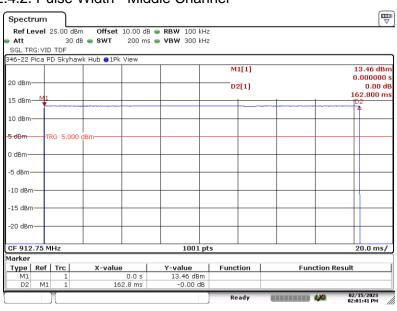
7.2.4. Average Time of	Occupancy per Period	(Period = 20 Seconds)

Channel	Frequency (MHz)	Pulse Width (Sec)	Avg Time per Period (20 Seconds)	Maximum Time per Period	Result
Low	906.00	0.1628	0.163	0.400	Compliant
Middle	912.75	0.1628	0.163	0.400	Compliant
High	923.50	0.1628	0.163	0.400	Compliant

Note: One Pulse occurs every 20 seconds, as it hops one cycle of 50 channels and then mutes for the remaining 20 second cycle.

7.2.4.1. Pulse Width - Low Channel

Spectrum	☀					
Ref Level	25.00	dBm Offset 10.00 d	iB 👄 RBW 100 kHz			
Att	30	dB 😑 SWT 200 m	ns 👄 VBW 300 kHz			
SGL TRG: VI	D TDF					
846-22 Pica	PD Skył	iawk Hub 😑 1Pk View				
20 dBm				M1[1]		13.59 dBm 0.000000 s
				D2[1]		0.00 dB
15 dBm 🚽						162.800 ms
T						4
10 dBm —						
5 dBm	FRG 5.0	DO dBm				
) dBm						
5 GDIN						
-5 dBm						
-10 dBm						
-15 dBm						
-20 dBm						
CF 906.0 M	Hz		1001 pt	s		20.0 ms/
1arker						
Type Ref		X-value	Y-value	Function	Functi	on Result
M1 D2 M:	1	0.0 s 162.8 ms	13.59 dBm -0.00 dB			
U2 M.		162.8 ms	O.00 dB			
	Л			Ready		02/15/2023 01:59:20 PM


Date: 15.FEB.2023 13:59:20

7.2. Frequency Hopping Requirements (Section 15.247 (a) (continued)

7.2.4. Average Time of Occupancy per Period (Period = 20 Seconds)

7.2.4.2. Pulse Width - Middle Channel

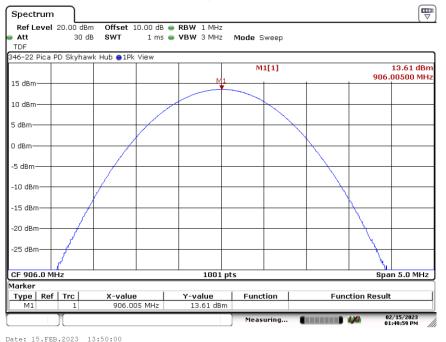
Date: 15.FEB.2023 14:01:42

7.2.4.3. Pulse Width - High Channel

Spectru	n					Ę
Ref Leve	el 25.00 d	Bm Offset 10.00 dB	RBW 100 kHz	2		
Att	30	dB 😑 SWT 🛛 200 ms	👄 VBW 300 kHz			
SGL TRG:	VID TDF					
846-22 Pic	a PD Skyha	awk Hub 🔵 1Pk View				
				M1[1]		13.18 dB
20 dBm						0.00000
20 UBIII-				D2[1]		-0.02 (
15 dBm—	41					162.800 n
10 00111	¥					D2 A
10 dBm						
5 dBm	TRG 5.00	0 dBm				
) dBm——			_			
-5 dBm						
-10 dBm—						
-15 dBm—						
-20 dBm—						
CF 923.5	MHz		1001 pt	5		20.0 ms
1arker						
Type R		X-value	Y-value	Function	Fun	ction Result
M1	1	0.0 s	13.18 dBm			
D2	M1 1	162.8 ms	-0.02 dB			
	1			Ready	BEESENER.	02/15/2023 02:03:33 PM

Date: 15.FEB.2023 14:03:33

Page 14 of 42

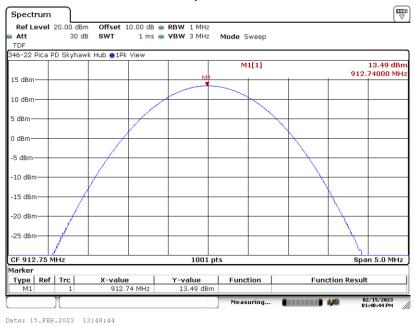


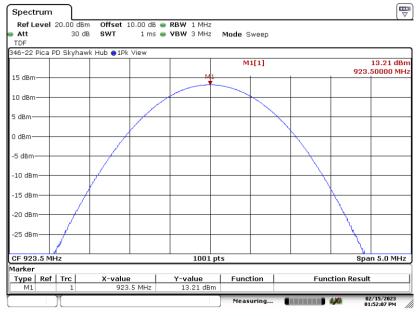
7.3. Maximum Peak Conducted Output Power (Section 15.247 (b))

Requirements: The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Channel	Frequency (MHz)	Max Conducted Output Power (dBm)	Max Peak Conducted Output Power (Watts)	Limit (Watts)	Result
Low	906.00	13.61	0.023	1	Compliant
Middle	912.75	13.49	0.022	1	Compliant
High	923.50	13.21	0.021	1	Compliant

7.3.1. Maximum Peak Conducted Output Power - Low Channel


Page 15 of 42



7.3. Maximum Peak Conducted Output Power (Section 15.247 (b)) (continued)

7.3.2. Maximum Peak Conducted Output Power – Middle Channel

7.3.3. Maximum Peak Conducted Output Power – High Channel

Date: 15.FEB.2023 13:52:07

7.4. Operation with Directional Antenna Gains Greater than 6 dBi (Section 15.247 (c))

Requirement: Fixed Point-to-Point Operation:

If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of FCC Part 15.247, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 – 2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

- Procedure: Not applicable for the device under test.
- EUT Status: The EUT utilizes an antenna with an approximate peak gain of 2 dBi, and therefore is exempt from this requirement.

7.5. Emissions Outside the Frequency Band (Section 15.247 (d))

- Requirements: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.
- Test Notes: Peak in-band measurements were taken using 100 kHz RBW. These values were used as the reference levels for the following measurements.

Reference Appendix A for the measurement data used for this test section.

Results: The DUT met the 20 dB requirement emission level delta requirement in the non restricted frequency bands.

Emissions in Non-restricted Frequency Bands

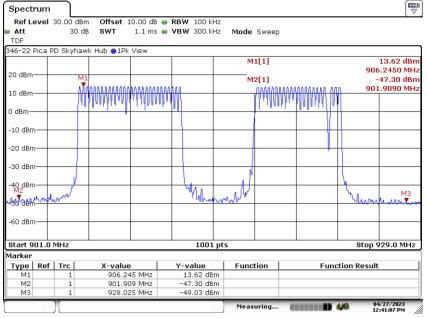
Maximum PSD (100 kHz) In-Band ¹ (dBm)	Worst Case Out-of-Band Frequency (MHz)	Maximum PSD (100 kHz) Out-of-Band (dBm)	Minimum Required Delta (dBm)	Result
13.80	1812.47	-49.08	-6.20	Compliant

7.5.1. Band Edge Measurements (Frequency Hopping Mode)

Lower Band Edge

Lowest Channel	Measured Power (dBm)	Band Edge Frequency	Measured Requirement Power (-20 dB from (dBm) Peak)			Result
(MHz)	Peak	(MHz)	Peak	Peak		
906.00	13.80	902	-47.30	-6.20	-41.10	Compliant

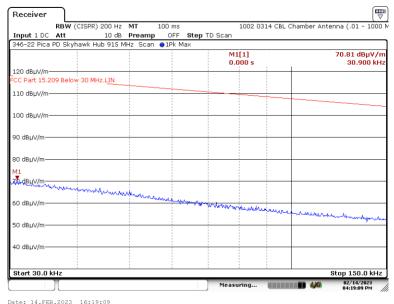
Upper Band Edge


Highest Channel	Measured Power (dBm)	Band Edge Frequency	Measured Power (dBm)	Requirement (-20 dB from Peak)	Margin (dB)	Result
(MHz)	Peak	(MHz)	Peak	Peak		
923.50	13.40	928	-49.03	-6.60	-42.43	Compliant

7.5. Emissions outside the Frequency Band (15.247 (d)) (continued)

7.5.3.1. Lower and Upper Band Edges (Frequency Hopping Mode)

Date: 27.APR.2023 12:41:07


7.6. Transmitter Spurious Radiated Emissions (30 kHz to 9.4 GHz)

Note: The spurious emissions detailed in this section represent the combined worstcase emissions of the low, middle and high operating frequencies. Only emissions defined as restricted bands of operation in 15.205 (a) are subjected to these limits.

7.6.1. Regulatory Limit: FCC Part 15.209, Quasi-Peak

Frequency Range (MHz)	Distance (Meters)	Limit (dBµV/m)
0.490 to 1.705	3	73.8 to 63.0
1.705 to 30	3	69.5
30 to 88	3	40.0
88 to 216	3	43.5
216 to 960	3	46.0
>960	3	54.0

7.6.2. Spurious Radiated Emissions (30 to 150 kHz) Test Results

7.6.2.1. Measurement Results - Parallel - X Axis

7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

7.6.2. Spurious Radiated Emissions (30 kHz to 150 kHz) Test Results

7.6.2.2. Measurement Results - Perpendicular - X-Axis

Receiver								
	· · · ·	R) 200Hz N		0 ms		1002 0314 0	BL Chamber A	ntenna (.01 - 1000
Input 1 DC		10 dB P			p TD Scan			
346-22 Pica	PD Skyhawk	Hub 915 MH	z Scan 😑	1Pk Max				
						[1] 000 s		70.37 dBµ∀/n 31.050 kH:
120 dBµV/m-								
CC Part 15.2	09 Below 30	MHz.LIN						
110 dBµV/m-								
100 dBµV/m-								
90 dBµV/m—								
80 dBµV/m—								
M1 Za,dBuV/m—								
60 dBuV/m-	munistinte	manny	my	month				guidebardenen
						manneum	mun	guilitation
50 dBµV/m—								
40 dBµV/m—								
Start 30.0	kHz							Stop 150.0 kHz
	Υ				Measu	wing 🛑		02/14/2023 04:16:28 PM

Date: 14.FEB.2023 16:16:28

7.6.2.3. Measurement Results - Ground Parallel - X-Axis

	RBW (C	ISPR) 200 Hz	MT	100 ms		1002 0314 C	BL Chamber A	ntenna (.01 - 1000
Input 1 DC			Preamp		ep TD Scan			
346-22 Pica	PD Skyha	wk Hub 915 M	IHz Scan	1Pk Max				
						[1] 100 s		70.15 dBµ∀/n 31.800 kH
120 dBuV/m-					0.0	iuu s		31.800 KH
FCC Part 15.2		30 MHz.LIN						
					_			
110 dBµV/m-								
100 dBµV/m-			-					
90 dBµV/m—								
80 dBuV/m-								
M1								
Nor white the second second	marine	Mar Mar					mm	
			ummen	mm wash				
60 авру/m—					mon man	Wremushin	Are in	
							- Jump Jump	Hundan
50 dBµV/m—								
40 dBµV/m—								
Start 30.0 l	KHZ				<u> </u>			Stop 150.0 kHz
					Measu	ring 🔳		02/14/2023 04:00:56 PM

Page 21 of 42

7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

- 7.6.2. Spurious Radiated Emissions (30 kHz to 150 kHz) Test Results
 - 7.6.2.4. Measurement Results Parallel Y-Axis

		SPR) 200 Hz					1002 03	14 CBL C	hamber An	tenna (.01 - 1000
		10 dB wk Hub 915 M				i Scan				
340-22 PICa	PD Skyria	WK HUD 915 M	HZ SCAR	O IPK M	ax		[1]			71.24 dBµV/ı
							00 s			31.050 kH
120 dBµV/m-										
CC Part 15.2	09 Below 3	30 MHz.L <u>IN</u>								
110 dBµV/m-				_		_				
,										
100 dBµV/m-										
90 dBuV/m—										
90 ubpv/m										
80 dBµV/m—										
M1										
WEIGHT CARL	monum									
		- With Mary	mur	mentione						
60 dBµV/m—					. See April	WWWWWWWWWWW	Mumm	in and		
									mar and the	and and the second
50 dBµV/m—				-						
40 dBµV/m—				-						
Start 30.0	kHz		.i					i		Stop 150.0 kHz
	1					Measu	ring		- 400	02/14/2023 04:11:12 PM

7.6.2.5. Measurement Results - Perpendicular - Y-Axis

		CISPR) 200 Hz					1002 03	14 CBL C	hamber Ar	ntenna (.01 - 1000
Input 1 DC		10 dB				D Scan				
346-22 Pica	PD Skyh	awk Hub 915 M	1Hz Scan	●1Pk N	1ax					
							[1])00 s			69.65 dBµ∀/n 33.900 kH
120 dBµV/m-						0.0	100 5			33.900 KH
CC Part 15.2		30 MHz.LIN								
110 dBµV/m-										_
100 dBµV/m-			-	-				-		
90 dBµV/m—										
80 dBµV/m—										
M1 70.dBuV7m-		nennenn								
marcola March	mm	manne								
60 dBu)//m_			annew w	man	me a					
00 ubµv/m—					1 1 1 1 1 1 1 1	WWW WWW	Mum	minum 1		
50 ID 11/									- march	mould-mondership
50 dBµV/m—										
40 dBµV/m—										
Start 30.0	: kHz							1		Stop 150.0 kHz
0010)(Massa	ıring	4		02/14/2023

7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

7.6.2. Spurious Radiated Emissions (30 kHz to 150 kHz) Test Results

7.6.2.6. Measurement Results - Ground Parallel - Y-Axis

Receiver		CISPR) 200 Hz	MT	100 ms		1002.03	314 CBL Chamber	⊽] Antenna (.01 - 1000 r
Input 1 DC		10 dB			Step TD Scan	1002 00		111001110 (101 1000
		awk Hub 915 N						
						1[1] 000 s		70.22 dBµV/n 30.850 kH
120 dBµV/m-								
FCC Part 15.2	09 Below	30 MHz.LIN						
110 dBµV/m-								
100 dBµV/m-								
90 dBµV/m—								
80 dBµV/m—								
M1 ⊅dBµV/m—	mange	A						
60 dBµV/m—		munu	Monarch	nnnn	Ld y Marine	manta	n manne	
50 dBµV/m—								
40 dBµV/m—								
Start 30.0 k	Hz							Stop 150.0 kHz
	1				Meas	uring	1	02/14/2023 04:04:20 PM

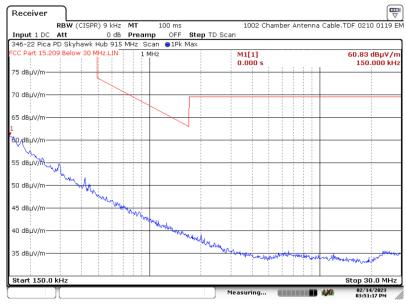
Date: 14.FEB.2023 16:04:20

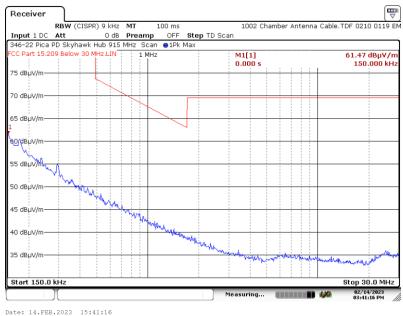
7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

- 7.6.2. Spurious Radiated Emissions (150 kHz to 30 MHz) Test Results
 - 7.6.2.7. Measurement Results Parallel X-Axis

Date: 14.FEB.2023 15:31:40

7.6.2.8. Measurement Results - Perpendicular - X-Axis




7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

- 7.6.2. Spurious Radiated Emissions (150 kHz to 30 MHz) Test Results
 - 7.6.2.9. Measurement Results Ground Parallel X-Axis

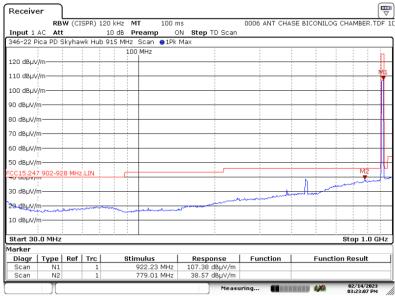
Date: 14.FEB.2023 15:51:17

7.6.2.10. Measurement Results - Parallel - Y-Axis

7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

- 7.6.2. Spurious Radiated Emissions (150 kHz to 30 MHz) Test Results
 - 7.6.2.11. Measurement Results Perpendicular Y-Axis

7.6.2.12. Measurement Results - Ground Parallel - Y-Axis



7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

7.6.3. Spurious Radiated Emissions (30 MHz to 1 GHz) Test Results

7.6.3.1. Measurement Results - Horizontal - X-Axis

Date: 14.FEB.2023 15:23:07

7.6.3.2. Measurement Results - Vertical - X-Axis

	RBW (CI	SPR) 120 k	Hz MT 100 r	ns	0006 ANT CHAS	E BICONILOG CHAMBER.TD
Input 1 AC		,		ON Step TD Scan		
			MHz Scan 🔵 1Pk			
			100 MHz			
120 dBµV/m						
110 dBµV/m						
100 dBµV/m						N
90 dBµV/m−						
80 dBµV/m−						
70 dBµV/m−						
60 dBµV/m-						
50 dBµV/m–						
CC15 247 9	02-928 MH;	z.LIN				
30 dBµV/m-						M2
20 dBµV/m-						h
					a management and a second second	
10.dBµV/m-	m			and the second		
Start 30.0	MHz					Stop 1.0 G
1arker	1-1					
	ype Ref N1		Stimulus 918.0 MHz	Response 96.35 dBµV/m	Function	Function Result
Scan		1	918'0 MHS	90.35 UBHV/M		

Date: 14.FEB.2023 15:19:37

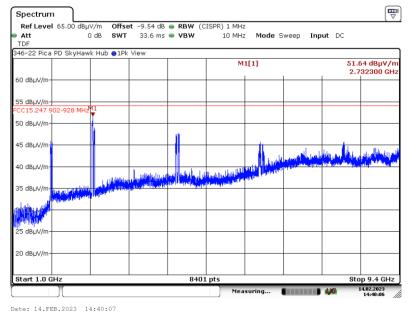
7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

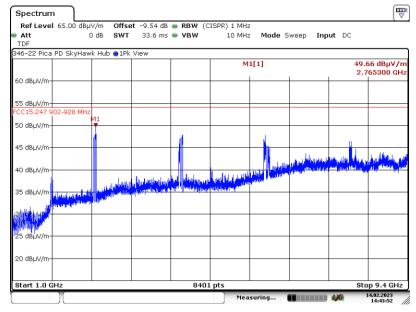
7.6.3. Spurious Radiated Emissions (30 MHz to 1 GHz) Test Results

7.6.3.3. Measurement Results - Horizontal - Y-Axis

Date: 14.FEB.2023 15:08:59

7.6.3.4. Measurement Results - Vertical - Y-Axis

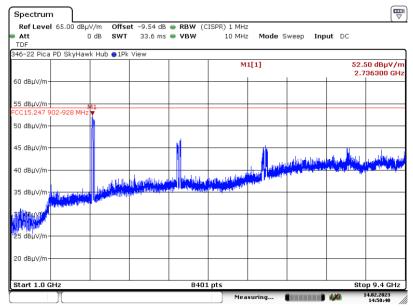

Date: 14.FEB.2023 15:13:42

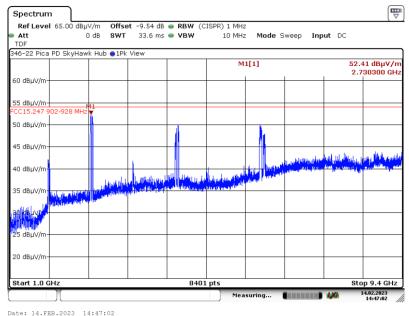


7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

- 7.6.4. Spurious Radiated Emissions (1 to 9.4 GHz) Test Results
 - 7.6.4.1. Measurement Results Horizontal X-Axis

7.6.4.2. Measurement Results - Vertical - X-Axis


Date: 14.FEB.2023 14:43:52


7.6. Spurious Radiated Emissions (30 kHz to 9.4 GHz) (continued)

- 7.6.4. Spurious Radiated Emissions (1 to 9.4 GHz) Test Results
 - 7.6.4.3. Measurement Results Horizontal Y-Axis

Date: 14.FEB.2023 14:50:40

7.6.4.4. Measurement Results - Vertical - Y-Axis

Page 30 of 42

7.7. Spurious Radiated Emissions – Harmonic Emissions

- Notes: 1. Harmonic emissions detailed in the following tables represent the frequencies that fall within the restricted bands of operation per FCC Part 15.205.
 - 2. For each emission, the worst-case polarity is tabled.

7.7.1. Spurious Radiated Emissions (Harmonic Measurements) Test Results

Freq. (MHz)	Field Strength (dBµV/m)		Limit (dBµV/m)		Margin (dBµV/m)		Antenna Polarity	Result
(11112)	Peak	Average	Peak	Average	Peak	Average	(H/V)	
2718.00	55.95	48.97	74.00	54.00	-18.05	-5.03	V	Compliant
3624.00	48.11	35.94	74.00	54.00	-25.89	-18.06	V	Compliant
4530.00	53.09	43.74	74.00	54.00	-20.91	-10.26	Н	Compliant
5436.00	49.79	37.62	74.00	54.00	-24.21	-16.38	V	Compliant
8154.00	55.54	42.60	74.00	54.00	-18.46	-11.40	Н	Compliant
9060.00	52.25	40.35	74.00	54.00	-21.75	-13.65	Н	Compliant

7.7.1.1. Lowest Frequency (906.00 MHz)

7.7.1.2. Middle Frequency (912.75 MHz)

Freq. (MHz)	Field Strength (dBµV/m)		Limit (dBµV/m)		Margin (dBµV/m)		Antenna Polarity	Result
	Peak	Average	Peak	Average	Peak	Average	(H/V)	
2738.25	56.65	48.88	74.00	54.00	-17.35	-5.12	V	Compliant
3651.00	48.47	36.00	74.00	54.00	-25.53	-18.00	V	Compliant
4563.75	54.27	45.52	74.00	54.00	-19.73	-8.48	V	Compliant
7302.00	53.37	40.86	74.00	54.00	-20.63	-13.14	V	Compliant
8214.75	55.08	42.79	74.00	54.00	-18.92	-11.21	V	Compliant
9127.50	53.26	40.59	74.00	54.00	-20.74	-13.41	Н	Compliant

7.7.1.3. Highest Frequency (923.50 MHz)

Freq. (MHz)	Field Strength (dBµV/m)		Limit (dBµV/m)		Margin (dBµV/m)		Antenna Polarity	Result
(11112)	Peak	Average	Peak	Average	Peak	Average	(H/V)	
2770.50	56.22	48.68	74.00	54.00	-17.78	-5.32	Н	Compliant
3694.00	48.34	36.17	74.00	54.00	-25.66	-17.83	V	Compliant
4617.50	53.46	45.00	74.00	54.00	-20.54	-9.00	Н	Compliant
7388.00	53.24	40.77	74.00	54.00	-20.76	-13.23	Н	Compliant
8311.50	55.76	43.05	74.00	54.00	-18.24	-10.95	Н	Compliant

¹ The tabled frequencies are those listed in the restricted bands of operation.

² All correction factors are stored in the spectrum analyzer and applied to this column entry.

Page 31 of 42

7.8. Conducted Emissions

Requirement: 15.207 With certain exceptions, an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).

Frequency Range (MHz)		nits βµV)				
()	Quasi-Peak	Average				
0.15 to 0.50	66 to 56*	56 to 46*				
0.50 to 5.0 56 46						
5.0 to 30.0 60 50						
* Decreases with the logarithm of the frequency.						

- Procedure: This test was performed in accordance with the procedure detailed in ANSI C63.10-2013, Section 6.2: Standard test method for ac power-line conducted emissions from unlicensed wireless devices.
- Test Notes: The device was tested using the support equipment laptop.
- Results: The device under test meets the FCC Part 15.207 test requirements.

Measurement & Equipment Setup

Test Date:	N/A
Test Engineer:	N/A
Site Temperature (°C):	N/A
Relative Humidity (%RH):	N/A
Frequency Range:	0.15 MHz to 30 MHz
EMI Receiver IF Bandwidth:	9 kHz
EMI Receiver Avg Bandwidth:	>= 3 * IF BW (RBW)
Detector Functions:	Peak, Quasi-Peak & Average

- Note: EUT is powered via AA Batteries which are not rechargeable
- Sample Calculation: Final Result $(dB\mu V)$ = Measurement Value $(dB\mu V)$ + LISN Insertion Loss (dB) + Cable Loss (dB).

Note: All correction factors are loaded into the measurement instrument prior to testing to determine the final result.

8. Test Site Description

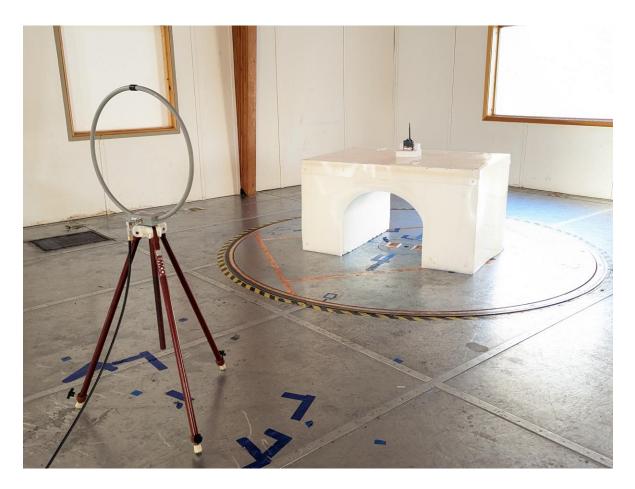
Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with the Federal Communications Commission (FCC) and Industry Canada standards. Through our American Association for Laboratory Accreditation (A2LA) ISO Guide 17025 Accreditation our test sites are designated with the FCC (designation number **US1091**), Industry Canada (file number **IC 3023A-1)** and VCCI (Member number 3168) under registration number A-0274.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 32, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 11, KN 13, KN 14-1, KN 22, KN 32, KN 61000-6-3, KN 61000-6-4.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' x 20' x 12' ferrite tile chamber and uses one of the walls for the vertical ground plane. A second conducted emissions site is also located in the basement of the OATS site with a 2.3 x 2.5 meter ground plane and a 2.4 x 2.4 meter vertical wall.

The radiated emissions test site for measurements above 1GHz is a 3 Meter open area test site (OATS) with a 3.6 by 3.6 meter anechoic absorber floor patch to achieve a quasi-free space measurement environment per ANSI C63.4/C63.10 and CISPR 16-1-4 standards.


The sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.

9. Test Setup Photographs (continued)

9.1 Radiated Emissions Front 30 kHz to 30 MHz

Page 34 of 42

9. Test Setup Photographs (continued)

9.2. Radiated Emissions Rear 30 kHz to 30 MHz

Page 35 of 42

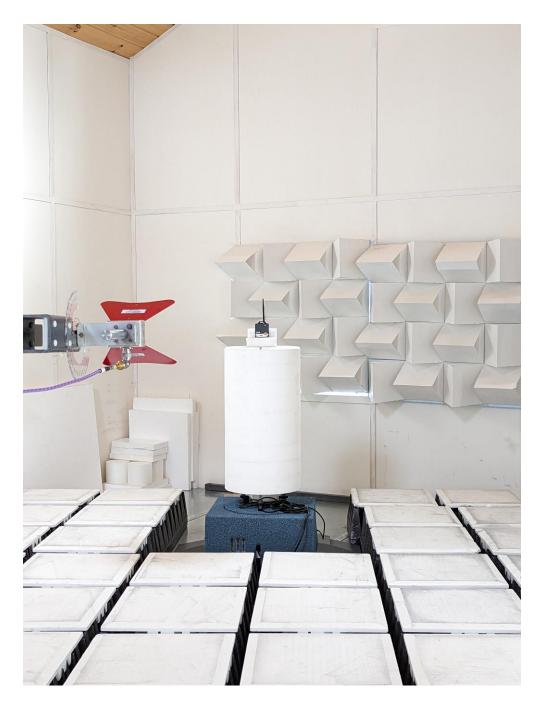
9. Test Setup Photographs

9.3 Radiated Emissions Front 30 to 1000 MHz

Page 36 of 42

9. Test Setup Photographs

9.4 Radiated Emissions Rear 30 to 1000 MHz


Page 37 of 42

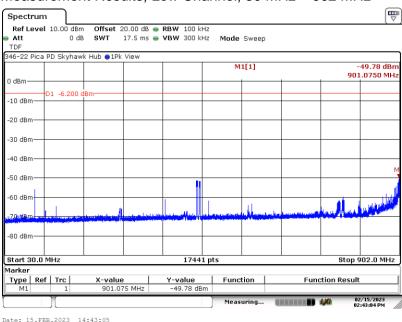
9. Test Setup Photographs (continued)

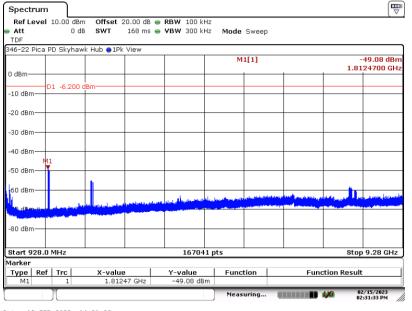
9.5 Radiated Emissions Front 1 GHz to 9.4 GHz

Page 38 of 42

9. Test Setup Photographs (continued)

9.6 Radiated Emissions Rear 1 GHz to 9.4 GHz




Appendix A

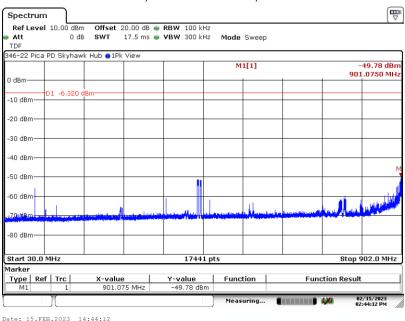
A1. Emissions in Non-restricted Frequency Bands (30 MHz to 9.28 GHz)

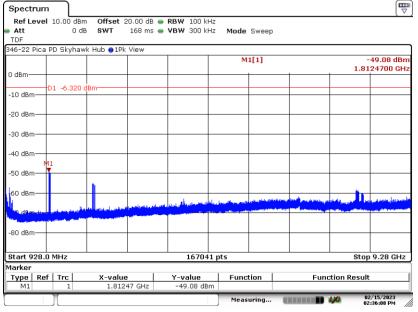
- A1.1. Emissions in Non-restricted Frequency Bands (30 MHz 9.28 GHz) Test Results
 - A1.1.1. Measurement Results, Low Channel, 30 MHz 902 MHz

A1.1.2. Measurement Results, Low Channel: 928 MHz - 9.28 GHz

Date: 15.FEB.2023 14:31:32

Page 40 of 42



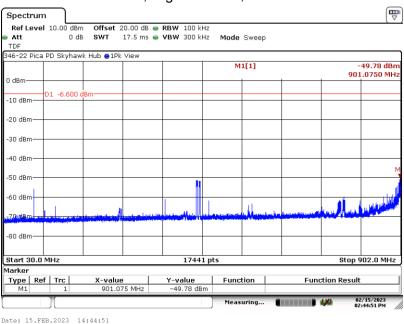

Appendix A

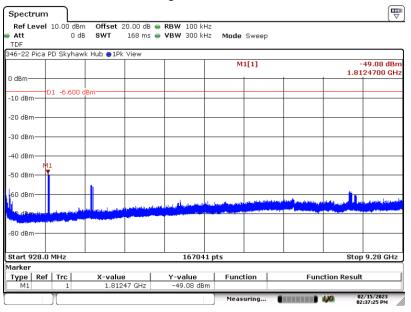
A1. Emissions in Non-restricted Frequency Bands (30 MHz to 9.28 GHz) (continued)

- A1.1. Emissions in Non-restricted Frequency Bands (30 MHz 9.28 GHz) Test Results
 - A1.1.3. Measurement Results, Middle Channel, 30 MHz 902 GHz

A1.1.4. Measurement Results, Middle Channel, 928 MHz – 9.28 GHz

Date: 15.FEB.2023 14:36:07




Appendix A

A1. Emissions in Non-restricted Frequency Bands (30 MHz to 9.28 GHz) (continued)

- A1.1. Emissions in Non-restricted Frequency Bands (30 MHz 9.28 GHz) Test Results
 - A1.1.5. Measurement Results, High Channel, 30 MHz 902 MHz

A1.1.6. Measurement Results, High Channel, 928 MHz – 9.28 GHz

Date: 15.FEB.2023 14:37:25