

SAR EVALUATION REPORT

For

Amgoo Telecom Co., Ltd.

6/F, Block 3, Tongjian Building, Middle Shennan Rd, Futian District, Shenzhen, Guangdong, China

FCC ID: UOSAM83E

Report Type:		Product Type:
Original Report		Mobile Phone
Test Engineer:	Sandy Wang	Sandy Wang
Report Number:	RSZ1209130	07-20A
Report Date:	2012-11-02	
Reviewed By:	Alvin Huang RF Leader	si Hung
Test Laboratory:	6/F, the 3rd P ShiHua Road	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Attestation of Test Results						
	Company Nar	me Amgoo Telecom Co., Ltd.				
FUT	EUT Description		Mobile Phone			
Information	FCC	ID	UOSAM83E			
	Model Number		AM209			
	Test Da	ate	2012.10.27-2012.10.28			
Frequency		Ι	Max. SAR Level(s) Measured	Limit(W/Kg)		
Cellular Band			0.552 W/kg 1g Head SAR 0.648 W/kg 1g Body SAR	1.6		
PCS Band		0.512 W/kg 1g Head SAR 0.121 W/kg 1g Body SAR				
ANSI / IEEE C95.1 : 2005 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fileds,3 kHz to 300 GHz. ANSI / IEEE C95.3 : 2002						
	ANSI / IEEE C95.3 : 2002 IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to SuchFields,100 kHz—300 GHz.					
Applicable Standards						
IEEE1528:2003 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques						
Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Standards and has been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C and IEEE 1528-2003.						

The results and statements contained in this report pertain only to the device(s) evaluated.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	5
REFERENCE, STANDARDS, AND GUILDELINES	6
SAR LIMITS	7
FACILITIES AND ACCREDITATION	8
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	
EQUIPMENTS LIST & CALIBRATION INFORMATION	
SAR MEASUREMENT SYSTEM VERIFICATION	
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATION	
SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
CHEEK/TOUCH POSITION	
EAR/TILT POSITION	
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	
CONDUCTED OUTPUT POWER MEASUREMENT	
PROVISION APPLICABLE	
Test Procedure	
TEST RESULTS:	
SAR SIMULTANEOUS TRANSMISSION EVALUATION	
SAR MEASUREMENT RESULTS	
TEST DATA	
EUT SCAN RESULTS	
APPENDIX A MEASUREMENT UNCERTAINTY	
APPENDIX B PROBE CALIBRATION CERTIFICATES	
APPENDIX C DIPOLE CALIBRATION CERTIFICATES	
APPENDIX D EUT TEST POSITION PHOTOS	
Liquid depth ≥ 15 cm Body-worn-Headset Front Setup Photo	
BODY-WORN-HEADSET FRONT SETUP PHOTO BODY-WORN-HEADSET BACK SETUP PHOTO	
LEFT HEAD TOUCH SETUP PHOTO	
Left Head Tilt Setup Photo Right Head Touch Setup Photo	
RIGHT HEAD TILT SETUP PHOTO	
APPENDIX E EUT PHOTOS	
EUT – FRONT SIDE VIEW	
EUT – BACK SIDE VIEW EUT – TOP SIDE VIEW	
EUT – TOP SIDE VIEW EUT – BOTTOM SIDE VIEW	
EUT – UNCOVERED VIEW	
APPENDIX F INFORMATIVE REFERENCES	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	RSZ120913007-20A	Original Report	2012-11-02	

EUT DESCRIPTION

This report has been prepared on behalf of Amgoo Telecom Co., Ltd. and their product, FCC ID: *UOSAM83E*, Model: AM209 or the EUT (Equipment Under Test) as referred to in the rest of this report. The EUT is a Mobile Phone.

Technical Specification

Product Type	Portable	
Exposure Category:	Population / Uncontrolled	
Antenna Type(s):	Internal Antenna	
Body-Worn Accessories:	Headset	
Face-Head Accessories:	None	
Multi-slot Class:	Class10	
Operation Mode :	GSM Voice, GPRS and Bluetooth Date	
	Cellular Band : 824-849 MHz(TX) ; 869-894 MHz(RX)	
Frequency Band:	PCS Band : 1850-1910 MHz(TX) ; 1930-1990 MHz(RX)	
	Bluetooth: 2400-2483.5 MHz	
	Cellular Band : 32.59dBm	
Conducted RF Power:	PCS Band : 28.87dBm	
	Bluetooth: 8.31dBm	
Dimensions (L*W*H):	105mm (L)× 45mm (W)× 15.5mm (H)	
Weight:	65.9g	
Power Source:	: 3.7 VDC/700mAh Rechargeable Battery	
Normal Operation:	Head and Body-worn	

REFERENCE, STANDARDS, AND GUILDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Limits

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

FCC Limit (1g Tissue)

CE Limit (10g Tissue)

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 10 g of tissue)	2.0	10			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

FACILITIES AND ACCREDITATION

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F, the 3rd Phase of WanLi Industrial Building, Shi Hua Road, Fu Tian Free Trade Zone, Shenzhen, Guangdong, P.R. of China

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

DESCRIPTION OF TEST SYSTEM

These measurements were performed with ALSAS 10 Universal Integrated SAR Measurement system from APREL Laboratories.

ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. ALSAS-10U uses the latest methodologies. And FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm2 step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

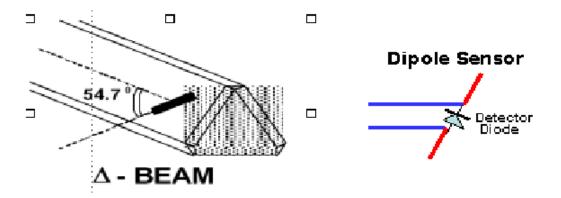
Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

ALSAS-10U Interpolation and Extrapolation Uncertainty


The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + {x'}^2 + {y'}^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Calibration Method	Frequency Dependent Below 1 GHz Calibration in air performed in a TEM Cell Above 1 GHz Calibration in air performed in waveguide		
Sensitivity	$0.70 \ \mu V/(V/m)^2$ to $0.85 \ \mu V/(V/m)^2$		
Dynamic Range	0.0005 W/kg to 100 W/kg		
Isotropic Response	Better than 0.1 dB		
Diode Compression Point (DCP)	Calibration for Specific Frequency		
Probe Tip Diameter	< 2.9 mm		
Sensor Offset	1.56 (+/- 0.02 mm)		
Probe Length	289 mm		
Video Bandwidth	@ 500 Hz: 1 dB @ 1.02 kHz: 3 dB		
Boundary Effect	Less than 2.1% for distance greater than 0.58 mm		
Spatial ResolutionThe spatial resolution uncertainty is less than 1.5% for 4.9r diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5r diameter probe			

Isotropic E-Field Probe Specification

Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from $5\mu V$ to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit
Amplifier Range	20 mV to 200 mV and 150 mV to 800 mV
Field Integration	Local Co-Processor utilizing proprietary integration algorithms
Number of Input Channels	4 in total 3 dedicated and 1 spare
Communication	Packet data via RS232

Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

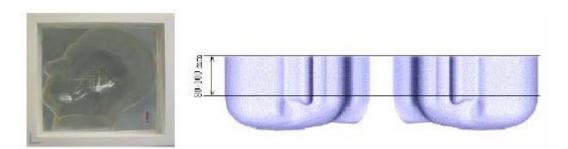
Robot/Controller Manufacturer	Thermo CRS		
Number of Axis	Six independently controlled axis		
Positioning Repeatability	0.05 mm		
Controller Type	Single phase Pentium based C500C		
Robot Reach	710 mm		
Communication	RS232 and LAN compatible		

ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

Universal Device Positioner

The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.



Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

APREL SAM Phantoms

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.



APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software.

The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

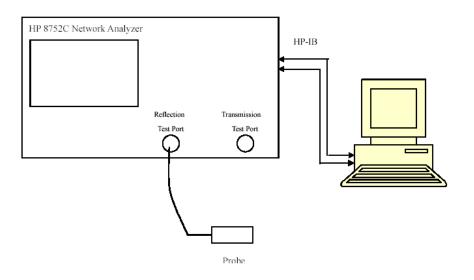
Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Ingredients	Frequency (MHz)									
(% by weight)	45	0	8.	35	91	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Recommended Tissue Dielectric Parameters for Head and Body

Frequency	Head	Tissue	Body Tissue		
(MHz)	٤r	O' (S/m)	٤r	O' (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	Calibration Date	S/N
CRS F3 robot	ALS-F3	N/A	RAF0805352
CRS F3 Software	ALS-F3-SW	N/A	N/A
CRS C500C controller	ALS-C500	N/A	RCF0805379
Probe mounting device & Boundary Detection Sensor System	ALS-PMDPS-3	N/A	120-00270
Universal Work Station	ALS-UWS	N/A	100-00157
Data Acquisition Package	ALS-DAQ-PAQ-3	2012-05-13	110-00212
Miniature E-Field Probe	ALS-E-020	2012-08-09	500-00283
Dipole, 835MHz	ALS-D-835-S-2	2011-08-25	180-00558
Dipole, 1900MHz	ALS-D-1900-S-2	2011-08-25	210-00710
Dipole Spacer	ALS-DS-U	N/A	250-00907
Device holder/Positioner	ALS-H-E-SET-2	N/A	170-00510
Left ear SAM phantom	ALS-P-SAM-L	N/A	130-00311
Right ear SAM phantom	ALS-P-SAM-R	N/A	140-00359
UniPhantom	ALS-P-UP-1	N/A	150-00413
Simulated Tissue 835 MHz Head	ALS-TS-835-H	Each Time	270-01002
Simulated Tissue 835 MHz Body	ALS-TS-835-B	Each Time	270-02101
Simulated Tissue 1900 MHz Head	ALS-TS-1900-H	Each Time	295-01103
Simulated Tissue 1900 MHz Body	ALS-TS-1900-B	Each Time	295-02102
Power Amplifier	5S1G4	N/A	71377
Synthesized Sweeper	HP 8341B	2012-05-17	2624A00116
UNIVERSAL RADIO COMMUNICATION TESTER	CMU 200	2011.12.16	1100.0008.02
EMI Test Receiver	ESCI	2011-11-17	101122

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

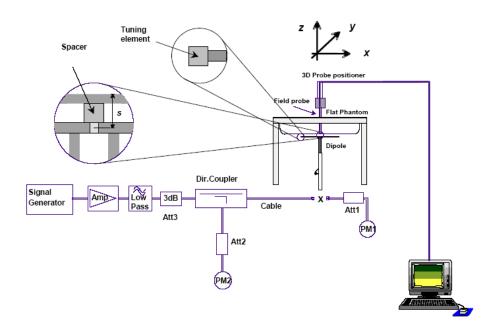
Liquid Verification Setup Block Diagram

Frequency	Liquid	Liqı Paran		Target Value		Delta (%)		Tolerance
Frequency	Туре	ε _r	0 (S/m)	٤ _r	O (S/m)	$\Delta \epsilon_r$	ΔΟ	(%)
824.2	Head	41.57	0.88	41.50	0.90	0.169	-2.222	±5
824.2	Body	55.18	0.93	55.20	0.97	-0.036	-4.124	±5
836.6	Head	41.53	0.89	41.50	0.90	0.072	-1.111	±5
850.0	Body	55.26	0.94	55.20	0.97	0.109	-3.093	±5
848.8	Head	41.30	0.91	41.50	0.90	-0.482	1.111	±5
040.0	Body	55.34	0.96	55.20	0.97	0.254	-1.031	±5
1850.2	Head	40.06	1.37	40.00	1.40	0.150	-2.143	±5
1830.2	Body	53.92	1.48	53.30	1.52	1.163	-2.632	±5
1880.0	Head	40.07	1.39	40.00	1.40	0.175	-0.714	±5
1880.0	Body	53.67	1.52	53.30	1.52	0.694	0.000	±5
1909.8	Head	40.07	1.45	40.00	1.40	0.175	3.571	±5
1909.0	Body	53.75	1.54	53.30	1.52	0.844	1.316	±5

Liquid Verification Results

*Liquid Verification was performed on 2012-10-27

Please refer to the following tables


	850 MHz Head			850 MHz Body	
Frequency (MHz)	e'	e''	Frequency (MHz)	e'	e''
824.0	41.574856	19.182638	824.0	55.183549	20.356601
824.5	41.543827	19.183192	824.5	55.186687	20.356112
825.0	41.527167	19.183746	825.0	55.189821	20.358633
825.5	41.422027	19.184324	825.5	55.192963	20.301064
826.0	41.440385	19.184855	826.0	55.196101	20.136126
826.5	41.462278	19.185408	826.5	55.199239	20.199857
827.0	41.438765	19.185962	827.0	55.202377	20.114356
827.5	41.486086	19.186516	827.5	55.205515	19.992492
828.0	41.505692	19.187073	828.0	55.208653	20.027054
828.5	41.512118	19.187625	828.5	55.211791	19.984477
829.0	41.563049	19.188178	829.0	55.214929	20.088632
829.5	41.511542	19.188733	829.5	55.218067	20.031461
830.0	41.547911	19.189287	830.0	55.221205	19.909358
830.5	41.507939	19.189841	830.5	55.224343	19.973746
831.0	41.480937	19.190395	831.0	55.227481	19.958921
831.5	41.500492	19.190949	831.5	55.230619	20.166345
832.0	41.462313	19.191503	832.0	55.233757	20.144009
832.5	41.437134	19.192057	832.5	55.236895	19.920708
833.0	41.477671	19.192611	833.0	55.240033	19.854072
833.5	41.509089	19.193165	833.5	55.243171	19.965539
834.0	41.506514	19.193719	834.0	55.246308	20.117396
834.5	41.505094	19.194275	834.5	55.249446	20.010358
835.0	41.529923	19.194828	835.0	55.252584	19.953817
835.5	41.530923	19.195683	835.5	55.255722	20.201524
836.0	41.534523	19.196538	836.0	55.258863	20.208447
836.5	41.519555	19.197393	836.5	55.261998	20.066254
837.0	41.506352	19.198249	837.0	55.265136	19.893337
837.5	41.500559	19.199107	837.5	55.268274	19.929603
838.0	41.523732	19.199959	838.0	55.271412	20.213886
838.5	41.482262	19.200816	838.5	55.274553	20.229091
839.0	41.472193	19.201670	839.0	55.277688	20.151102
839.5	41.474663	19.202525	839.5	55.280826	20.086061
840.0	41.485733	19.203381	840.0	55.283964	20.153203
840.5	41.475092	19.204235	840.5	55.287102	20.198567
841.0	41.458364	19.205091	841.0	55.290241	20.153695
841.5	41.487806	19.205946	841.5	55.293378	20.090432
842.0	41.489508	19.206801	842.0	55.296516	20.266272
842.5	41.493204	19.207656	842.5	55.299654	20.234785
843.0	41.487299	19.198478	843.0	55.302792	20.195183
843.5	41.411002	19.199329	843.5	55.305934	20.150694
844.0	41.487254	19.200185	844.0	55.309068	20.168352
844.5	41.441545	19.201039	844.5	55.312206	20.194259
845.0	41.367563	19.201898	845.0	55.315344	20.103677
845.5	41.382865	19.202752	845.5	55.318482	20.050063
846.0	41.337448	19.223681	846.0	55.321622	20.223064
846.5	41.378387	19.224536	846.5	55.324758	20.284468
847.0	41.358656	19.225392	847.0	55.327896	20.233327
847.5	41.361841	19.226247	847.5	55.331034	20.153628
848.0	41.335442	19.227102	848.0	55.334172	20.243785
848.5	41.340037	19.227957	848.5	55.337313	20.321869
849.0	41.300305	19.228812	849.0	55.340448	20.322051

	1900 MHz Head		1900 MHz Body		
Frequency (MHz)	e'	e''	Frequency (MHz)	e'	e''
1850.0	40.059287	13.289332	1850.0	53.920973	14.412476
1851.2	40.061514	13.259356	1851.2	53.852892	14.369893
1852.4	40.061767	13.226637	1852.4	53.871736	14.370997
1853.6	40.062013	13.250008	1853.6	53.848319	14.347272
1854.8	40.062262	13.243964	1854.8	53.751155	14.366753
1856.0	40.062511	13.168077	1856.0	53.854178	14.403174
1857.2	40.062762	13.307935	1857.2	53.847349	14.429159
1858.4	40.063011	13.204137	1858.4	53.829363	14.350375
1859.6	40.063259	13.258074	1859.6	53.811034	14.344718
1860.8	40.063508	13.259394	1860.8	53.706825	14.397514
1862.0	40.063757	13.276039	1862.0	53.734501	14.224717
1863.2	40.064006	13.295369	1863.2	53.680482	14.237522
1864.4	40.064256	13.333354	1864.4	53.715234	14.254605
1865.6	40.064504	13.327929	1865.6	53.721707	14.225641
1866.8	40.064754	13.316740	1866.8	53.796717	14.216212
1868.0	40.065052	13.335247	1868.0	53.865161	14.232283
1869.2	40.065251	13.396007	1869.2	53.874223	14.254709
1870.4	40.065503	13.388748	1870.4	53.787721	14.306161
1871.6	40.065753	13.362678	1871.6	53.730101	14.306869
1872.8	40.065999	13.392733	1872.8	53.768535	14.335859
1874.0	40.066248	13.335386	1874.0	53.695210	14.344168
1875.2	40.066498	13.369449	1875.2	53.758163	14.407425
1876.4	40.066757	13.367416	1876.4	53.661278	14.330206
1877.6	40.066996	13.431916	1877.6	53.763561	14.410247
1878.8	40.067245	13.327519	1878.8	53.791348	14.542083
1880.0	40.067494	13.272742	1880.0	53.673669	14.561038
1881.2	40.067743	13.321482	1881.2	53.631909	14.558074
1882.4	40.067994	13.344084	1882.4	53.727451	14.529452
1883.6	40.068242	13.312853	1883.6	53.692952	14.485475
1884.8	40.068491	13.313431	1884.8	53.717849	14.508216
1886.0	40.068741	13.312757	1886.0	53.75306	14.440412
1887.2	40.068992	13.387907	1887.2	53.733835	14.416576
1888.4	40.069241	13.407003	1888.4	53.823612	14.450885
1889.6	40.069488	13.466011	1889.6	53.754103	14.455497
1890.8	40.069737	13.584352	1890.8	53.799778	14.512326
1892.0	40.069986	13.592361	1892.0	53.787742	14.308509
1893.2	40.070235	13.611012	1893.2	53.760194	14.269431
1894.4	40.070486	13.620342	1894.4	53.732832	14.318512
1895.6	40.070733	13.582945	1895.6	53.725682	14.652313
1896.8	40.070983	13.592274	1896.8	53.715581	14.650423
1898.0	40.071232	13.699751	1898.0	53.715911	14.630981
1899.2	40.071482	13.765798	1899.2	53.792912	14.631422
1900.4	40.071732	13.677105	1900.4	53.757828	14.530077
1901.6	40.071980	13.649306	1901.6	53.761311	14.619423
1902.8	40.072252	13.619405	1902.8	53.730402	14.579445
1904.0	40.072477	13.634583	1904.0	53.812113	14.548262
1905.2	40.072727	13.617786	1905.2	53.723871	14.516783
1906.4	40.072987	13.613954	1906.4	53.713782	14.441717
1907.6	40.073225	13.590771	1907.6	53.639462	14.558508
1908.8	40.073474	13.609141	1908.8	53.723742	14.493936
1910.0	40.073725	13.627505	1910.0	53.750265	14.457558

System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

System Verification Setup Block Diagram

Probe and dipole antenna List and Detail

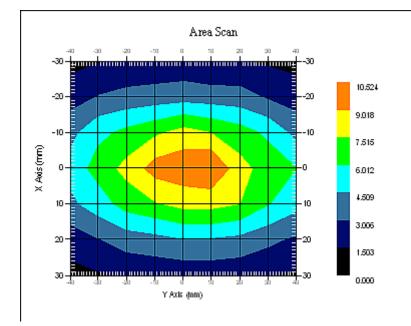
Manufa cturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
APREL	Probe	ALS-E-020	500-00283	2012-08-09	2013-08-08
APREL	Dipole antenna(835MHz)	ALS-D-835-S-2	180-00558	2011-08-25	2014-08-24
APREL	Dipole antenna(1900MHz)	ALS-D-1900-S-2	210-00710	2011-08-25	2014-08-24

System Accuracy Check Results

Date	Frequency (MHz)	Liquid Type		ed SAR (Kg)	Target Value (W/Kg)	Delta (%)	Tolerance (%)
	835	Head	1g	9.762	9.590	1.794	±10
2012-10-27	833	Body	1g	9.861	9.684	1.828	±10
2012-10-27	1900	Head	1g	40.249	39.648	1.516	±10
	1900	Body	1g	41.024	39.769	3.156	±10

*All SAR values are normalized to 1 Watt forward power.

SAR SYSTEM VALIDATION DATA


Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

System Performance Check 835MHz Head Liquid

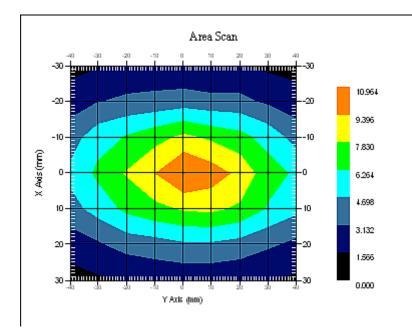
Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data Device Name Serial No. Type Model Frequency Band Max. Transmit Pwr Drift Time Power Drift-Start Power Drift-Finish Power Drift-Finish	: 3 min(s) : 9.875 W/kg
Phantom Data Name Type Size (mm) Serial No. Location Description Phantom Data	: APREL-Uni : Uni-Phantom : 280 x 280 x 200 : System Default : Center : Default
Tissue Data Type Serial No. Frequency Last Calib. Date Temperature Ambient Temp. Humidity Epsilon Sigma Density	: Head : 270-01002 : 835.00 MHz : 27-Oet-2012 : 20.00 °C : 21.00 °C : 56.00 RH% : 41.53 F/m : 0.89 S/m : 1000.00 kg/cu. m
Probe Data Name Model Type Serial No. Last Calib. Date Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: E-Field : E-O20 : E-Field Triangle : 500-00283 : 09-Aug-2012 : 835 : 1 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Area Scan Zoom Scan	: 1 : Complete : 21.00 °C : 21.00 °C : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

1 gram SAR value	: 9.762 W/kg
10 gram SAR value	: 5.261 W/kg
Area Scan Peak SAR	: 10.524 W/kg
Zoom Scan Peak SAR	: 16.320 W/kg

835 MHz System Validation with Head Tissue

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)


System Performance Check 835 MHz Body Liquid

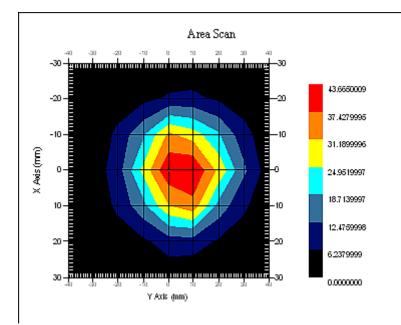
Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data Device Name Serial No. Type Model Frequency Band Max. Transmit Pwr Drift Time Power Drift-Start Power Drift-Finish Power Drift-Finish Power Drift (%)	: Dipole 835 MHz : 180-00558 : Dipole : ALS-D-835-S-2 : 835 : 1 W : 3 min(s) : 9.736 W/kg : 9.520 W/kg : -2.220
Phantom Data Name Type Size (mm) Serial No. Location Description Phantom Data	: APREL-Uni : Uni-Phantom : 280 x 280 x 200 : System Default : Center : Default
Last Calib. Date Temperature	: Body : 270-02101 : 835.00 MHz : 27-Oet-2012 : 20.00 °C : 21.00 °C : 56.00 RH% : 55.25 F/m : 0.94 S/m : 1000.00 kg/cu. m
Probe Data Name Model Type Serial No. Last Calib. Date Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: E-Field : E-O20 : E-Field Triangle : 500-00283 : 09-Aug-2012 : 835 : 1 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Area Scan Zoom Scan	: 1 : Complete : 21.00 °C : 21.00 °C : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Bay Area Compliance Laboratories Corp.(Shenzhen)

1 gram SAR value	: 9.861 W/kg
10 gram SAR value	: 5.327 W/kg
Area Scan Peak SAR	: 10.964 W/kg
Zoom Scan Peak SAR	: 17.323 W/kg

835 MHz System Validation with Body Tissue


Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

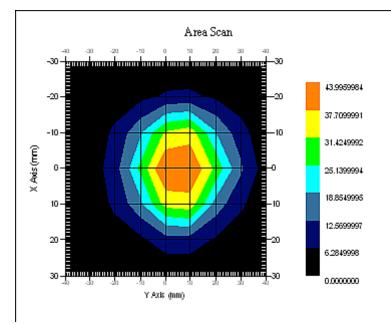
System Performance Check 1900 MHz Head Liquid

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data Device Name Serial No. Type Model Frequency Band Max. Transmit Pwr Drift Time Power Drift-Start Power Drift-Finish Power Drift-Finish	: 3 min(s) : 40 536 W/kg
Phantom Data Name Type Size (mm) Serial No. Location Description	: APREL-Uni : Uni-Phantom : 280 x 280 x 200 : System Default : Center : Default
Last Calib. Date Temperature Ambient Temp. Humidity	: Head : 295-01103 : 1900.00 MHz : 27-Oet-2012 : 20.00 °C : 21.00 °C : 56.00 RH% : 40.07 F/m : 1.39 S/m : 1000.00 kg/cu. M
Probe Data Name Model Type Serial No. Last Calib. Date Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: E-Field : E-020 : E-Field Triangle : 500-00283 : 09-Aug-2012 : 1900 : 1 : 5.20 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Area Scan Zoom Scan	: 1 : Complete : 20.00 °C : 20.00 °C : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

1 gram SAR value	: 40.249 W/kg
10 gram SAR value	: 22.361W/kg
Area Scan Peak SAR	: 43.665 W/kg
Zoom Scan Peak SAR	: 77.634 W/kg

1900 MHz System Validation with Head Tissue

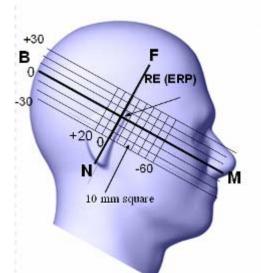

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

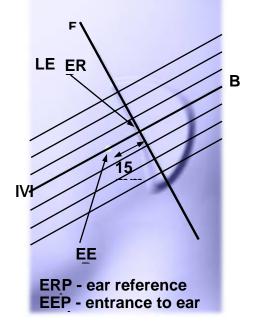
System Performance Check 1900 Body Liquid

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data Device Name Serial No. Type Model Frequency Band Max. Transmit Pwr Drift Time Power Drift-Start Power Drift-Finish Power Drift (%)	: Dipole 1900MHz : 210-00710 : Dipole : ALS-D-1900-S-2 : 1900 : 1 W : 3 min(s) : 41.012 W/kg : 40.989 W/kg : -0.561
Phantom Data Name Type Size (mm) Serial No. Location Description	: APREL-Uni : Uni-Phantom : 280 x 280 x 200 : System Default : Center : Default
Temperature Ambient Temp. Humidity	: Body : 295-02102 : 1900.00 MHz : 27-Oet-2012 : 20.00 °C : 21.00 °C : 56.00 RH% : 53.77 F/m : 1.53 S/m : 1000.00 kg/cu. m
Probe Data Name Model Type Serial No. Last Calib. Date Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: E-Field : E-O20 : E-Field Triangle : 500-00283 : 09-Aug-2012 : 1900 : 1 : 5.0 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Area Scan Zoom Scan	: 1 : Complete : 20.00 °C : 21.00 °C : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

1 gram SAR value	: 41.024 W/kg
10 gram SAR value	: 21.967 W/kg
Area Scan Peak SAR	: 43.996 W/kg
Zoom Scan Peak SAR	: 81.212 W/kg


1900 MHz System Validation with Body Tissue

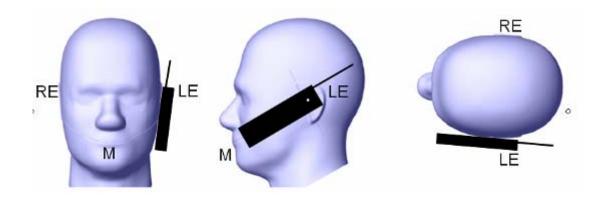

EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¹/₄ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Cheek/Touch Position


The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

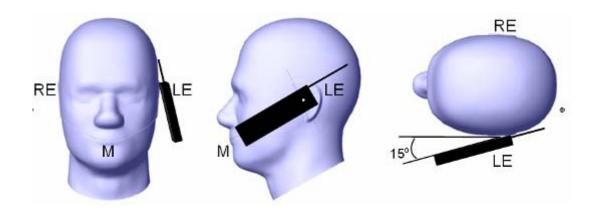
- When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek /Touch Position

Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":


1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.

2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point isby 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

Bay Area Compliance Laboratories Corp.(Shenzhen)

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

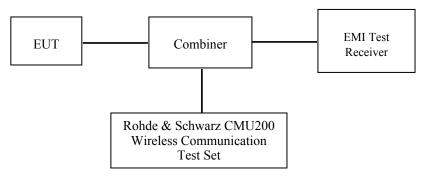
SAR Evaluation Procedure

The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 35 mm x 35 mm x 35 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.


CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input of the EMI Test Receiver through sufficient attenuation.

GSM

Test Results:

GSM

Band	Frequency	Conducted Output Power			
Danu	(MHz)	GSM (dBm)	GSM (W)		
	824.2	32.59	1.816		
Cellular	836.6	32.36	1.722		
-	848.8	32.37	1.726		
	1850.2	28.87	0.771		
PCS	1880.0	28.40	0.692		
	1909.8	28.22	0.664		

Band Channe No.	Channel	Frequency	RF Output Power (dBm)					
	No.	(MHz)	1 slot	2 slot	3 slots	4 slots		
	128	824.2	32.58	32.40	Not Support	Not Support		
Cellular	Cellular 190		32.37	32.30	Not Support	Not Support		
251		848.8	32.40	32.22	Not Support	Not Support		
	512	1850.2	28.89	28.53	Not Support	Not Support		
PCS	PCS 661		28.46	28.44	Not Support	Not Support		
810		1909.8	28.30	28.48	Not Support	Not Support		

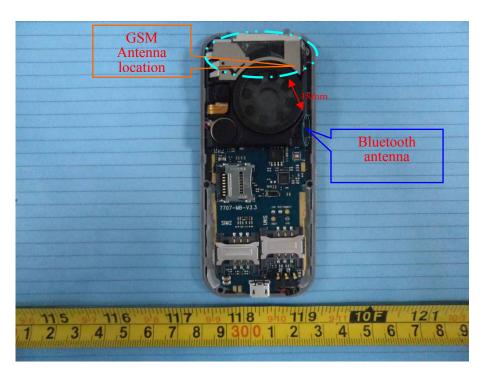
GPRS

For SAR, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal.

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.25 dB	-3 dB
Crest Factor	8	4	2.66	2

The time based average power

Band Chan	Channel No.	Frequency	Time based average Power (dBm)					
	Channel No.	(MHz)	1 slot	2 slot	3 slots	4 slots		
	128	824.2	23.58	26.40	Not Support	Not Support		
Cellular	Cellular 190		23.37	26.30	Not Support	Not Support		
251		848.8	23.40	26.22	Not Support	Not Support		
	512	1850.2	19.89	22.53	Not Support	Not Support		
PCS 661 810		1880.0	19.46	22.44	Not Support	Not Support		
		1909.8	19.30	22.48	Not Support	Not Support		


Note:

- 1. Rohde & Schwarz Radio Communication Tester (CMU200) was used for the measurement of GSM peak and average output power for active timeslots.
- 2. For GSM voice, 1 timeslot has been activated with power level 5 (850 MHz band) and 0 (1900 MHz band).
- 3. For GPRS, 1 and 2 timeslots has been activated separately with power level 5(850 MHz band) and 0(1900 MHz band).

SAR SIMULTANEOUS TRANSMISSION EVALUATION

KDB648474 SIMULTANEOUS TRANSMITION CONSIDERATION

Stand-alone and simultaneous SAR evaluation for a cell phone with multiple transmitters is base on the antennas distance of each radio.

BT and GSM Antenna Location:

Antenna Information

Antenna-to-antenna separation distances :	1.8cm from GSM main antenna-to-BT antenna
Simultaneous transmission :	GSM voice can transmit simultaneously with Bluetooth

CONCLUSION:

Individual transmitter	Stand-alone SAR	Simultaneous SAR
Bluetooth	Not required	Not required
GSM	Required	Simultaneous SAR of BT and GSM is not required

Note:

- The distance between BT and GSM antenna is 1.8cm<2.5cm.The max 1g-SAR of GSM antenna is 0.648w/kg<1.2w/kg.According to KDB648474, stand-alone SAR is not required for BT antenna and simultaneous SAR evaluation is not required for Bluetooth and GSM antennas.
- 2) P_{Ref} is defined as the maximum conducted power available at the antenna according to source-based time-averaging requirements of Section 2.1093(d)(5).

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

Test Data

Environmental Conditions

Temperature:	21° C
Relative Humidity:	50%
ATM Pressure:	1002 mbar

* Testing was performed by Sandy Wang on 2012-10-27 to 2012-10-28.

Test result:

Cellular Band:

EUT	Frequency	(MHz)	Test	Antenna	Phantom	Power Drift (%)	FCC 1g SAR (W/Kg)	
Position	Channel	MHz	Mode	Туре	Туре		Measurement	Limit
	128(Low)	824.2	GSM	Integral	SAM	-1.989	0.540	1.6
Left Head Cheek	190(Middle)	836.6	GSM	Integral	SAM	/	/	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	SAM	1.911	0.362	1.6
Left Head Tilt	190(Middle)	836.6	GSM	Integral	SAM	/	/	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	SAM	2.096	0.552	1.6
Right Head Cheek	190(Middle)	836.6	GSM	Integral	SAM	/	/	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	SAM	-2.551	0.353	1.6
Right Head Tilt	190(Middle)	836.6	GSM	Integral	SAM	/	/	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
Body-Worn-Headset	128(Low)	824.2	GSM	Integral	Universal	-1.307	0.259	1.6
Front	190(Middle)	836.6	GSM	Integral	Universal	/	/	1.6
(1.5cm)	251(High)	848.8	GSM	Integral	Universal	/	/	1.6
Body-Worn-Headset	128(Low)	824.2	GSM	Integral	Universal	-1.773	0.423	1.6
Back	190(Middle)	836.6	GSM	Integral	Universal	/	/	1.6
(1.5cm)	251(High)	848.8	GSM	Integral	Universal	/	/	1.6
	128(Low)	824.2	GPRS	Integral	Universal	1.628	0.629	1.6
Body-Worn- Front	190(Middle)	836.6	GPRS	Integral	Universal	/	/	1.6
(1.5cm)	251(High)	848.8	GPRS	Integral	Universal	/	/	1.6
	128(Low)	824.2	GPRS	Integral	Universal	2.734	0.648	1.6
Body-Worn- Back (1.5cm)	190(Middle)	836.6	GPRS	Integral	Universal	/	/	1.6
()	251(High)	848.8	GPRS	Integral	Universal	/	/	1.6

Note:

1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.

EUT	Frequency	(MHz)	Test Mode Antenna		Liquid	Power Drift	FCC 1g SAR (W/Kg)	
Position	Channel	MHz	i est moue	Туре	Туре	(%)	Measurement	Limit
	512(Low)	1850.2	GSM	Integral	SAM	-1.894	0.506	1.6
Left Head Cheek	661(Middle)	1880.0	GSM	Integral	SAM	/	/	1.6
	810(High)	1909.8	GSM	Integral	SAM	/	/	1.6
	512(Low)	1850.2	GSM	Integral	SAM	1.211	0.356	1.6
Left Head Tilt	661(Middle)	1880.0	GSM	Integral	SAM	/	/	1.6
	810(High)	1909.8	GSM	Integral	SAM	/	/	1.6
	512(Low)	1850.2	GSM	Integral	SAM	-1.380	0.512	1.6
Right Head Cheek	661(Middle)	1880.0	GSM	Integral	SAM	/	/	1.6
	810(High)	1909.8	GSM	Integral	SAM	/	/	1.6
	512(Low)	1850.2	GSM	Integral	SAM	-1.609	0.349	1.6
Right Head Tilt	661(Middle)	1880.0	GSM	Integral	SAM	/	/	1.6
	810(High)	1909.8	GSM	Integral	SAM	/	/	1.6
Body-Worn-Headset	512(Low)	1850.2	GSM	Integral	Universal	-1.724	0.061	1.6
Front	661(Middle)	1880.0	GSM	Integral	Universal	/	/	1.6
(1.5cm)	810(High)	1909.8	GSM	Integral	Universal	/	/	1.6
Body-Worn-Headset	512(Low)	1850.2	GSM	Integral	Universal	-0.679	0.037	1.6
Back	661(Middle)	1880.0	GSM	Integral	Universal	/	/	1.6
(1.5cm)	810(High)	1909.8	GSM	Integral	Universal	/	/	1.6
	512(Low)	1850.2	GPRS	Integral	Universal	1.670	0.121	1.6
Body-Worn- Front	661(Middle)	1880.0	GPRS	Integral	Universal	/	/	1.6
(1.5cm)	810(High)	1909.8	GPRS	Integral	Universal	/	/	1.6
Body-Worn- Back (1.5cm)	512(Low)	1850.2	GPRS	Integral	Universal	2.704	0.082	1.6
	661(Middle)	1880.0	GPRS	Integral	Universal	/	/	1.6
(810(High)	1909.8	GPRS	Integral	Universal	/	/	1.6

PCS Band:

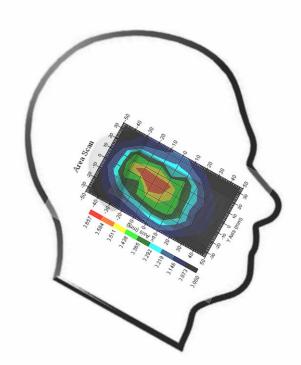
Note:

1. The EUT is a Class B mobile phone which can be attached to both GPRS and GSM services, using one service at a time.

2. The Multi-slot Classes of EUT is Class 10 which has maximum 4 Downlink slots and 2 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 3 DL+2UL is the worse case.

3. The EUT transmit and receive through the same GSM antenna while testing SAR.

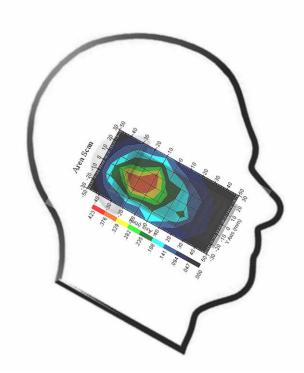
4. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.


EUT SCAN RESULTS

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

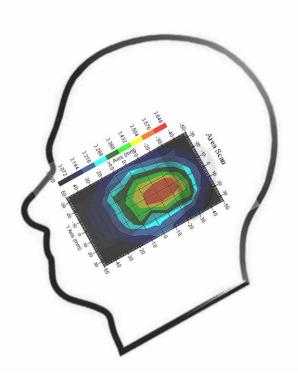
Left Head Cheek (824.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.450 W/kg : 0.441 W/kg : -1.989
Tissue Data Type Frequency Epsilon Sigma Density	: Head : 824.20 MHz : 41.57 F/m : 0.88 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835 : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.540 W/kg : 0.362 W/kg : 0.586 W/kg : 0.960 W/kg


Plot 1#

Left Head Tilt (824.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.262 W/kg : 0.267 W/kg : 1.911
Tissue Data Type Frequency Epsilon Sigma Density	: Head : 824.20 MHz : 41.57 F/m : 0.88 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835 : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.362 W/kg : 0.224 W/kg : 0.377 W/kg : 0.630 W/kg


Plot 2#

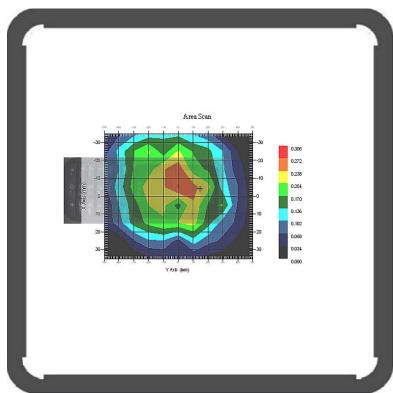
Right Head Cheek (824.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.429 W/kg : 0.438 W/kg : 2.096
Tissue Data Type Frequency Epsilon Sigma Density	: Head : 824.20 MHz : 41.57 F/m : 0.88 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835 : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.552 W/kg : 0.354 W/kg : 0.577 W/kg : 0.861 W/kg

Plot 3#

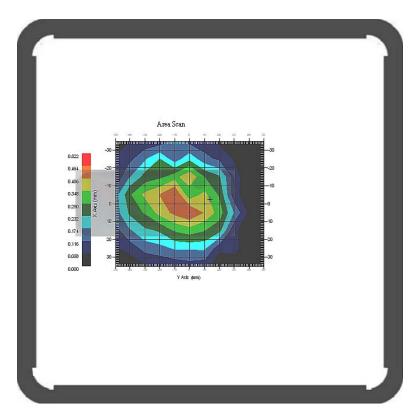
Right Head Tilt (824.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.274 W/kg : 0.267 W/kg : -2.551
Tissue Data Type Frequency Epsilon Sigma Density	: Head : 824.20 MHz : 41.57 F/m : 0.88 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835 : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.353 W/kg : 0.219 W/kg : 0.370 W/kg : 0.524 W/kg


Plot 4#

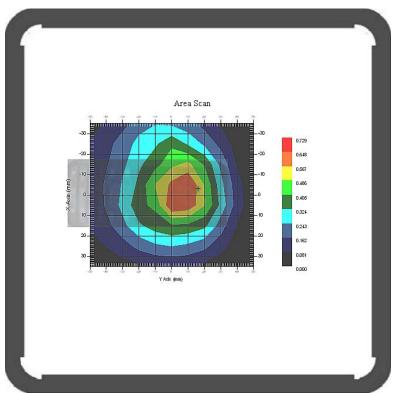
Body-worn Front-Headset (824.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type : Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.229 W/kg : 0.226 W/kg : -1.307
Tissue Data Type Frequency Epsilon Sigma Density	: Body : 824.20 MHz : 55.18 F/m : 0.93 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835 : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.259 W/kg : 0.172 W/kg : 0.275 W/kg : 0.620 W/kg



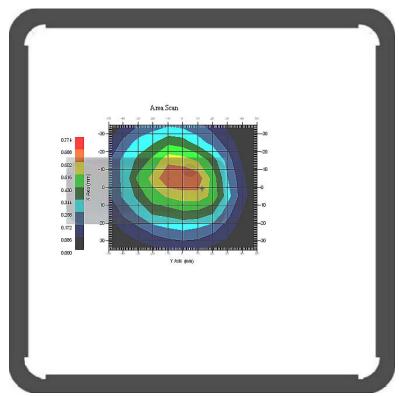
Body-worn Back-Headset (824.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type : Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.396 W/kg : 0.389 W/kg : -1.773
Tissue Data Type Frequency Epsilon Sigma Density	: Body : 824.20 MHz : 55.18 F/m : 0.93 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835 : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.423 W/kg : 0.262 W/kg : 0.467 W/kg : 0.700 W/kg



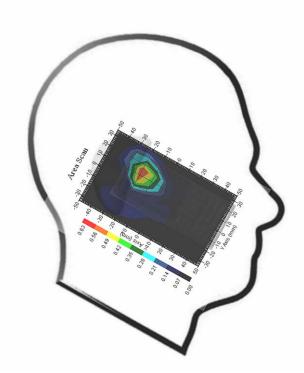
Body-worn Front (824.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type : Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GPRS : 4 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.552 W/kg : 0.561 W/kg : 1.628
Tissue Data	
Туре	: Body
Frequency	: 824.20 MHz
Epsilon	: 55.18 F/m
Sigma	: 0.93 S/m
Density	: 1000.00 kg/cu. m
Probe Data	
Serial No.	: 500-00283
Frequency Band	: 835
Duty Cycle Factor	: 4
Conversion Factor	: 6.6
Probe Sensitivity	1.20 1.20 1.20 $\mu V/(V/m)^2$
Compression Point	: 95.00 mV
Offset	: 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	e
	e



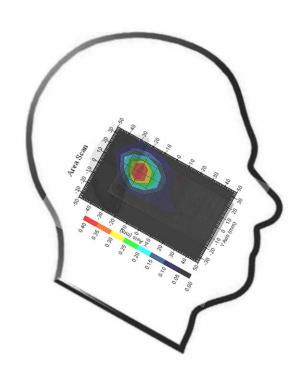
Body-worn Back (824.2 MHz Low Channel)

: 4 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm tart : 0.586 W/kg inish : 0.602 W/kg %) : 2.734
: Body
: 824.20 MHz
: 55.18 F/m
: 0.93 S/m
: 1000.00 kg/cu. m
: 500-00283
nd : 835
ictor : 4
actor : 6.6
rity : 1.20 1.20 1.20 $\mu V/(V/m)^2$
: 1.56 mm
alue : 0.648 W/kg value : 0.418 W/kg ik SAR : 0.689 W/kg eak SAR : 1.030 W/kg
inish : 0.602 W/kg inish : 0.602 W/kg 6) : $2.734: Body: 824.20 \text{ MHz}: 55.18 \text{ F/m}: 0.93 \text{ S/m}: 1000.00 \text{ kg/cu. m}: 1.20 \text{ 1.20 } 1.20 \ \mu \text{V/(V/m)2}Point : 95.00 \text{ mV}: 1.56 \text{ mm}alue : 0.648 \text{ W/kg}value : 0.418 \text{ W/kg}k SAR : 0.689 \text{ W/kg}$



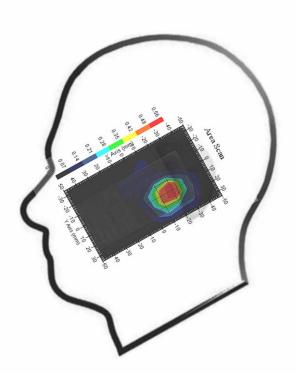
Left Head Cheek (1850.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.317 W/kg : 0.311W/kg : -1.894
Tissue Data Type Frequency Epsilon Sigma Density	: Head : 1850.20 MHz : 40.06 F/m : 1.37 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900 : 8 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.563 W/kg


Plot 9#

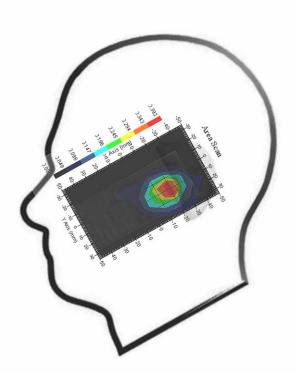
Left Head Tilt (1850.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.248 W/kg : 0.251 W/kg : 1.211
Tissue Data Type Frequency Epsilon Sigma Density	: Head : 1850.20 MHz : 40.06 F/m : 1.37 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900 : 8 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.397 W/kg


Plot 10#

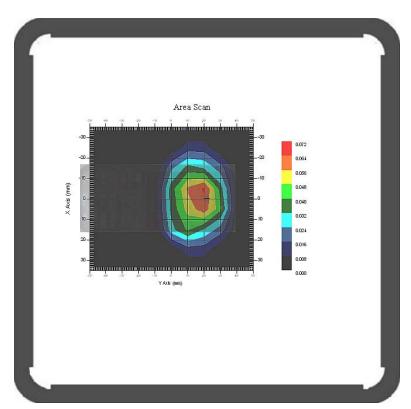
Right Head Cheek (1850.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.288 W/kg : 0.283 W/kg : -1.380
Tissue Data Type Frequency Epsilon Sigma Density	: Head : 1850.20 MHz : 40.06 F/m : 1.37 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900 : 8 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.512 W/kg : 0.210 W/kg : 0.558 W/kg : 0.899 W/kg


Plot 11#

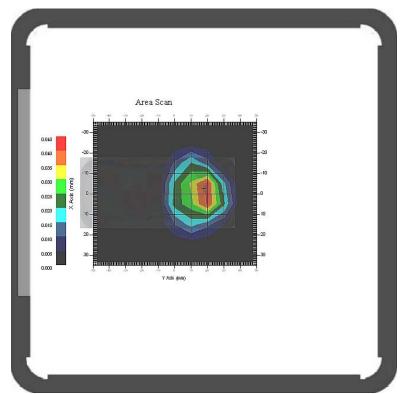
Right Head Tilt (1850.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.250 W/kg : 0.246 W/kg : -1.609
Tissue Data Type Frequency Epsilon Sigma Density	: Head : 1850.20 MHz : 40.06 F/m : 1.37 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900 : 8 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.392 W/kg


Plot 12#

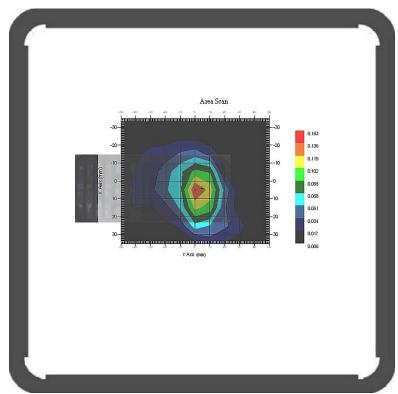
Body- worn Front-Headset (1850.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.058 W/kg : 0.057 W/kg : -1.724
Tissue Data Type Frequency Epsilon Sigma Density	: Body : 1850.20 MHz : 53.92 F/m : 1.48 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900 : 8 : 5.0 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	8



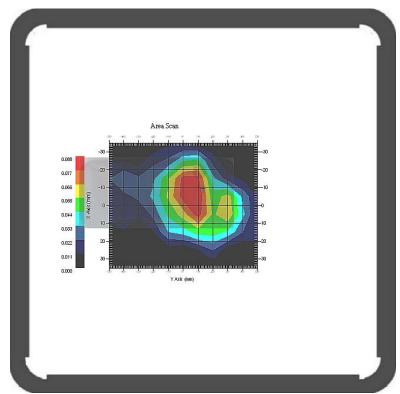
Body- worn Back- Headset (1850.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.038 W/kg : 0.038 W/kg : -0.679
Tissue Data Type Frequency Epsilon Sigma Density	: Body : 1850.20 MHz : 53.92 F/m : 1.48 S/m : 1000.00 kg/cu. m
	: 500-00283 : 1900 : 8 : 5.0 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	8



Body- worn Front (1850.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GPRS : 4 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.120 W/kg : 0.122 W/kg : 1.670
Tissue Data Type Frequency Epsilon Sigma Density	: Body : 1850.20 MHz : 53.92 F/m : 1.48 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900 : 4 : 5.0 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.121 W/kg : 0.076 W/kg : 0.138 W/kg : 0.240 W/kg



Body- worn Back (1850.2 MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GPRS : 4 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.074 W/kg : 0.076 W/kg : 2.704
Tissue Data	
Туре	: Body
Frequency	: 1850.20 MHz : 53.92 F/m
Epsilon Sigma	: 1.48 S/m
Density	: 1000.00 kg/cu. m
,	
Probe Data	
Serial No.	: 500-00283
Frequency Band	: 1900
Duty Cycle Factor	: 4
Conversion Factor	: 5.0
Probe Sensitivity	1.20 1.20 1.20 $\mu V/(V/m)^2$
Compression Point Offset	: 95.00 mV : 1.56 mm
Ullset	. 1.30 11111
1 gram SAR value	: 0.082 W/kg
10 gram SAR value	: 0.043 W/kg
Area Scan Peak SAR	: 0.086 W/kg
Zoom Scan Peak SAR	: 0.200 W/kg
	5

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Source of	Tolerance	Probability	Divisor	c _i ¹	c _i ¹	Standard Uncertaint	Standard Uncertaint		
Uncertainty	Value	Distribution	DIVISOI	(1-g)	(10-g)	y (1-g) %	y (10-g) %		
Measurement System									
Probe Calibration	3.5	normal	1	1	1	3.5	3.5		
Axial Isotropy	3.7	rectangular	$\sqrt{3}$	$(1-cp)^{1/2}$	$(1-cp)_{1/2}$	1.5	1.5		
Hemispherical Isotropy	10.9	rectangular	$\sqrt{3}$	√cp	√cp	4.4	4.4		
Boundary Effect	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6		
Linearity	4.7	rectangular	$\sqrt{3}$	1	1	2.7	2.7		
Detection Limit	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6		
Readout Electronics	1.0	normal	1	1	1	1.0	1.0		
Response Time	0.8	rectangular	$\sqrt{3}$	1	1	0.5	0.5		
Integration Time	1.7	rectangular	$\sqrt{3}$	1	1	1.0	1.0		
RF Ambient Condition -Noise	0.95	rectangular	$\sqrt{3}$	1	1	0.55	0.55		
RF Ambient Condition - Reflections	3.0	rectangular	$\sqrt{3}$	1	1	1.7	1.7		
Probe Positioner Mech. Restrictions	0.4	rectangular	$\sqrt{3}$	1	1	0.2	0.2		
		Res	triction			_			
Probe Positioning with respect to Phantom Shell	2.9	rectangular	$\sqrt{3}$	1	1	1.7	1.7		
Extrapolation and Integration	3.7	rectangular	$\sqrt{3}$	1	1	2.1	2.1		
Test Sample Positioning	2.6	normal	1	1	1	2.6	2.6		
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0		

Measurement Uncertainty for 300MHz to 3GHz