SAR Test Report

Report No.: AGC06P120201S1

FCC ID : UOSAM56

Product Designation : GSM Mobile Phone

Brand Name : AMGOO

Test model : AM56

Client : Amgoo Telecom Co., Ltd.

Date of Issue : Feb.20,2012

STANDARD(S) FCC Oet65 Supplement C June 2001 IEEE Std. 1528-2003,47CFR § 2.1093

Attestation of Global Compliance Co., Ltd.

CAUTION: This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

7	Test Report Certification				
Applicant Name	icant Name : Amgoo Telecom Co., Ltd.				
Applicant Address	:	6/F, Block 3, Tongjian Building, Middle Shennan Rd, Futian District, Shenzhen, China			
Manufacturer Name	:	Amgoo Telecom Co., Ltd.			
Manufacturer Address	:	6/F, Block 3, Tongjian Building, Middle Shennan Rd, Futian District, Shenzhen, China			
Product Name	:	GSM mobile phone			
Brand Name	:	AMGOO			
Model Name	:	AM56			
EUT Voltage	:	DC3.7V			
Applicable Standard	:	FCC Oet65 Supplement C June 2001 IEEE Std. 1528-2003,47CFR § 2.1093			
Test Date	:	02-18-2012			
		MAX SAR MEASUREMENT(1g)			
Test Results	:	Head:0.576 W/Kg			
Body:0.713 W/Kg					
		Attestation of Global Compliance Co., Ltd.			
Performed Location	:	1F., No.2 Building, Huafeng No.1 Technical Industrial Park, Sanwei,			
Xixiang, Baoan District, Shenzhen					

Tested By

Angela Li

Feb.20, 2012

Angela li

Checked By

Forrest Lei

Feb.20, 2012

Authorized By

Solger Zhang

Feb.20, 2012

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1. EUT DESCRIPTION	5
2. SAR MEASUREMENT SYSTEM	6
2.1. COMOSAR SYSTEM DESCRIPTION	
3. TISSUE SIMULATING LIQUID	11
3.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	11
4. SAR MEASUREMENT PROCEDURE	13
4.1. SAR SYSTEM VALIDATION4.2. SAR MEASUREMENT PROCEDURE	
5. SAR EXPOSURE LIMITS	16
6. TEST EQUIPMENT LIST	17
7. MEASUREMENT UNCERTAINTY	18
8. CONDUCTED POWER MEASUREMENT	20
9. TEST RESULTS	21
9.1. SAR TEST RESULTS SUMMARY	21
APPENDIX A. SAR SYSTEM VALIDATION DATA	26
APPENDIX B. SAR MEASUREMENT DATA	30
APPENDIX C. TEST SETUP PHOTOGRAPHS &EUT PHOTOGRAPS	84
APPENDIX D. PROBE CALIBRATION DATA	96
APPENDIX E DIPOLE CALIBRATION DATA	105

Report No.:AGC06P120201S1 Page 4 of 122

1. General Information

1.1. EUT Description

Product Name	GSM mobile phone	
Model No.	AMGOO	
Hardware Version	A307-MB-V0.3	
Software Version	N/A	
Device Category	Portable	
RF Exposure Environment	Uncontrolled	
Antenna Type	Internal	
GSM and GPRS		
Support Band	GSM850/PCS1900	
GPRS Type	Class B	
GPRS Class	Class 8,10(1Tx+4Rx,2Tx+3Rx)	
TX Frequency Range	GSM 850: 824.2~848.8MHz PCS 1900: 1850.2~1909.8MHz	
RX Frequency Range	GSM 850: 869~894MHz PCS 1900: 1930~1990MHz	
Release Version	R99	
Type of modulation	GMSK for GSM/GPRS	
Antenna Gain	1.0dBi	
Max. Output Power (Avg. Burst Power)	GSM850:31.68 dBm (32.84dBm Peak Power) PCS1900:29.33 dBm (29.58 dBm Peak Power)	
Max. Output Power (Radiated)	GSM850: 30.90 dBm- ERP PCS1900: 28.53 dBm- EIRP	
Bluetooth		
Bluetooth Frequency	2402~2480MHz	
Type of modulation	GFSK, ∏/4-DQPSK, 8-DPSK	
Data Rate	1Mbps, 2Mbps, 3Mbps	
Antenna Gain	0.8dBi	
Battery	Brand name: AMGOO Model No.: AM-4CD Voltage and Capacitance: DC 3.7V/600mAh Manufacturer Name: Shenzhen Powercom Electronics Co.,Ltd	

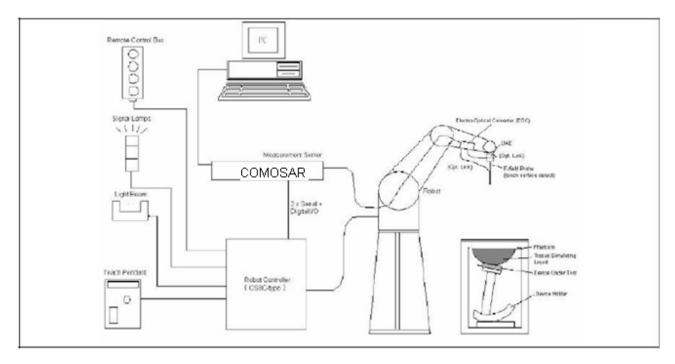
Report No.:AGC06P120201S1 Page 5 of 122

	Brand name: AMGOO		
Adenter	Model No. : CH3		
Adapter	Input: AC100-240V/50-60Hz Output: 5V/500mA		
	Manufacturer Name: SHENZHEN HUIYUDA ELECTRONIC CO.,LTD		

Note: The sample used for testing is end product.

1.2. Test Procedure

1	Setup the EUT and simulators as shown on above.		
2	Turn on the power of all equipment.		
3	EUT communicate with CMU 200, and test them respectively at GSM 850 & PCS1900		


1.3. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21± 2
Humidity (%RH)	30-70	56

2. SAR Measurement System

2.1. COMOSAR System Description

The COMOSAR system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot with controller, teach pendant and software.

An arm extension for accommodating the data acquisition electronics (DAE).

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection,

collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.

The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

A computer running WinXP and the Opensar software.

Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.

The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user

defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21.5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Post processor, COMOSAR allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dissymmetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The

dissymmetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN62209-1, IEC 62209, etc.) Under ISO17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	SSE5		
Manufacture	Satimo		
frequency	0.3 GHz-3 GHz		
	Linearity:±0.2dB(300 MHz-3 GHz)		
Dynamic	0.01W/Kg-100W/Kg		
Range	Linearity:±0.2dB		
Dimensions	Overall length:330mm		
	Length of individual dipoles:4.5mm		
	Maxmum external diameter:8mm		
	Probe Tip external diameter:5mm		
	Distance between dipoles/ probe		
	extremity:2.7mm		
Application	High precision dosimetric measurements in any exposure scenario		
	(e.g., very strong gradient fields). Only probe which enables		
	compliance testing for frequencies up to 3 GHz with precision of better		
	30%.		

2.3 Robot

The COMOSAR system uses the high precision robots TX90 XL type out of the newer series from Satimo SA (France).For the 6-axis controller COMOSAR system, the KUKA robot controller version from Satimo is used.

The XL robot series have many features that are important for our application:

High precision (repeatability 0.02 mm)

High reliability (industrial design)

Jerk-free straight movements

Low ELF interference (the closed metallic

construction shields against motor control fields)

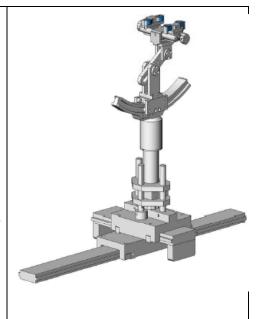
6-axis controller

2.4. Video Positioning Systerm

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



2.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵr =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

Left head

Right head

Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

Ingredient	835MHz	835MHz	1900MHz	1900MHz
(% Weight)	Head	Body	Head	Body
Water	40.45	52.4	54.90	40.5
Salt	1.45	1.40	0.18	0.50
Sugar	57.6	45.0	0.00	58.0
HEC	0.40	1.00	0.00	0.50
Preventol	0.10	0.20	0.00	0.50
DGBE	0.00	0.00	44.92	0.00

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using COMOSAR Dielectric Probe Kit and R&S Network Analyzer ZVL6.

Head Tissue Stimulant Measurement					
Frequency (MHz)	Description	Dielectric Parameters Tissue T [°C]			
835MHz	Reference result ±5% window	εr 41.50 39.43-43.58	δ[s/m] 0.90 0.86-0.95	N/A	
	02-18-2012	40.78	0.91	21.0	

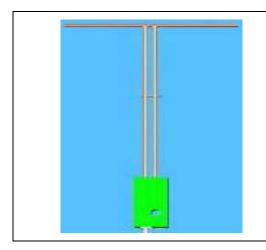
Body Tissue Stimulant Measurement					
Frequency (MHz)	Description	Dielectric	Tissue Temp [°C]		
835MHz	Reference result ±5% window	εr 55.20 52.44-57.96	δ[s/m] 0.97 0.92-1.02	N/A	
	02-18-2012	55.68	0.95	21.0	

Head Tissue Stimulant Measurement						
Frequency (MHz)	Description	Dielectric	Tissue Temp [°C]			
1900MHz	Reference result ±5% window	εr 40.00 38.00-42.00	δ[s/m] 1.40 1.33-1.47	N/A		
	02-18-2012	41.27	1.40	21.0		

Body Tissue Stimulant Measurement						
Frequency (MHz)	Description	Dielectric Parameters		Tissue Temp [°C]		
1900MHz	Reference result ±5% window	εr 53.30 50.64-55.97	δ[s/m] 1.52 1.44-1.60	N/A		
	02-18-2012	53.71	1.49	21.0		

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.


Target Frequency	I	nead	bo	ody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε r = relative permittivity, σ = conductivity and ρ = 1000 kg/m₃)

SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
900 MHz	149.0	83.3	3.6
1900MHz	68	39.5	3.6

Report No.:AGC06P120201S1 Page 14 of 122

4.1.2. Validation Result

System Perfo	rmance Check at 835	MHz &1900MHz for H	ead	
Validation Kit	:: SN 46/11DIP 0G900-	185		
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp.[°C]
900 MHz	Reference result ± 10% window	9.70 8.73 to 10.67	6.30 5.67 to 6.93	N/A
	02-18-2012	10.65	6.37	21.0
Validation Kit	:: SN 46/11DIP 1G900-	187		
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp.[°C]
1900 MHz	Reference result ± 10% window	39.8 35.82 to 43.78	21.1 18.99 to 23.21	N/A
	02-18-2012	43.04	21.34	21.0
Note: All SAR	values are normalized t	o 1W forward power.		•

4.2. SAR Measurement Procedure

The COMOSAR calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

When multiple peak SAR locations were found during the same configuration or test mode, Zoom scan shall performed on each peak SAR location, only the peak point with maximum SAR value will be reported for the configuration or test mode.

Report No.:AGC06P120201S1 Page 16 of 122

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Equipment description	Manufacturer/Mo del	Identification No.	Current calibration date	Next calibration date	
SAR Probe	Satimo	SN_3511_EP132	12/09/2011	12/08/2012	
Phantom	Satimo	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	Satimo	-	Validated. No cal required.	Validated. No cal required.	
Comm Tester	R&S - CMU200	069Y7-158-13-712	12/09/2011	12/08/2012	
Multimeter	Keithley 2000	1188656	12/09/2011	12/08/2012	
Dipole	Satimo SID900	SN46/11 DIP 0G900-185	12/09/2011	12/08/2014	
Dipole	Satimo SID1900	SN46/11 DIP 1G900-187	12/09/2011	12/08/2014	
Amplifier	Aethercomm	SN 046	12/09/2011	12/08/2012	
Power Meter	HP E4418A	US38261498	12/09/2011	12/08/2012	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	12/09/2011	12/08/2012	

Note: Per KDB 50824 Dipole SAR Validation Verification, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

7. Measurement Uncertainty

			Satim	no Unc	ertainty				
Me	easuremen	nt uncertair	ity for 300	MHz to 3 (GHz averaged	l over 1 grar	m / 10 gram.		
Error Description	Sec	Tol	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
		(±%)	Dist.		1g	10g	Unc.	Unc.	Veff
							(1g) (±%)	(10g)(±%)	
Measurement System		1				1	1		1
Probe Calibration	E.2.1	6	N	1	1	1	6	6	00
Axial Isotropy	E.2.2	3	R	√3	$(1-c_p)^{1/2}$	$(1-c_p)^{1/2}$	1.22474	1.22474	00
Hemispherical	E.2.2	5	R	√3	√C _p	√Cp	2.04124	2.04124	00
Isotropy									
Boundary Effects	E.2.3	1	R	√3	1	1	0.57735	0.57735	00
Linearity	E.2.4	5	R	√3	1	1	2.88675	2.88675	00
System Detection	E.2.5	1	R	√3	1	1	0.57735	0.57735	00
Limits									
ReadoutElectronics	E.2.6	0.5	N	1	1	1	0.5	0.5	00
Response Time	E.2.7	0.2	R	√3	1	1	0.11547	0.11547	8
Integration Time	E.2.8	2	R	√3	1	1	1.1547	1.1547	8
RF Ambient Noise	E.6.1	3	R	√3	1	1	1.73205	1.73205	80
Probe Positioner	E.6.2	2	R	√3	1	1	1.1547	1.1547	00
Mechanical Tolerance									
Probe Positioning with	E.63	1	R	√3	1	1	0.57735	0.57735	00
Respect to Phantom									
Shell									
Extrapolation,interpol	E.5.2	1.5	R	√3	1	1	0.86603	0.86603	00
ation and Integration									
Algorithms for Max.									
SAR Evaluation									
Dipole		_					1	T	1
Device Positioning	8,E.4.2	1	N	√3	1	1	0.57735	0.57735	N-1
Power Drift	8.6.6.2	2	R	√3	1	1	1.1547	1.1547	∞
Phantom and Tissue									
Parameters		_	1				T	1	ı
Phantom Uncertainty	E.3.1	4	R	√3	1	1	2.3094	2.3094	00
Liquid Conductivity	E.3.2	5	R	√3	0.64	0.43	1.84752	1.2413	00
(target)									
Liquid Conductivity	E.3.3	2.5	N	1	0.64	0.43	1.6	1.075	00
(meas.)			1						
Liquid Permittivity	E.3.2	3	R	√3	0.6	0.49	1.03923	0.8487	00
(target)									

Report No.:AGC06P120201S1 Page 19 of 122

Liquid Permittivity	E.3.3	2.5	N	1	0.6	0.49	1.5	1.225	М
(meas.)									
Combined Standard			RSS				8.09272	7.9296	
Uncertainty									
Expanded Uncertainty			k				15.8617	15.542	
(95%CONFIDENCE									
INTERVAL)									

8. Conducted Power Measurement

Mada	Frequency	Reference	Peak	Tolerance	Avg.Burst	Duty cycle	Frame
Mode	(MHz)	Power	Power		Power	Factor(dB)	Power(dBm)
Maximum Po	wer <sim 1=""></sim>						
	824.2	33	32.84	-0.16	31.68	-9	22.68
GSM 850	836.6	33	32.78	-0.22	31.42	-9	22.42
	848.8	33	32.67	-0.33	31.55	-9	22.55
CDDC0E0	824.2	33	32.56	-0.44	31.36	-9	22.36
GPRS850	836.6	33	32.57	-0.43	31.39	-9	22.39
(1 Slot)	848.8	33	32.55	-0.45	31.40	-9	22.40
CDDC0E0	824.2	30	29.90	-0.10	28.23	-6	22.23
GPRS850 (2 Slot)	836.6	30	29.87	-0.13	28.21	-6	22.21
(2 5101)	848.8	30	29.83	-0.17	28.35	-6	22.35
PCS1900	1850.2	30	29.56	-0.44	29.15	-9	20.15
	1880.0	30	29.58	-0.42	29.33	-9	20.33
	1909.8	30	29.47	-0.53	29.12	-9	20.12
CDDC1000	1850.2	30	29.51	-0.49	29.11	-9	20.11
GPRS1900	1880.0	30	29.54	-0.46	29.17	-9	20.17
(1 Slot)	1909.8	30	29.49	-0.51	29.27	-9	20.27
CDDC1000	1850.2	27	26.55	-0.45	26.19	-6	20.19
GPRS1900	1880.0	27	26.53	-0.47	26.05	-6	20.05
(2 Slot)	1909.8	27	26.50	-0.50	26.13	-6	20.13
Maximum Po	wer <sim 2=""></sim>						
GSM 850	824.2	33	32.83	-0.17	31.61	-9	22.61
GSM 850	836.6	33	32.79	-0.21	31.4	-9	22.4
GSM 850	848.8	33	32.56	-0.44	31.40	-9	22.4
PCS 1900	1850.2	30	29.42	-0.58	29.16	-9	20.16
PCS 1900	1880.0	30	29.57	-0.43	29.30	-9	20.3
PCS 1900	1909.8	30	29.46	-0.54	29.14	-9	20.14
Note: All SAR T	est was done in	SIM 1.					

Note 1:

The Frame Power (Souce-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) – 9 dB

Frame Power = Max burst power (2 Up Slot) – 6 dB

Frame Power = Max burst power (3 Up Slot) – 4.25 dB

Frame Power = Max burst power (1 Up Slot) – 3 dB

Note2: All SAR Test was done in SIM 1.

Report No.:AGC06P120201S1 Page 21 of 122

9. Test Results

9.1. SAR Test Results Summary

9.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528, and Body SAR was performed with the device 15mm from the phantom. Body SAR was also performed with the headset attached and without.

9.1.2. Body SAR with Headset

Testing with the headset was performed at the position and channels that resulted in the highest body SAR. This testing was performed with GPRS transmitting with 2/3/4 uplink timeslots. This operation mode represents the maximum SAR situation, when downloading data via GPRS and listening to music by headset. SAR without the headset attached was significantly higher than with the headset, and also was verified several times and confirmed, so the final test data shown were the worst case without headset. In the Body SAR test result table, body-worn means display of device down, body-front means display of device up.

9.1.3. Operation Mode

This is a multislot class 10 device capable of 4 uplink timeslots. During the head SAR test, the device was transmitting with 1 uplink timeslot; during the body SAR test, it was transmitting with 2 uplink timeslots. Additionally, this device doesn't support dual transfer mode (DTM).

9.1.4. Co-located SAR

According to KDB 447498 and KDB 648474, the closest separation between GSM antenna and BT antenna is 50 mm, Bluetooth Max peak power is lower than $2P_{ref}$, thus, stand-alone SAR and simultaneous transmission SAR is not required.

Other reference document: KDB 941225.

Report No.:AGC06P120201S1 Page 22 of 122

9.1.5. Test Result

Ambient Temp	perature (°C)	: 21 ±2		Relative Humidity (%): 52					
Liquid Temper				Depth of Liquid (, , ,				
Product: GSM				op oqu.u (<u>,</u>				
Test Mode: G	SM850 <sim< td=""><td>1> with GM</td><td>1SK modul</td><td>ation</td><td></td><td></td><td></td></sim<>	1> with GM	1SK modul	ation					
Test Position	Antenna	Frequenc	;y	Frame Power	Power Drift	SAR 1g	Limit (W/kg)		
Head	Position	channel	MHz	(dBm)	(<±0.2 dB)	(W/kg)			
Left-Cheek	Fixed	128	824.2	22.68			1.6		
Left-Cheek	Fixed	190	836.6	22.42	-0.006	0.576	1.6		
Left-Cheek	Fixed	251	848.8	22.55			1.6		
Left-Tilted	Fixed	190	836.6	22.42	-0.075	0.416	1.6		
Right-Cheek	Fixed	128	824.2	22.68			1.6		
Right-Cheek	Fixed	190	836.6	22.42	-0.010	0.549	1.6		
Right-Cheek	Fixed	251	848.8	22.55			1.6		
Right-Tilted	Fixed	190	836.6	22.42	-0.012	0.394	1.6		
Test Mode: G	SM850 <sim< td=""><td>2> with GM</td><td>ISK modul</td><td>ation</td><td></td><td></td><td></td></sim<>	2> with GM	ISK modul	ation					
Left-Cheek	Fixed	190	836.6	22.4	-0.009	0.526	1.6		

Ambient Temper	ature (°C) :	21.0 ±2		Relative Humidity	/ (%): 52		
Liquid Temperat	ure (°C) : 2	1.0 ±2		Depth of Liquid (d	cm):>15		
Product: MOBILI	E PHONE						
Test Mode: GSM	1850 <sim< td=""><td>1> with GM</td><td>ISK modul</td><td>ation</td><td></td><td></td><td></td></sim<>	1> with GM	ISK modul	ation			
Test Position	Antenna	Frequenc	у	Frame Power	Power Drift	SAR 1g	Limit
Body	Position	channel	MHz	(dBm)	(<±0.2 dB)	(W/kg)	(W/kg)
Body-worn	Fixed	128	824.2	22.68			1.6
Body-worn	Fixed	190	836.6	22.42	-0.065	0.275	1.6
Body-worn	Fixed	251	848.8	22.55			1.6
GPRS850 2slot							
Body-worn	Fixed	190	836.6	22.21	0.041	0.430	1.6
Body-front (GPRS 2slot)	Fixed	190	836.6	22.21	-0.057	0.311	1.6
Body-worn (With headset) (GPRS 2slot)	Fixed	190	836.6	22.21	-0.102	0.384	1.6

SAR MEASU	JREMENT						
Ambient Temp	perature (°C) :	21.0 ±2		Relative Humidity	/ (%): 52		
Liquid Temper	rature (°C) : 2	1.0 ±2		Depth of Liquid (cm):>15		
Product: MOBILE PHONE							
Test Mode: G	SM1900 <sim< td=""><td>1> with G</td><td>MSK modu</td><td>ılation</td><td></td><td></td><td></td></sim<>	1> with G	MSK modu	ılation			
Test Position	Antenna	Frequenc	;y	Frame Power	Power Drift	SAR 1g	Limit (W/kg)
Head	Position	channel	MHz	(dBm)	(<±0.2 dB)	(W/kg)	
Left-Cheek	Fixed	512	1850.2	20.15			1.6
Left-Cheek	Fixed	661	1880.0	20.33	-0.031	0.303	1.6
Left-Cheek	Fixed	810	1909.8	20.12			1.6
Left-Tilted	Fixed	661	1880.0	20.33	0.055	0.228	1.6
Right-Cheek	Fixed	512	1850.2	20.15			1.6
Right-Cheek	Fixed	661	1880.0	20.33	-0.047	0.416	1.6
Right-Cheek	Fixed	810	1909.8	20.12			1.6
Right-Tilted	Fixed	661	1880.0	20.33	0.016	0.364	1.6
Test Mode: G	SM1900 <sim< td=""><td>2> with G</td><td>MSK modu</td><td>ulation</td><td></td><td></td><td></td></sim<>	2> with G	MSK modu	ulation			
Right-Cheek	Fixed	661	1880.0	20.3	0.004	0.297	1.6

Note: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional. refer to KDB 941225.

Ambient Temper	ature (°C) :	21.0 ±2		Relative Humic	dity (%): 52		
Liquid Temperat	ure (°C) : 21	.0 ±2		Depth of Liquid	d (cm):>15		
Product: MOBILI	E PHONE						
Test Mode: GSM	11900 <sim< td=""><td>1> with GN</td><td>/ISK modula</td><td>tion</td><td></td><td></td><td></td></sim<>	1> with GN	/ISK modula	tion			
Test Position	Antenna	Freq	luency	Frame Power	Power Drift	SAR 1g	Limit
Body	Position	channel	channel MHz (dBm)	(dBm)	(<±0.2 dB)	(W/kg)	(W/kg)
Body-worn	Fixed	512	1850.2	20.15			1.6
Body-worn	Fixed	661	1880.0	20.33	-0.033	0.438	1.6
Body-worn	Fixed	810	1909.8	20.12			1.6
GPRS 1900 2 sl	ot						
Body-worn	Fixed	661	1880.0	20.05	0.028	0.713	1.6
Body-front (GPRS 2slot)	Fixed	661	1880.0	20.05	0.051	0.503	1.6
Body- worn (with headset) (GPRS 2slot)	Fixed	661	1880.0	20.05	-0.112	0.666	1.6

Appendix A. SAR System Validation Data

Test Laboratory: AGC Lab Test date:2-18-2012

System Check Head 900 MHz

DUT: Dipole 900 MHz Type: SID 900

Communication System: CW; Communication System Band: D850(850.0 MHz); Duty Cycle: 1:1;

Frequency: 850 MHz; Medium parameters used: f = 850 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.78$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=20dBm

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM1; Type: SAM

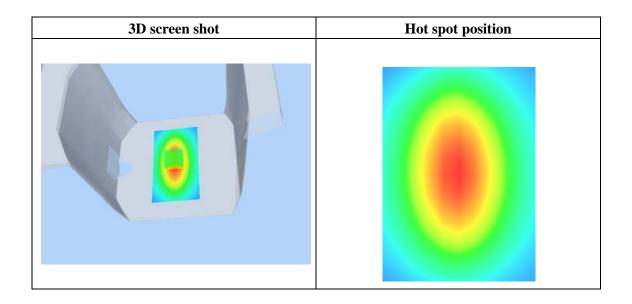
· Measurement SW: OpenSAR V4_02_01

 $\textbf{Configuration/System Check GSM850 Head/Area Scan:} \ \ \textbf{Measurement grid: dx=8mm,}$

dy=8mm

Configuration/System Check GSM850 Head/Zoom Scan: Measurement grid: dx=8mm,

dy=8mm, dz=5mm


SAR(1 g) = 1.013 W/Kg; SAR(10 g) = 0.637 W/Kg, Zoom SAR (1g)=1.065W/Kg

SURFACE SAR	VOLUME SAR	
Section Solid Section Sectio	Colors Scale Office 150 Office 150 Office 150 Office 150 Office Offi	

Maximum location: X=-1.00, Y=1.00

SAR 10g (W/Kg)	0.637165
SAR 1g (W/Kg)	1.012841

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	1.0651	0.6991	0.4653	0.3207
	CAD 7	A	(V - 1	V = 1)	
	SAK, Z	Axis Scan	(X = -1,	1 = 1)	
1	. 1 -				
0	.9-	$\backslash \downarrow \downarrow$	444		
o	.8-				
	. 7 -		+ + +		-
SAR (#/kg)	. 6 -				-
	. 4 -				
	.3-				
	.2-				,
	0.0 2.5 5		12.5 15.0 17.9 (mm)	5 20.0 22.5 25	o. U

Test Laboratory: AGC Lab Test date:2-18-2012

System Check Head 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle: 1:1;

Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon = 41.27$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=20dBm

Ambient temperature (): 21.5, Liquid temperature °C: 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM

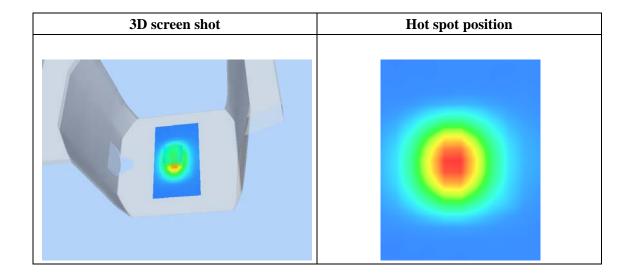
Measurement SW: OpenSAR V4_02_01

Configuration/System Check PCS1900 Head/Area Scan: Measurement grid: dx=8mm,

dy=8mm

Configuration/System Check PCS1900 Head/Zoom Scan: Measurement grid: dx=8mm,

dy=8mm, dz=5mm


SAR(1 g) = 4.304 W/Kg; SAR(10 g) = 2.184 W/Kg; Zoom SAR(1g)=4.301 W/Kg

SURFACE SAR	VOLUME SAR
Surface Edd ated Intends by	Totale

Maximum location: X=-3.00, Y=-1.00

SAR 10g (W/Kg)	2.183678
SAR 1g (W/Kg)	4.304323

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	4.3012	2.5361	1.3966	0.8250
	arn a		(v 0	w 4\	
	SAR, Z	Axis Scar	n (X = -3,	Y = -1	
	4.3-		1 1 1	1 1	- 1
	3.5-				
3	3.0-				
×.	2.5-				- An
SAR	1.5-				7
Š	The state of the s				
	0.5_				
					3
	0.1-	5.0 7.5 10.0	12.5 15.0 17.	5 20 0 22 5 2	25 0
	0.0 2.0	10.0	Z (mm)		
			- Villing		

Report No.:AGC06P120201S1 Page 30 of 122

Appendix B. SAR measurement Data

Test Laboratory: AGC Lab Test date:2-18-2012

GSM 850 Middle-touch-Left

DUT: GSM Mobile Phone ; Type: AM56

Communication System: Generic GSM; Communication System Band: GSM 850; DutyCycle: 1:8.3;

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.78$;

 ρ = 1000 kg/m³; Phantom section: Left Section

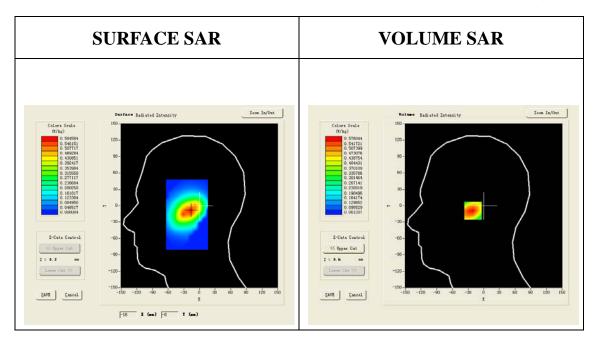
Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

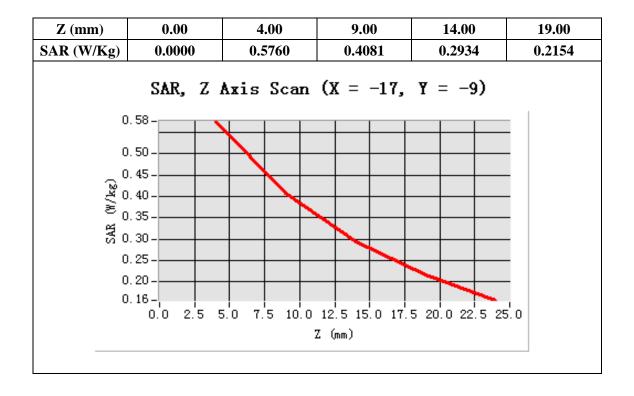
· Sensor-Surface: 4mm (Mechanical Surface Detection)

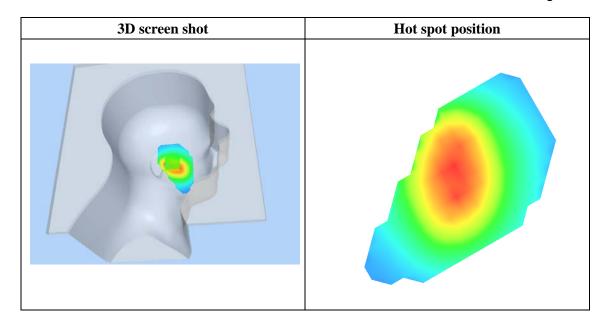
Phantom: SAM1; Type: SAM


Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Touch-Left/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GSM850 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


SAR(1 g) = 0.552 W/Kg; SAR(10 g) = 0.368 W/Kg Zoom SAR (1g) = 0.576 W/Kg


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-17.00, Y=-9.00

SAR 10g (W/Kg)	0.368214
SAR 1g (W/Kg)	0.551542

Report No.:AGC06P120201S1 Page 33 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

GSM 850 Mid Tilt-left

DUT: GSM Mobile Phone ; Type: AM56

Communication System: Generic GSM; Communication System Band: GSM 850; Duty

Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.78$;

 ρ = 1000 kg/m³; Phantom section: Left Section

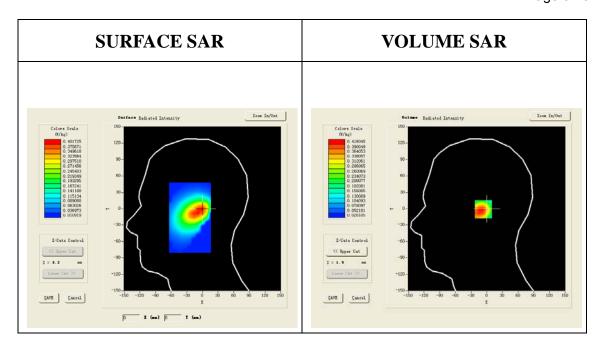
Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature($^{\circ}$ C): 21.0

Satimo Configuration:

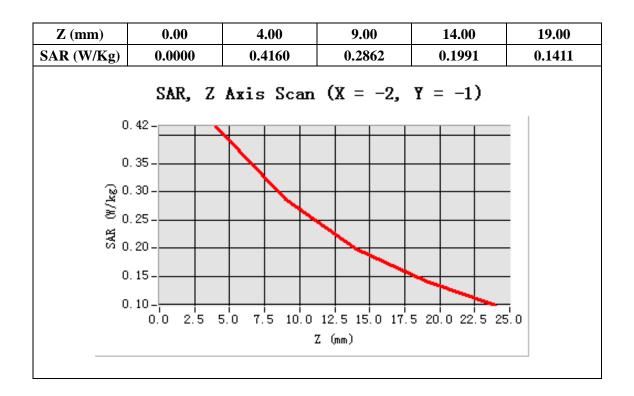
Probe:SSE5; Calibrated: 09/12/2011

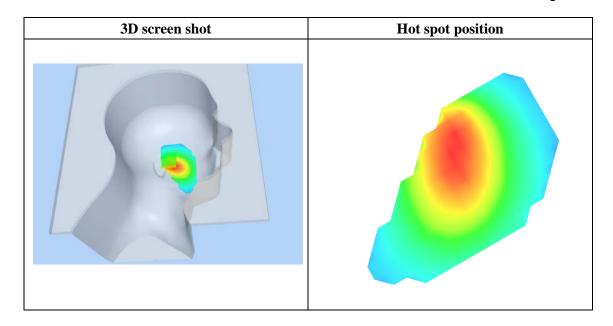
· Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM


Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Tilt-Left/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm


Configuration/GSM850 Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.405 W/Kg; SAR(10 g) = 0.259 W/Kg Zoom SAR(1g) = 0.416 W/Kg

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Left head
Device Position	Tilt
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

SAR 10g (W/Kg)	0.258958
SAR 1g (W/Kg)	0.405061

Report No.:AGC06P120201S1 Page 36 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

GSM 850 Middle touch-Right

DUT: GSM Mobile Phone ; Type: AM56

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3;

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m;

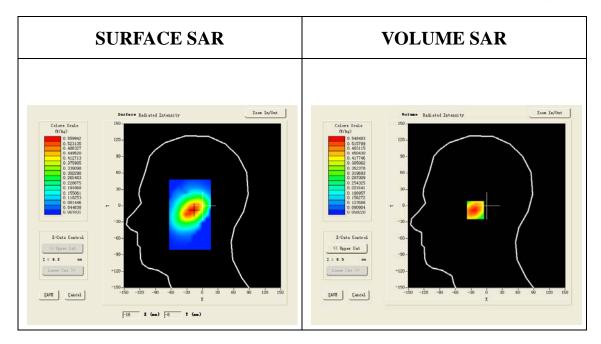
 ϵr = 40.78; ρ = 1000 kg/m³; Phantom section: Right Section Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

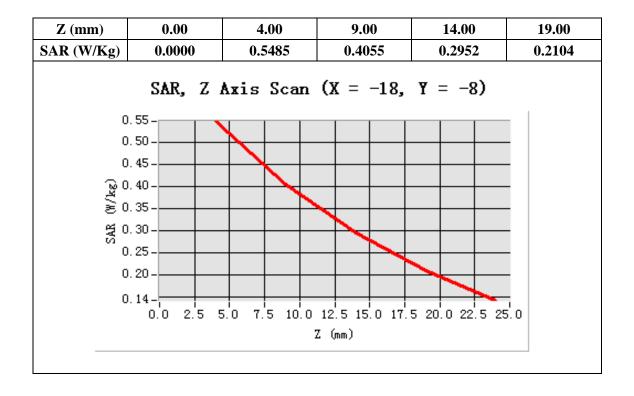
· Sensor-Surface: 4mm (Mechanical Surface Detection)

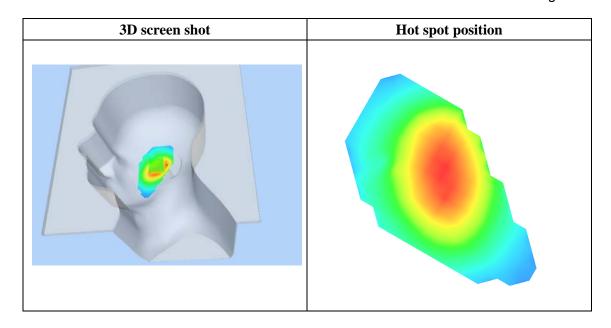
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Touch-Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/GSM850 Mid Touch-Right/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.524 W/g; SAR(10 g) = 0.354 W/g Zoom SAR (1g) = 0.549 W/Kg


Area Scan	sam_direct_droit2_surf8mm.txt	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast	
Phantom	Right head	
Device Position	Cheek	
Band	GSM850	
Channels	Middle	
Signal	TDMA (Crest factor: 8.0)	

Maximum location: X=-18.00, Y=-8.00

SAR 10g (W/Kg)	0.353684
SAR 1g (W/Kg)	0.524380

Report No.:AGC06P120201S1 Page 39 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

GSM 850 Mid-tilt-Right

DUT: GSM Mobile Phone ; Type: AM56

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon = 40.78$; $\rho = 1000$ kg/m³; Phantom

section: Right Section

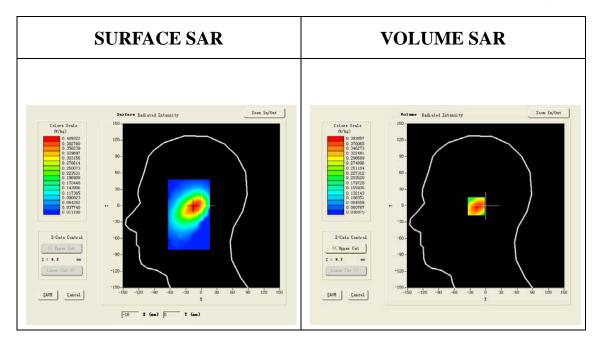
Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

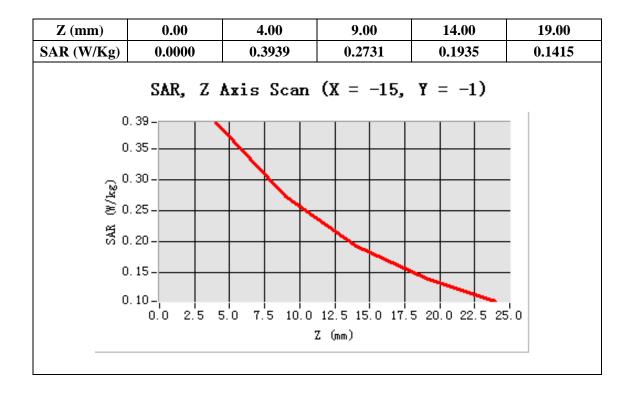
· Sensor-Surface: 4mm (Mechanical Surface Detection)

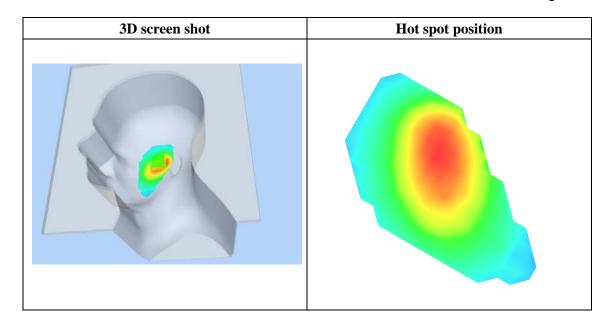
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Tilt-Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

 $\textbf{Configuration/GSM850 Mid Tilt-Right/Zoom Scan:} \ \textit{Measurement grid: } \ \textit{dx=8mm},$


SAR(1 g) = 0.377 W/Kg; SAR(10 g) = 0.249 W/Kg Zoom SAR(1g) = 0.394 W/Kg


Area Scan	sam_direct_droit2_surf8mm.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Right head
Device Position	Tilt
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-15.00, Y=-1.00

SAR 10g (W/Kg)	0.248977
SAR 1g (W/Kg)	0.377699

Report No.:AGC06P120201S1 Page 42 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

GSM 850 Mid-Touch-Left<SIM 2>

DUT: GSM Mobile Phone; Type: AM56

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3;

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; ϵ r = 40.78;

 ρ = 1000 kg/m³; Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature($^{\circ}$ C): 21.0

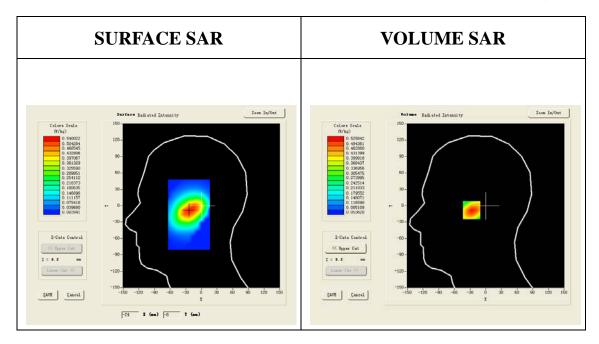
Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

· Sensor-Surface: 4mm (Mechanical Surface Detection)

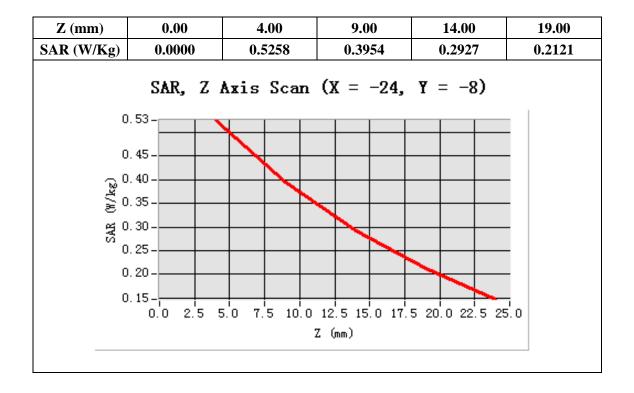
· Phantom: SAM1; Type: SAM

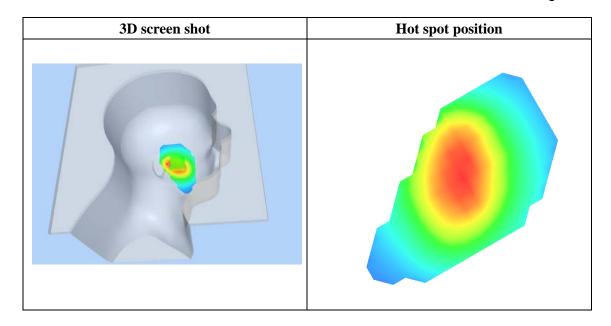
· Measurement SW: OpenSAR V4_02_01


Configuration/GSM850 Mid Touch-Left/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/GSM850 Mid Touch-Left/Zoom Scan: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 23.8 V/m;


SAR(1 g) = 0.502 W/Kg; SAR(10 g) = 0.342 W/Kg Zoom SAR (1g) = 0.526 W/Kg


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-24.00, Y=-8.00

SAR 10g (W/Kg)	0.341513
SAR 1g (W/Kg)	0.501539

Report No.:AGC06P120201S1 Page 45 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

GSM 850 Mid-Body-Back

DUT: GSM Mobile Phone; Type: AM56

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Frequency:

836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\epsilon r = 55.20$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

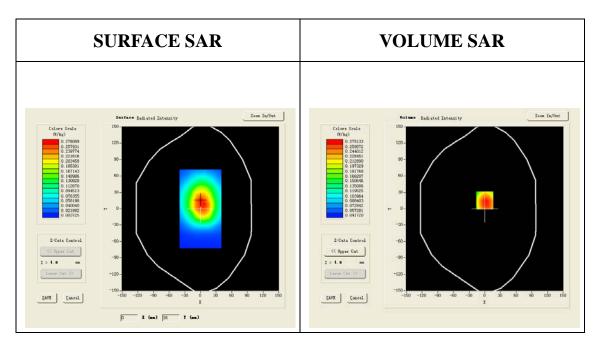
Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

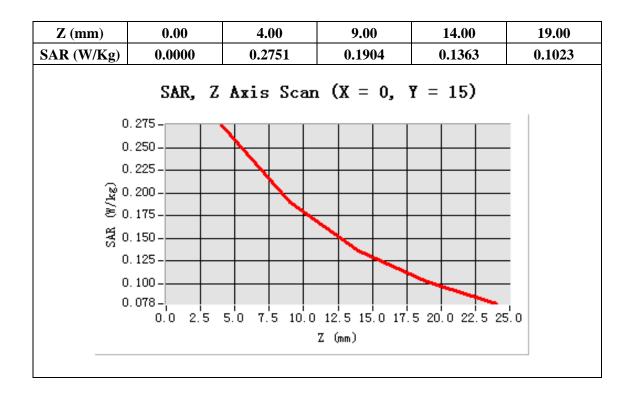
· Sensor-Surface: 4mm (Mechanical Surface Detection)

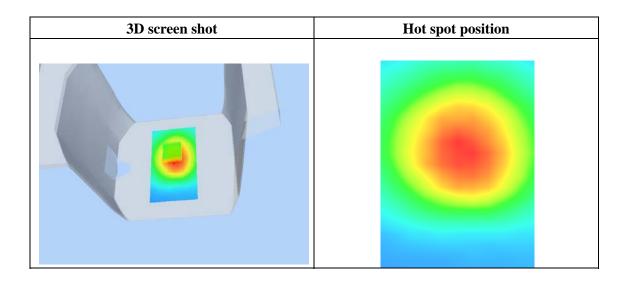
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Body-Back/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GSM850 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.266 W/Kg; SAR(10 g) = 0.182 W/Kg Zoom SAR(1g) = 0.275 W/Kg


Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Validation plane
Device Position	Body
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=0.00, Y=15.00

SAR 10g (W/Kg)	0.181746
SAR 1g (W/Kg)	0.265967

Report No.:AGC06P120201S1

Page 48 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

GSM 850 Mid-body worn(2up)

DUT: GSM Mobile Phone; Type: AM56

Communication System: GPRS -2 Slot; Communication System Band: GSM850; Duty Cycle: 1:4.2; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\epsilon r = 55.20$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

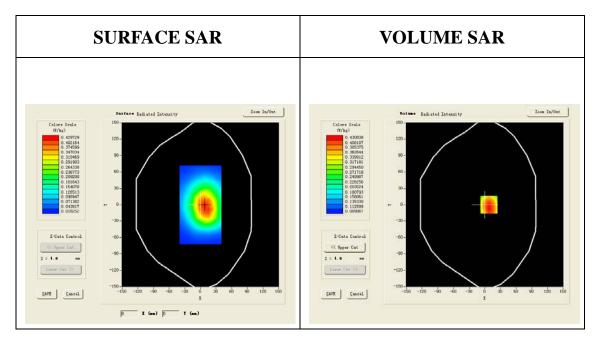
Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

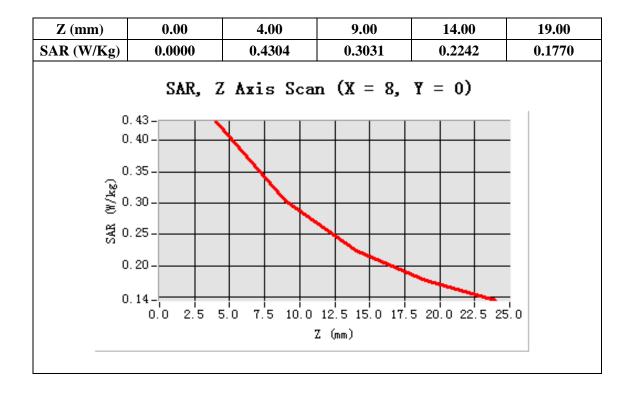
· Sensor-Surface: 4mm (Mechanical Surface Detection)

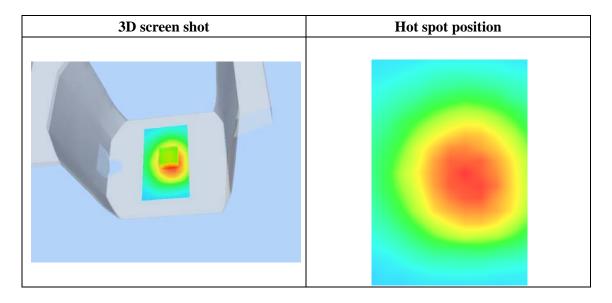
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/GPRS850 Mid Body-Back/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GPRS850 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.418W/Kg; SAR(10 g) = 0.294 W/Kg Zoom SAR(1g) = 0.430 W/Kg


Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Validation plane
Device Position	Body
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor: 4.0)

Maximum location: X=8.00, Y=0.00

SAR 10g (W/Kg)	0.293742
SAR 1g (W/Kg)	0.417581

Report No.:AGC06P120201S1 Page 51 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

GPRS 850 Front-body (2up)

DUT: GSM Mobile Phone; Type: AM56

Communication System: GPRS -2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.2; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\epsilon = 55.20$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

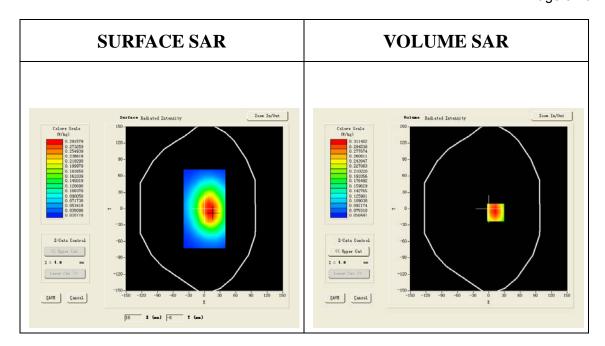
Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

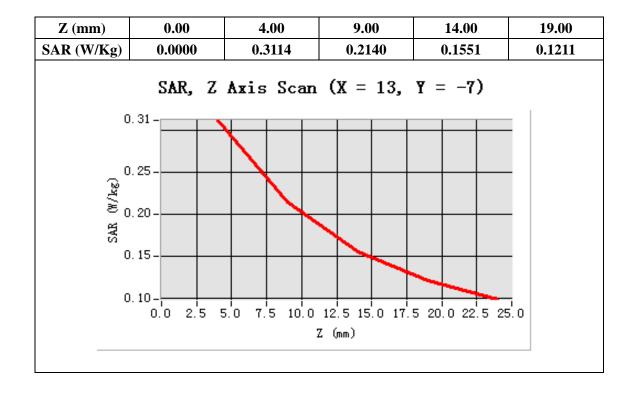
· Sensor-Surface: 4mm (Mechanical Surface Detection)

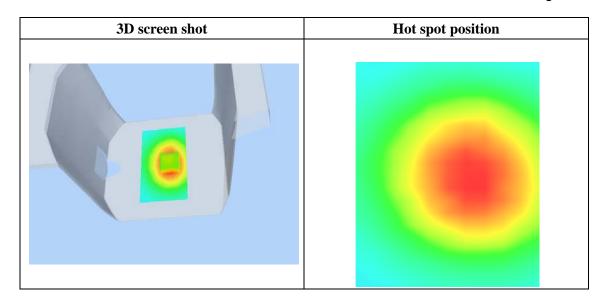
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/GPRS850 Mid Body-Front/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GPRS850 Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.300W/Kg; SAR(10 g) = 0.206 W/Kg; Zoom SAR (1g) = 0.311W/Kg


Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Validation plane
Device Position	Body
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor:4.0)

Maximum location: X=13.00, Y=-7.00

SAR 10g (W/Kg)	0.206206
SAR 1g (W/Kg)	0.300022

Report No.:AGC06P120201S1

Page 54 of 122

Test Laboratory: AGC Lab Test date:2-18-2012 GPRS 850 Mid-body-worn (2up) (With headset)

DUT: GSM Mobile Phone; Type: AM56

Communication System: GPRS -2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.1; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\epsilon r = 55.20$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

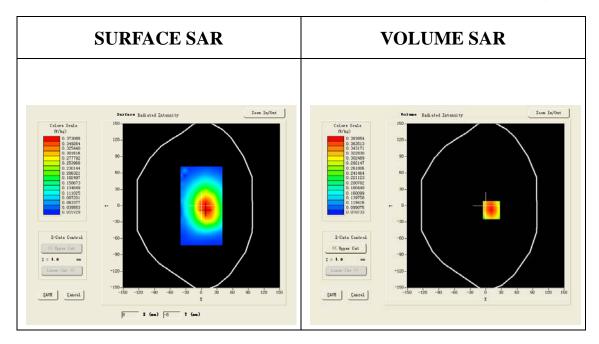
Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

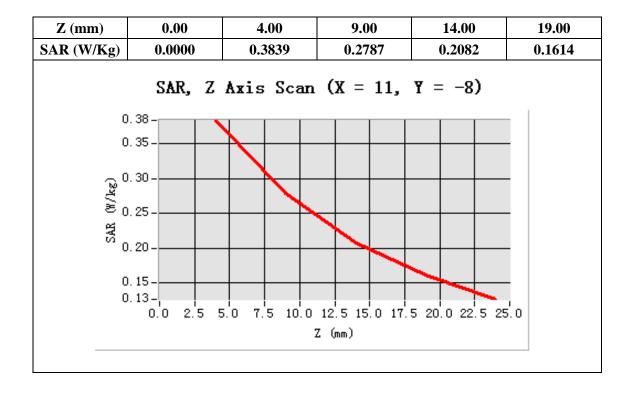
· Sensor-Surface: 4mm (Mechanical Surface Detection)

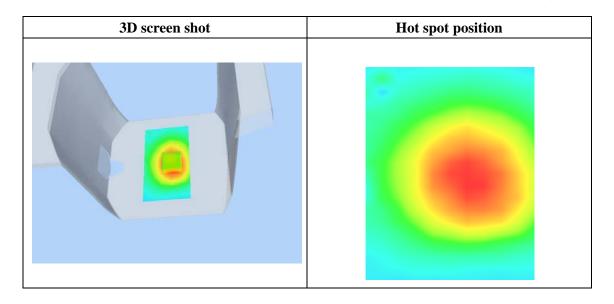
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/GPRS850 Mid Body-Back/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/GPRS850 Mid Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.369W/Kg; SAR(10 g) = 0.260 W/Kg; Zoom SAR(1g) = 0.384 W/Kg


Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Validation plane
Device Position	Body
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor: 4.0)

Maximum location: X=11.00, Y=-8.00

SAR 10g (W/Kg)	0.259951
SAR 1g (W/Kg)	0.368888

Report No.:AGC06P120201S1 Page 57 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

PCS 1900 Mid-Touch Left

DUT: GSM Mobile Phone; Type: AM56

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 41.27$;

 ρ = 1000 kg/m³; Phantom section: Left Section

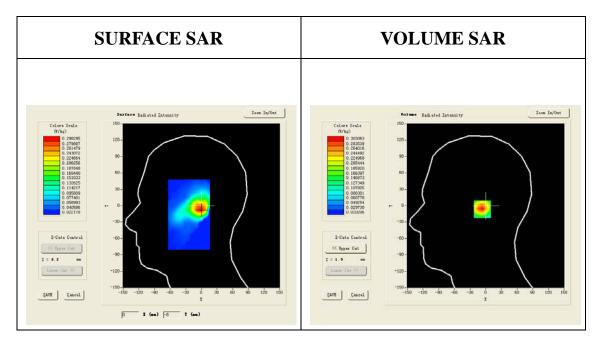
Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

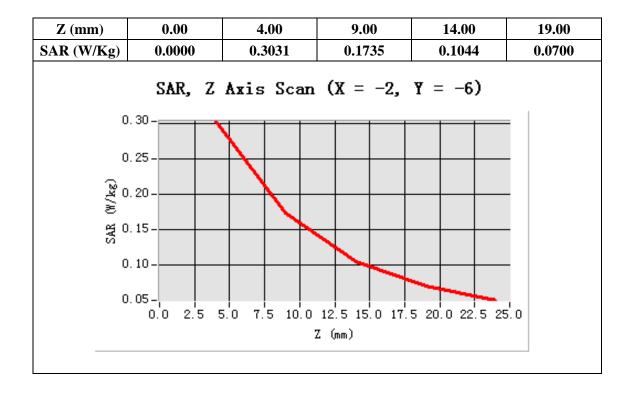
· Sensor-Surface: 4mm (Mechanical Surface Detection)

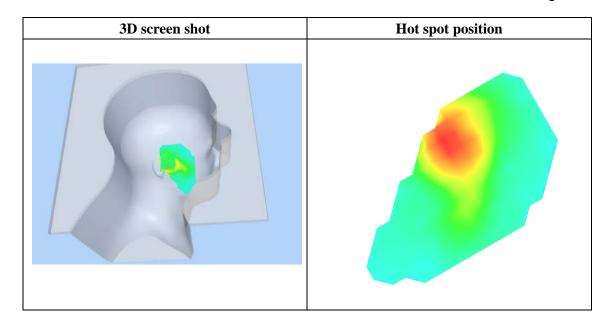
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Touch-Left/Area Scan: Measurement grid: dx=20mm, dy=20mm

 $\textbf{Configuration/PCS1900 Mid Touch-Left/Zoom Scan:} \ Measurement \ grid: \ dx=8mm,$


SAR(1 g) = 0.285W/Kg; SAR(10 g) = 0.160W/Kg; Zoom SAR (1g) = 0.303 W/Kg


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Left head
Device Position	Cheek
Band	GSM1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-2.00, Y=-6.00

SAR 10g (W/Kg)	0.159614
SAR 1g (W/Kg)	0.285451

Report No.:AGC06P120201S1 Page 60 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

PCS 1900 Mid-Tilt-Left

DUT: GSM Mobile Phone; Type: AM56

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon r =$

41.27; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Left Section

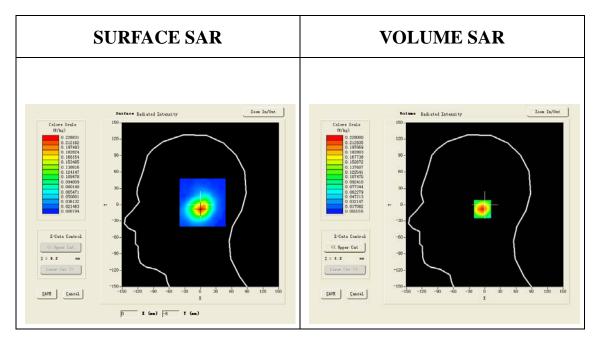
Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

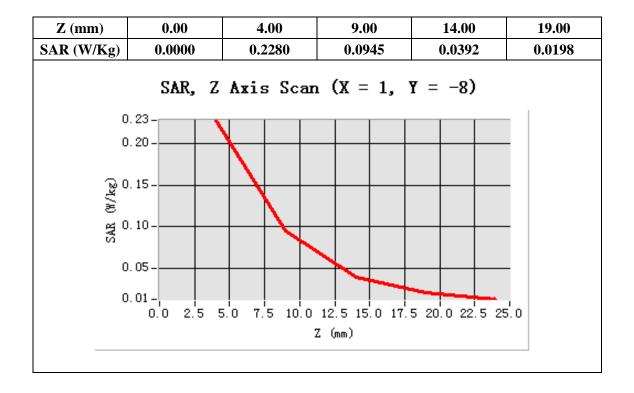
· Sensor-Surface: 4mm (Mechanical Surface Detection)

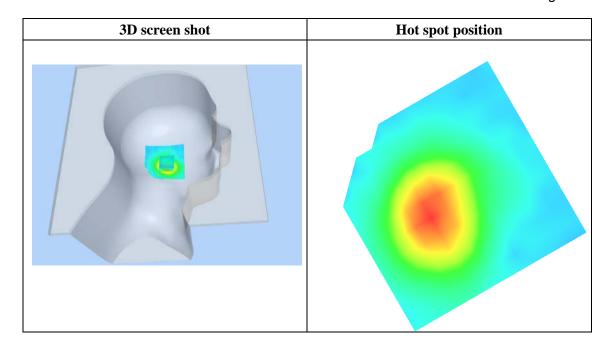
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Tilt-Left/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Tilt-Left/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.215 W/Kg; SAR(10 g) = 0.100 W/Kg; Zoom SAR(1g) = 0.228 W/Kg


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Left head
Device Position	Tilt
Band	GSM1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=1.00, Y=-8.00

SAR 10g (W/Kg)	0.100494
SAR 1g (W/Kg)	0.215120

Report No.:AGC06P120201S1 Page 63 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

PCS 1900 Mid-Touch Right

DUT: GSM Mobile Phone; Type: AM56

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon r = 41.27$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

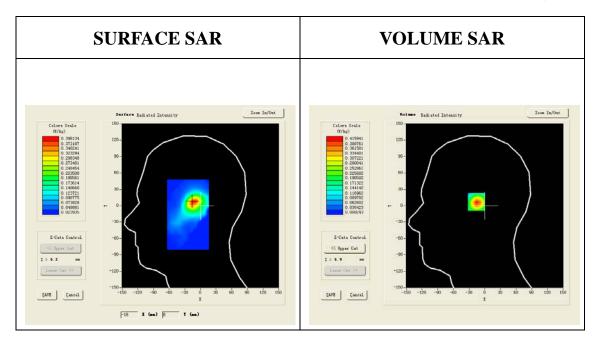
Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

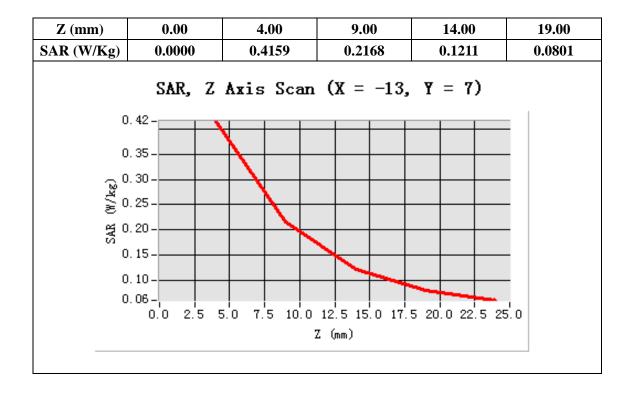
· Sensor-Surface: 4mm (Mechanical Surface Detection)

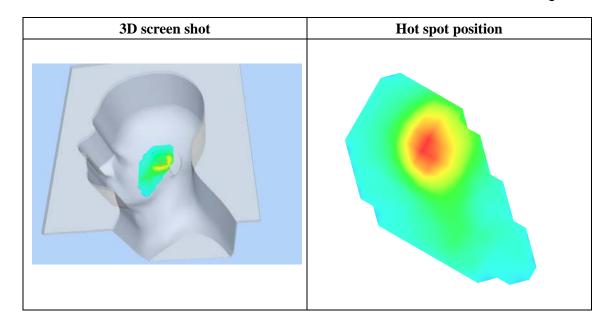
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Touch-Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Touch-Right/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.390 W/Kg; SAR(10 g) = 0.201 W/Kg; Zoom SAR(1g) = 0.416 W/Kg


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-13.00, Y=7.00

SAR 10g (W/Kg)	0.200843
SAR 1g (W/Kg)	0.389794

Report No.:AGC06P120201S1 Page 66 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

PCS 1900 Mid-Tilt Right

DUT: GSM Mobile Phone; Type: AM56

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon r =$

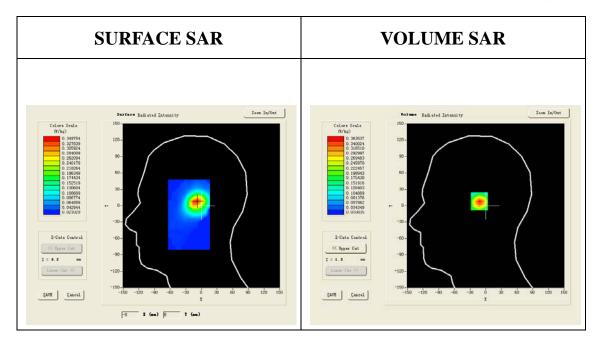
41.27; ρ = 1000 kg/m³; Phantom section: Right Section Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

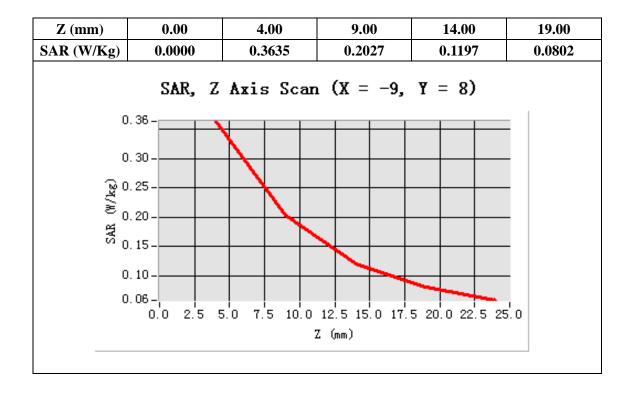
· Sensor-Surface: 4mm (Mechanical Surface Detection)

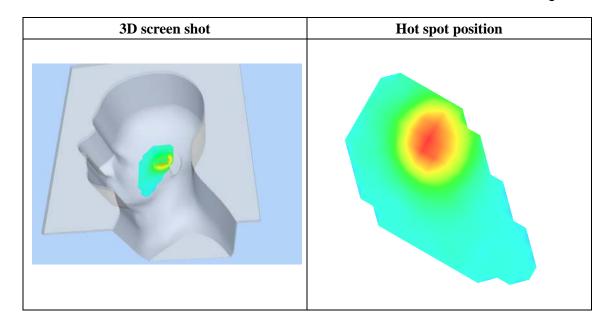
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Tilt-Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Tilt-Right/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.340 W/Kg; SAR(10 g) = 0.183W/Kg; Zoom SAR (1g)=0.364W/Kg


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Right head
Device Position	Tilt
Band	GSM1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-9.00, Y=8.00

SAR 10g (W/Kg)	0.182613
SAR 1g (W/Kg)	0.339658

Report No.:AGC06P120201S1 Page 69 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

PCS 1900 Mid-Touch Right <SIM2>

DUT: GSM Mobile Phone; Type: AM56

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon r =$

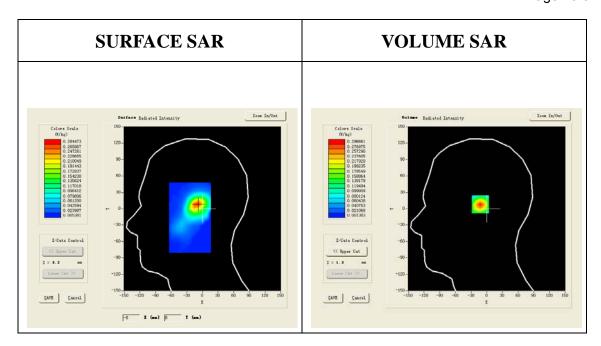
41.27; ρ = 1000 kg/m³; Phantom section: Right Section Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

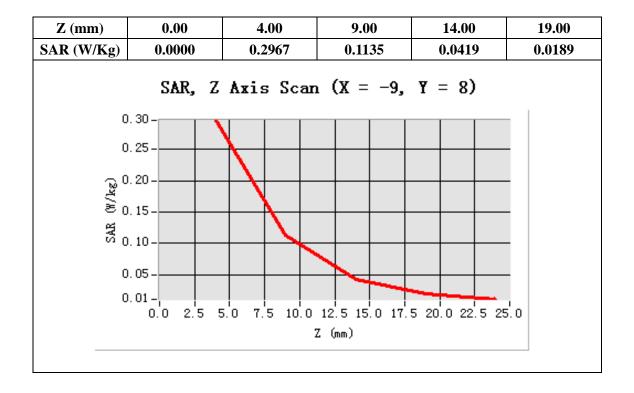
· Sensor-Surface: 4mm (Mechanical Surface Detection)

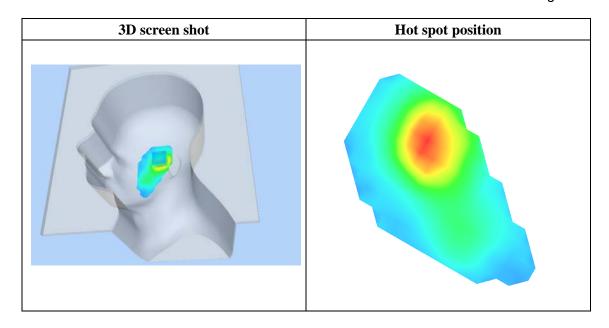
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Touch-Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Touch-Right/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;


SAR(1 g) = 0.279 W/Kg; SAR(10 g) = 0.123 W/Kg; Zoom SAR(1g) = 0.297 W/Kg


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-9.00, Y=8.00

SAR 10g (W/Kg)	0.123293
SAR 1g (W/Kg)	0.278947

Report No.:AGC06P120201S1 Page 72 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

PCS 1900 Mid-Body Back

DUT: GSM Mobile Phone; Type: AM56

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 53.3$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

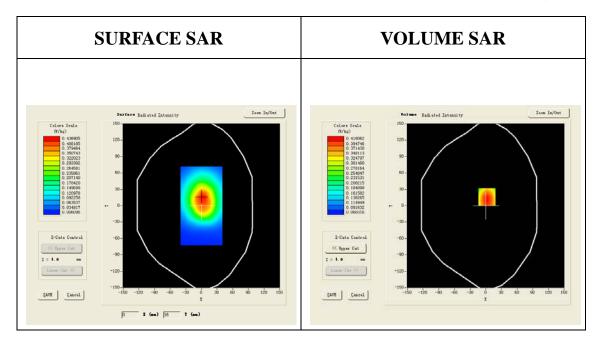
Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

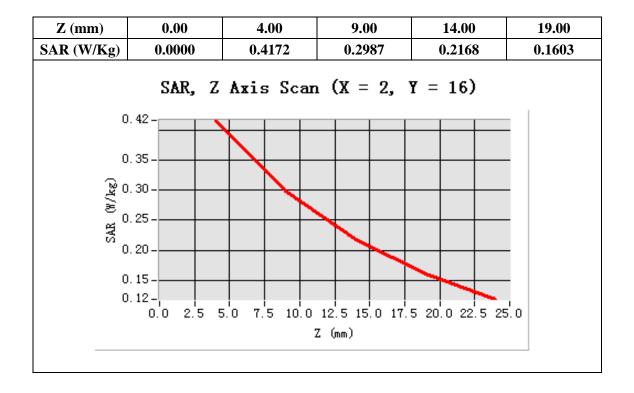
· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Body-Back/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Body-Back/Zoom Scan: Measurement grid: dx=8mm,


SAR(1 g) = 0.438 W/Kg; SAR(10 g) = 0.303 W/Kg; Zoom SAR (1g)=0.418 W/Kg


Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=2.00, Y=16.00

SAR 10g (W/Kg)	0.302705
SAR 1g (W/Kg)	0.437577

Report No.:AGC06P120201S1 Page 75 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

PCS 1900 Mid-Body worn 2up

DUT: GSM Mobile Phone; Type: AM56

Communication System: GPRS -2 Slot; Communication System Band: PCS1900; Duty Cycle: 1:4.2;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{mho/m}$; $\epsilon r = 43.71$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

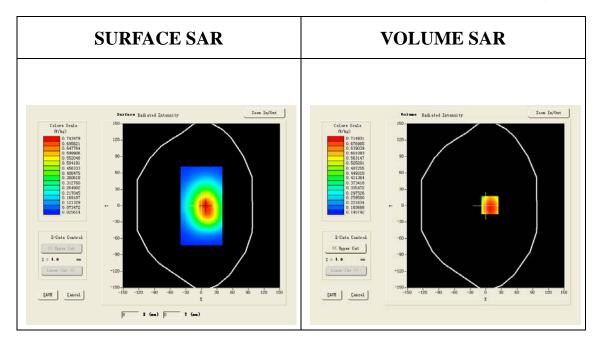
Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

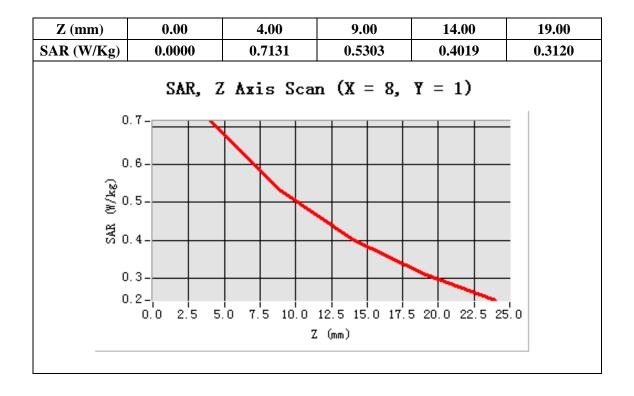
· Sensor-Surface: 4mm (Mechanical Surface Detection)

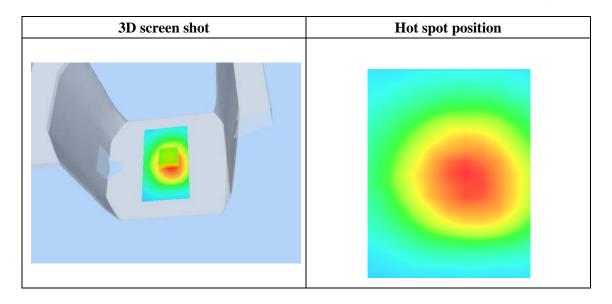
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/GPRS1900 Mid Body-Back/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/GPRS1900 Mid Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;


SAR(1 g) = 0.692 W/Kg; SAR(10 g) = 0.500 W/Kg; Zoom SAR(1g)=0.713 W/Kg


Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	TDMA (Crest factor: 4.0)

Maximum location: X=8.00, Y=1.00

SAR 10g (W/Kg)	0.500470
SAR 1g (W/Kg)	0.692135

Report No.:AGC06P120201S1 Page 78 of 122

Test Laboratory: AGC Lab Test date:2-18-2012

PCS 1900 Front-Body (2up)

DUT: GSM Mobile Phone; Type: AM56

Communication System: GPRS-2 Slot; Communication System Band: PCS 1900; Duty Cycle:

1:4.2 ; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 43.71$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

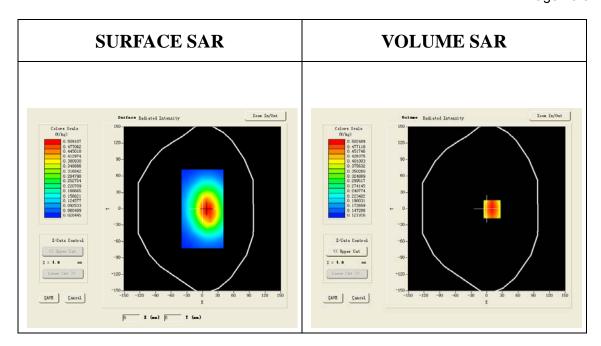
Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

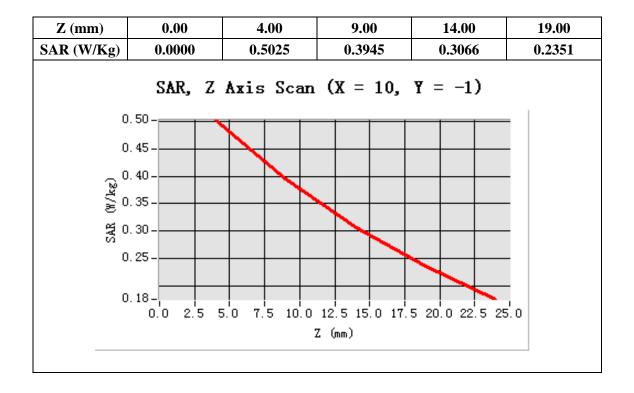
· Sensor-Surface: 4mm (Mechanical Surface Detection)

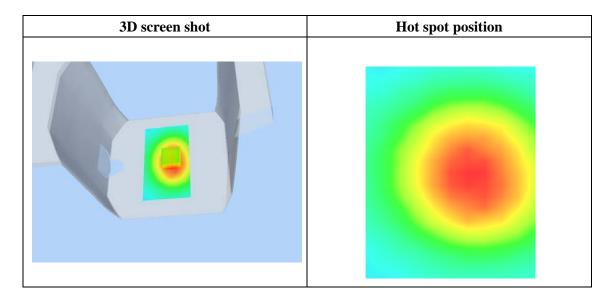
· Phantom: SAM1; Type: SAM


· Measurement SW: OpenSAR V4_02_01

Configuration/GPRS1900 Mid Body-Back/Area Scan: Measurement grid: dx=20mm, dy=20mm

 $\textbf{Configuration/GPRS1900 Mid Body-Back/Zoom Scan:} \ \textit{Measurement grid: } \ \textit{dx=8mm},$


SAR(1 g) = 0.484 W/g; SAR(10 g) = 0.357 W/g; Zoom SAR(1g)=0.503 W/Kg


Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	TDMA (Crest factor: 4.0)

Maximum location: X=10.00, Y=-1.00

SAR 10g (W/Kg)	0.357122
SAR 1g (W/Kg)	0.484376

Report No.:AGC06P120201S1 Page 81 of 122

Test Laboratory: AGC Lab Test date:2-18-2012 PCS 1900 Mid-Body worn (2up with headset)

DUT: GSM Mobile Phone; Type: AM56

Communication System: GPRS -2 Slot; Communication System Band: PCS 1900; Duty Cycle:

1:4.2; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon = 43.71$;

 ρ = 1000kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

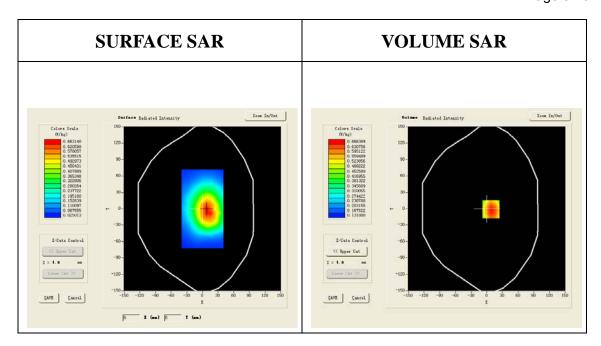
Satimo Configuration:

Probe:SSE5; Calibrated: 09/12/2011

· Sensor-Surface: 4mm (Mechanical Surface Detection)

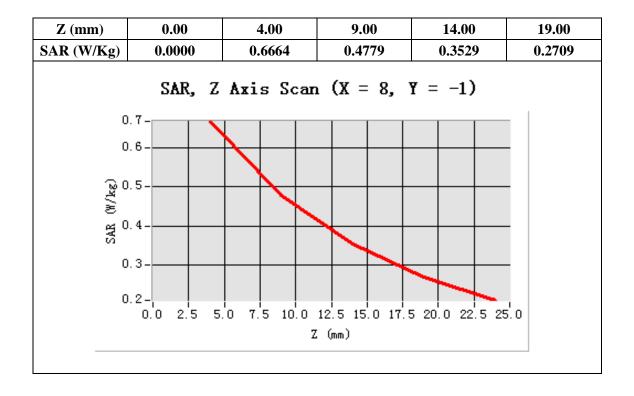
· Phantom: SAM1; Type: SAM

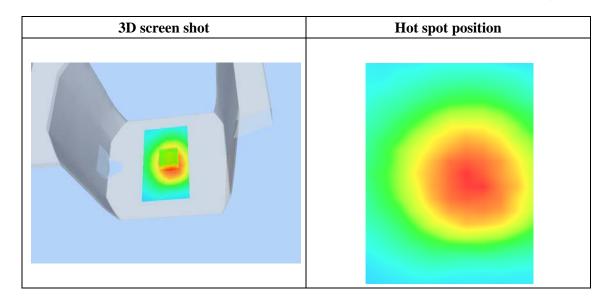
· Measurement SW: OpenSAR V4_02_01


Configuration/GPRS1900 Mid Body-Back/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/GPRS1900 Mid Body-Back/Zoom Scan: Measurement grid: dx=8mm,

dy=8mm, dz=5mm;


SAR(1 g) = 0.641 W/g; SAR(10 g) = 0.448 W/g; Zoom SAR(1g)=0.666W/Kg


Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	TDMA (Crest factor: 4.0)

Maximum location: X=8.00, Y=-1.00

SAR 10g (W/Kg)	0.447883
SAR 1g (W/Kg)	0.640614

