FCC Part 15 C MEASUREMENT AND TEST REPORT

For

Shenzhen China Canada Hongkong Electronics Co., Ltd

3/F, Building 4, Ji'antai Industrial Park, Industrial Avenue, Fuyong Town, Bao'an District, Shenzhen, China

FCC ID: UOMSP2202

January 14, 2008

This Report Concerns:		Equipment Type:	
Original Report		FM transmitter	
Test Engineer:	Adum Liu		
Report Number:	SE08A-006R		
Test Date:	January 01-05, 2008		
Reviewed By:			
_			
Prepared By:	S&E Technologie	s Laboratory Ltd	
	Room407,Block A S	hennan Garden,Hi-Tech Industrial Park,	
	Shenzhen 518057, I	P.R. China.	
	Tel: 86-755-266365	73, 26630631	
	Fax: 86-755-266305	557	

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of S&E Technologies Laboratory Ltd.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	
1.1 Product Description for Equipment Under Test (EUT)	. 3
1.2 Test Standards	. 4
1.3 Test Summary	. 4
1.4 Test Methodology	
1.5 Test Facility	
1.6 Test Equipment List and Details	. 5
2 - SYSTEM TEST CONFIGURATION	6
2.1 Justification	. 6
2.2 EUT Exercise Software	. 6
2.3 Special Accessories	. 6
2.4 Equipment Modifications	
2.5 Basic Test Setup Block Diagram	. 6
3 – DISTURBANCE VOLTAGE AT THE MAINS TERMINALS	7
3.1 Measurement Uncertainty	. 7
3.2 Applicable Standard	. 7
3.3 Test Description	. 7
4- RADIATED DISTURBANCES	8
4.1 Measurement Uncertainty	. 8
4.2 Limit of Radiated Disturbances	. 8
4.3 EUT Setup	. 8
4.4 Test Receiver Setup	. 8
4.5 Test Procedure	. 9
4.6 Corrected Amplitude & Margin Calculation	
4.7 Radiated Emissions Test Result	10
5- OCCUPIED BANDWIDTH	13
5.1 Requirement of Occupied Bandwidth	13
5.2 Test Procedure	13
5.3 Occupied Bandwidth Test Result	13
APPENDIX A - PRODUCT LABELING	17
FCC ID Label Specification	17
Proposed Label Location on EUT	
APPENDIX B - EUT PHOTOGRAPHS	18
EUT - Top View	18
EUT - Bottom View	18
EUT - Inside View	19
EUT – PCB View	19
APPENDIX C – TEST SETUP PHOTOGRAPHS	20
Radiated Emission	20

Shenzhen China Canada Hongkong Electronics Co., Ltd

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Shenzhen China Canada Hongkong Electronics Co.,Ltd

Address of applicant: 3/F, Building 4, Ji'antai Industrial Park, Industrial Avenue,

Fuyong Town, Bao'an District, Shenzhen, China

Tel: 86-755-29929253 Fax: 86-755-29929254

FCC ID: UOMSP2202

Manufacturer: Shenzhen China Canada Hongkong Electronics Co.,Ltd

Address of manufacturer: 3/F, Building 4, Ji'antai Industrial Park, Industrial Avenue,

Fuyong Town, Bao'an District, Shenzhen, China

Tel: 86-755-29929253 Fax: 86-755-29929254

General Description of E.U.T

The **Shenzhen China Canada Hongkong Electronics Co., Ltd**'s product, model number: **SP2202** or the "EUT" as referred to in this report is an audio FM transmitter.

The technical data has been listed following:

Items	Description
EUT Description:	FM transmitter
Trade Name:	N/A
Model No.:	SP2202
Power Supply:	DC 3.0V
Frequency Range:	88.1~107.9MHz
Antenna Designation:	Non-User Replaceable
Product Class:	Low Power Communication Device Transmitter

^{*} The tuning controls were manually adjusted to verify maximum tuning range.

^{*} The test data gathered are from the production sample provided by the manufacturer.

Shenzhen China Canada Hongkong Electronics Co., Ltd

FCC ID: UOMSP2202

1.2 Test Standards

The following Declaration of Conformity report of EUT is prepared in accordance with

FCC Rules and Regulations Part 15 Subpart C Section15.239

The objective of the manufacturer is to demonstrate compliance with the described above standards.

1.3 Test Summary

For the EUT described above. The standards used is FCC Part 15 Subpart C Section 15.239

Tests Carried Out Under FCC Part 15 Subpart C Section 15.239

Standard	Test Items	Status	Application
Part 15 Subpart C	Disturbance Voltage at The Mains Terminals	X	N/A, without AC power supply
Section 15.239	Radiation Emission	\checkmark	
	Occupied Bandwidth	$\sqrt{}$	

- $\sqrt{}$ Indicates that the test is applicable
- x Indicates that the test is not applicable

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

The maximum emission levels emanating from the device are compared to the <u>Part 15 Subpart C Section 15.239</u> limits for radiation emissions and the measurement results contained in this test report show that EUT is to be technically compliant with FCC requirements.

All measurement required was performed at laboratory of Compliance Certification Services (Shenzhen) Inc. at No.5 Jinao Industrial Park, No.35 Jukeng Rd., Guanlan Town, Bao'an District, Shenzhen, Guangdong, China.

1.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC – Registration No.: 101879

Compliance Certification Services (Shenzhen) Inc., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.6 Test Equipment List and Details

Table 1: Test Equipment for Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal	Calibration Period
EMI Test Receiver	ROHDE & SCHWARZ	ESCS30	100038	2007/11	1 year
EMI Test Receiver	ROHDE & SCHWARZ	ESPI	100123	2007/03	1 year
Artificial Mains	ROHDE & SCHWARZ	ESH2-Z5	100028	2007/11	1 year
Pulse Limiter	ROHDE & SCHWARZ	ESHSZ2	100044	2007/11	1 year
Ultra-Broadband Antenna	ROHDE & SCHWARZ	HL562	100015	2007/11	1 year
EMI Test Receiver	ROHDE & SCHWARZ	ESI 26	100009	2007/11	1 year
RF Test Panel	ROHDE & SCHWARZ	TS / RSP	335015/ 0017	N/A	N/A
Turntable	ETS	2088	2149	N/A	N/A
Antenna Mast	ETS	2075	2346	N/A	N/A

Table 2: General Description of Test Auxiliary

Description	Manufacturer	Model No.	Serial No.	Certificate
MP3	Lenue	AZ209	2394RZ022	CE, FCC

2 - SYSTEM TEST CONFIGURATION

2.1 Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

2.2 EUT Exercise Software

The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software offered by manufacture, can let the EUT being normal operation.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product supplied by **Shenzhen China Canada Hongkong Electronics Co., Itd** and its respective support equipment manufacturers.

2.4 Equipment Modifications

The EUT tested was not modified by S&E Technologies.

2.5 Basic Test Setup Block Diagram

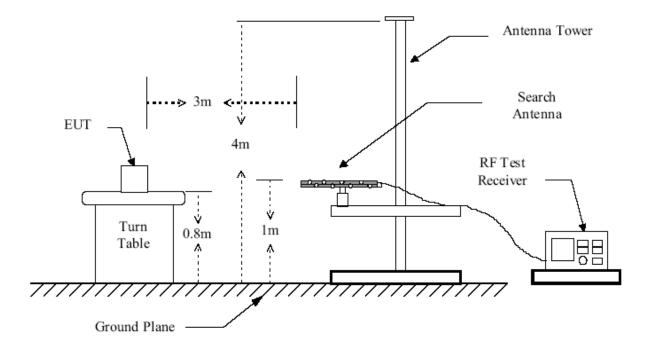


Figure 1: Frequencies measured below 1 GHz configuration

Report No. SE08A-006R Page 6 of 20 FCC Part 15.239 Report

3 – DISTURBANCE VOLTAGE AT THE MAINS TERMINALS

3.1 Measurement Uncertainty

All test results complied with Section 15.207 requirements. Measurement Uncertainty is 2.4 dB.

3.2 Applicable Standard

Section 15.207: For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency Range (MHz)	Limits (dBuV)		
Trequency Kange (Winz)	Quasi-Peak	Average	
0.150~0.500	66~56	56~46	
0.500~5.000	56	46	
5.000~30.00	60	50	

3.3 Test Description

The EUT is excused from investigation of Disturbance Voltage at The Mains Terminals, for it is powered by a iPod player (3.3Vd.c.). According to the Section 15.207(d), measurement to demonstrate compliance with the limits of Disturbance Voltage at The Mains Terminals are not required to the devices which only employed bettary power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines.

4- RADIATED DISTURBANCES

4.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is <u>+</u>4.0 dB.

4.2 Limit of Radiated Disturbances

Frequency (MHz)	Distance (meters)	Field Strengths Limits (dBμV/m)
30 ~ 88	3	40
88~216	3	43.5
216 ~ 960	3	46
960 and above	3	54

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

(2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

4.3 EUT Setup

The radiated emission tests were performed in the 3-meter semi-anechoic chamber, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC Part 15 Subpart B limits.

The EUT was placed on the center of the test table. In the frequency range below 1 GHz, Ultra-Broadband Antenna horn-antenna is used. Test setup refer to **Section 2.5 Basic Test Setup Block Diagram** of this report.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

4.4 Test Receiver Setup

According to FCC Part 15 rule, the frequency was investigated from 30 to 1000 MHz. During the radiated emission test, the test receiver was set with the following configurations:

Test Receiver Setting for frequency range below 1000MHz:

Detector	Peak & Quasi-Peak
RBW	
Frequency Range	30MHz to 1000MHz
Turntable Rotated	0 to 360 degrees

Shenzhen China Canada Hongkong Electronics Co., Ltd

FCC ID: UOMSP2202

Antenna Position:

Height.....1m to 4m

Polarity......Horizontal and Vertical

Test Receiver Setting for frequency range above 1000MHz:

Detector......Peak
RBW......1000KHz

Antenna Position:

Height......1m

Polarity......Horizontal and Vertical

4.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

- 1). Configure the EUT according to ANSI C63.4-2003.
- 2). The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3). The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 4). Power on the EUT and all the supporting units.
- 5). The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 6). For each suspected emission, the antenna tower was scanned (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading of both horizontal and vertical polarization.
- 7). Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode. Then all data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -10 dB_µV of specification limits), and are distinguished with a "QP" in the data plots.
- 8). The tuning controls were manually adjusted to verify maximum tuning range.

4.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB $_{\mu}$ V means the emission is 7dB $_{\mu}$ V below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. –Limit

Shenzhen China Canada Hongkong Electronics Co., Ltd FCC ID: UOMSP2202

4.7 Radiated Emissions Test Result

Temperature (°C)	22~23
Humidity (%RH)	50~54
Barometric Pressure (mbar)	950~1000
EUT	FM transmitter
M/N	SP2202
Operating Mode	Continuous Transmitting

Fundamental Emission Test Data

Peak Measurement						
Test Frequency	Measuring Level (dBµV/m)		Limits	Margin (dB)		
(MHz)	Vertical	Horizontal	(dBµV/m)	Vertical	Horizontal	
88.10	43.4	46.9	68.0	24.6	21.1	
Average Measurement						
88.10	41.2	44.7	48.0	6.8	3.3	

Peak Measurement						
Test Frequency (MHz)	Measuring Level (dBµV/m)		Limits	Margin (dB)		
	Vertical	Horizontal	(dBµV/m)	Vertical	Horizontal	
98.00	42.9	47.0	68.0	25.1	21.0	
Average Measurement						
98.00 41.0 45.8 48.0 7.0 2.2						

Peak Measurement							
Test Frequency	Measuring Level (dBµV/m)		Limits	Margin (dB)			
(MHz)	(MHz) Vertical		(dBµV/m)	Vertical	Horizontal		
107.90	43.0 44.1		68.0	25.0	23.9		
Average Measurement							
107.90	41.5	42.0	48.0	6.5	6.0		

Harmonics & Spurious Emission

Maximum Frequency (MHz)		Pos	Limit	Margin			
	Polarity	Ant. Hei. m	Value dBµV/m	Transd	Result dBµV/m	dBμV/m	dBμV/m
176.19	Н	1.5	25.9	10.8	39.6	43.5	3.9
265.18	Н	2.4	23.7	11.2	37.2	46	8.8
353.65	Н	2.8	19.2	15.6	38.3	46	7.7
442.08	Н	1.7	25.5	18.1	31.6	46	14.4
526.28	Н	1.4	20.7	18.7	36.4	46	9.6
621.61	Н	3.2	17.5	20.9	35.9	46	10.1
708.65	Н	1.4	14.7	23.8	32.2	46	13.8
798.03	Н	1.9	18.0	20.8	33.5	46	12.5
876.70	Н	1.3	15.9	22.1	38.0	46	8.0

98.00MHz Spurious Emission							
Maximum Frequency (MHz)		Po	Limit	Margin			
	Polarity	Ant. Hei. m	Value dBµV/m	Transd	Result dBµV/m	dBμV/m	dBµV/m
196.01	Н	2.3	25.3	9.1	38.3	43.5	5.2
295.36	Н	3.2	24.9	12.1	36.8	46	8.2
395.42	Н	2.5	24.2	17.6	38.1	46	7.9
487.99	Н	2.5	25.7	17.8	34.1	46	11.9
591.23	Н	1.4	17.6	20.0	34.2	46	11.8
688.02	Н	3.2	14.0	23.5	34.5	46	11.5
782.87	Н	1.9	15.7	21.1	33.1	46	12.9
883.06	Н	1.4	15.6	22.1	32.9	46	13.1
982.57	Н	1.6	16.9	23.7	32.7	54	21.3

Maximum Frequency (MHz)		Ро	Limit	Margin			
	Polarity	Ant. Hei. m	Value dBµV/m	Transd	Result dBµV/m	dΒμV/m	dΒμV/m
215.78	Н	2.3	23.7	9.7	36.1	43.5	7.4
323.67	Н	2.3	19.4	13.6	32.7	46.0	13.3
431.56	Н	1.9	18.6	18.1	35.9	46.0	10.1
539.45	Н	2.0	23.5	18.9	36.8	46.0	9.2
647.34	Н	2.4	19.1	20.2	38.0	46.0	8.0
755.23	Н	2.7	16.3	22.0	32.3	46.0	13.7
863.12	Н	1.5	13.0	21.6	31.0	46.0	15.0
971.01	Н	2.0	16.9	23.7	29.4	54.0	24.6
1079.90	Н	1.9	15.2	22.3	27.3	54.0	26.7

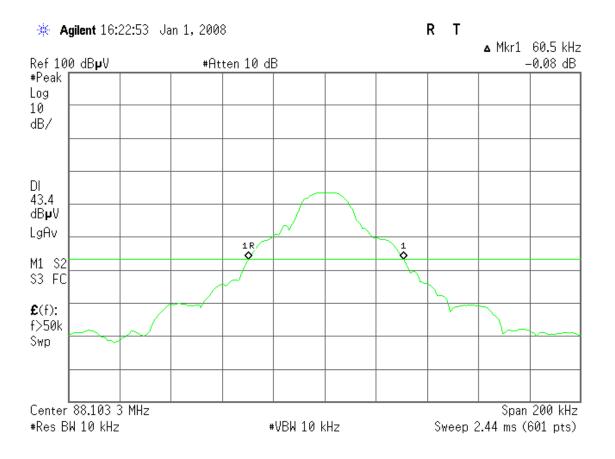
5- OCCUPIED BANDWIDTH

5.1 Requirement of Occupied Bandwidth

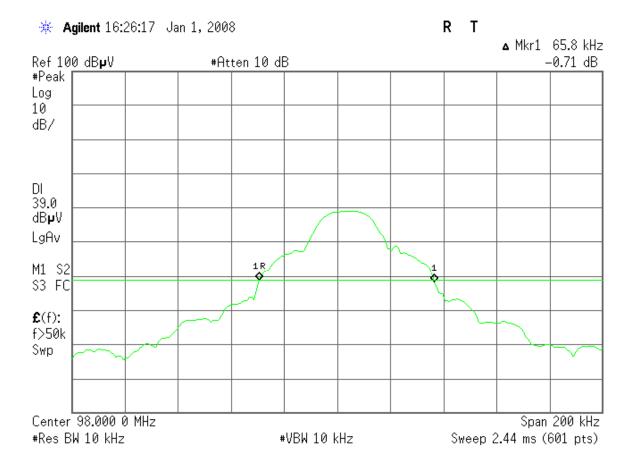
Emission from the intentional radiator shall be confined within a band 200kHz wide centered on the operation frequency. The 200kHz band shall lie wholly within the frequency range of 88~108MHz.

5.2 Test Procedure

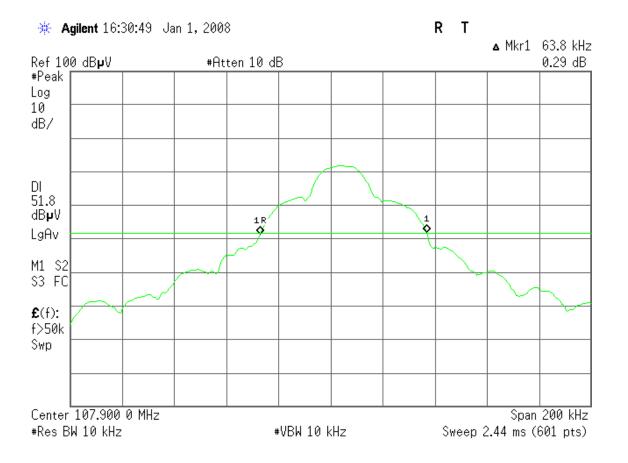
- 1). The EUT was placed on the top of the turntable 0.8 meter above ground.
- 2). The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- Power on the EUT and all the supporting units. The connected iPod is adjusted to its maximum volume.
- 4). The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 5). For each suspected emission, the antenna tower was scanned (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading of both horizontal and vertical polarization.
- 6). Set EMI test receiver with Max hold. Mark peak, -26dB.


5.3 Occupied Bandwidth Test Result

Temperature (°C)	22~23
Humidity (%RH)	50~54
Barometric Pressure (mbar)	950~1000
EUT	FM transmitter
M/N	SP2202
Operating Mode	Continuous Transmitting


Test Result: pass

Test plots see following pages


88.10MHz

98.00MHz

107.90MHz

APPENDIX A - PRODUCT LABELING

FCC ID Label Specification

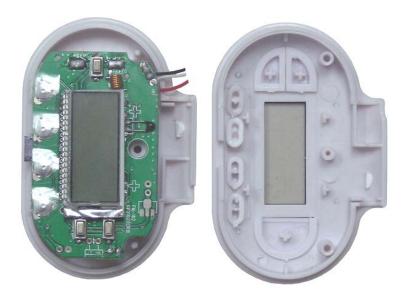
<u>Specification:</u> Text is Black or white in color and is left justified. Labels are printed in indelible ink on permanent adhesive backing and shall be affixed at a conspicuous location on the EUT or silk-screened onto the EUT.

FCC ID: UOMSP2202

Proposed Label Location on EUT

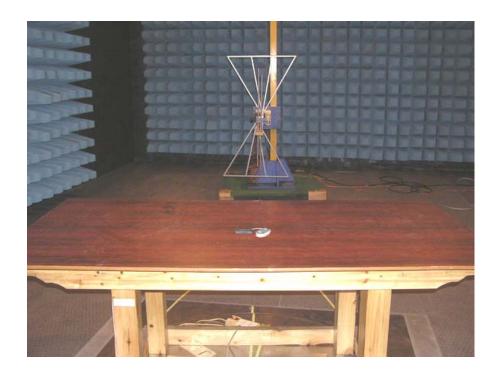
EUT Proposed FCC ID Label Location

APPENDIX B - EUT PHOTOGRAPHS


EUT - Top View

EUT - Bottom View

EUT - Inside View


EUT - PCB View

APPENDIX C – TEST SETUP PHOTOGRAPHS

Radiated Emission

