

REGULATORY COMPLIANCE TEST REPORT

FCC CFR 47 15.247, RSS-247 Issue 2

Report No.: YAMA05-U4 Rev A

Company: Line 6 Digital Wireless Inc

Model: G10TII

COMPLETE TEST REPORT

Test of: Line 6 Digital Wireless Inc

Model No.: G10TII

To: FCC CFR 47 15.247, RSS-247 Issue 2

Test Report Serial No.: YAMA05-U4 Rev A

This report supersedes: NONE

Applicant: Line 6 Digital Wireless Inc 26580 Agoura Rd Calabasas, California 91302 USA

Issue Date: 20th November 2020

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	
1.1. TESTING ACCREDITATION	
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	
2. DOCUMENT HISTORY	
3. TEST RESULT CERTIFICATE	
4. REFERENCES AND MEASUREMENT UNCERTAINT	Y9
4.1. Normative References	
4.2. Test and Uncertainty Procedure	
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	
5.2. Scope Of Test Program	
5.3. Equipment Model(s) and Serial Number(s)	
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	
5.8. Deviations from the Test Standard	14
6. TEST SUMMARY	15
7. TEST EQUIPMENT CONFIGURATION(S)	
7.1. Conducted Test Setup	
7.2. Radiated Emissions - 3m Chamber	
8. MEASUREMENT AND PRESENTATION OF TEST D	
9. TEST RESULTS	
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth	
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power	
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density	21 21 24 27
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions	21 21 24 27 29
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions	21 21 24 27 29 29
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions	21 21 24 27 29 29 29 29
 9. TEST RESULTS	21 21 24 27 29 29 29 29 29 31
 9. TEST RESULTS	21 21 24 27 29 29 29 29 29 31 33
 9. TEST RESULTS	21 21 24 27 29 29 29 29 29 31 33 5
 9. TEST RESULTS. 9.1. 6 dB & 99% Bandwidth	21 21 24 27 29 29 29 29 29 31 31 33 5
 9. TEST RESULTS	21 21 24 27 29 29 29 29 29 31 33 33 5 33 5 33 41
 9. TEST RESULTS	21 21 24 27 29 29 29 29 29 31 33 33 5 35 35 41 41
 9. TEST RESULTS	21 21 24 27 29 29 29 29 31 31 33 5 35 35 38 41 42 48
 9. TEST RESULTS	21 21 24 27 29 29 29 29 31 33 5 35 35 35 35 35 35 35 35 35 35 35 3
 9. TEST RESULTS	21 21 24 27 29 29 29 29 31 31 33 5 35 35 35 35 38 41 41 42 48 54 54
 9. TEST RESULTS	21 21 24 27 29 29 29 29 31 31 33 s 35 35 35 35 35 35 35 35 35 35 35 35 35
 9. TEST RESULTS	21 24 24 27 29 29 29 31 33 s
 9. TEST RESULTS	21 24 24 27 29 29 29 31 33 5 33 5 33 5 34 41 42 42 48 54 54 54 55
 9. TEST RESULTS	21 24 24 27 29 29 29 31 33 5 35 35 35 35 35 35 35 35 35 35 35 3

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2017. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

Accredited Laboratory

A2LA has accredited

MICOM LABS

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 24th day of February 2020.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing and certification capabilities. In addition to being recognized for Testing and Certification under Phase 2 agreements with Canada, Europe and Japan, our international recognition includes Conformity Assessment Body designation under Phase 1 agreements with APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	MRA Phase	Identification No.
USA	SA Federal Communications Commission (FCC)		-	US0159 Test Firm Designation#: US1084
Canada	Industry Canada (ISED)	FCB	APEC MRA 2	US0159 ISED#: 4143A
Japan	Japan MIC (Ministry of Internal Affairs and Communication) Japan Approvals Institute for Telecommunication Equipment (JATE)		Japan MRA 2	RCB 210
	VCCI			A-0012
Europe	e European Commission		EU MRA 2	NB 2280
Mexico	Instituto Federal de Telecomunicaciones (IFT)	CAB	Mexico MRA 1	US0159
Australia	Australian Communications and Media Authority (ACMA)			
Hong Kong	Office of the Telecommunication Authority (OFTA)	САВ		
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)		APEC MRA 1	US0159
Singapore	Infocomm Development Authority (IDA)	CAB		
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)			
Vietnam	Ministry of Communication (MIC)			

EU MRA - European Union Mutual Recognition Agreement

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries. MRA PhasePhase I - recognition for product testing

Phase II – recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 24th day of February 2020

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2021

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

	Document History					
Revision	Date	Comments				
Draft	10th November 2020	Draft report for client review.				
Draft 2	17th November 2020	Draft 2 report for client review.				
Rev A	20 th November 2020	Initial release.				

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

Manufacturer: Line 6 Digital Wireless Inc 26580 Agoura Rd Calabasas California 91302 USA

Model: G10TII

Type Of Equipment: Wireless Transmitter

S/N's: Test Sample 1

Test Date(s): 2nd – 4th November 2020

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

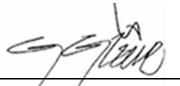
TEST RESULTS

EQUIPMENT COMPLIES

TESTING CERT #2381.01

FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ISED RSS-247 Issue 2

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.


Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 558074 D01 v05r02	2nd April 2019	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC Rules.
Ш	A2LA	October 2019	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2020	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 6 Jan 2016; Updated April 2019	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
X	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 5	March 2019 Amendment 1	General Requirements for Compliance of Radio Apparatus
XIII	FCC 47 CFR Part 2.1033	2020	FCC requirements and rules regarding photographs and test setup diagrams.
XIV	KDB 789033 D02 V02r01	14th December, 2017	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Line 6 Digital Wireless Inc G10TII to
	FCC CFR 47 Part 15 Subpart C 15.247
	Radio Frequency Devices; Subpart C – Intentional Radiators
Applicant:	
	26580 Agoura Rd
	Calabasas, California 91302
	USA
	Same as Applicant
Laboratory performing the tests:	
	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
	2 nd – 4 th November 2020
No of Units Tested:	2
Product Family Name:	
Model(s):	
Location for use:	Indoors and Outdoors
Declared Frequency Range(s):	2400 - 2483.5 MHz;
Type of Modulation:	
EUT Modes of Operation:	-
Declared Nominal Output Power (dBm):	10 dBm
Transmit/Receive Operation:	Transmitter
Rated Input Voltage and Current:	
	Transmitter: Battery: 3.7 VDC
	Nominal: 20 °C Max: +50 °C Min: 0 °C (manufacturers claim)
ITU Emission Designator:	1M53F1D
Equipment Dimensions:	2 1/8" X 1 ¼" X 3/4" in
Weight:	2 oz

5.2. Scope Of Test Program

Line 6 Digital Wireless Inc G10TII

The scope of the test program was to test the Line 6 Digital Wireless Inc G10TII in the frequency range 2400 - 2483.5 MHz; for compliance against the following specifications:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C – Intentional Radiators

ISED RSS-247 Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description	Manufacturer	Model No.	Serial No.
EUT	Wireless Transmitter	Line 6 Digital Wireless Inc	G10TII	Test Sample 1
Support	Power Supply	Hon-Kwang Electronic Co., LTD.	HK-AP-050A100- CP	
Support	Laptop	Dell	D610	

G10TII Test sample Hardware Revision: AA G10TII Test sample Firmware revision: 2.0

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	Line 6 Digital Wireless Inc	PCB	PCB	-0.6	-	360	-	2400 - 2483.5
BF Gain -	BF Gain - Beamforming Gain							
Dir BW - Directional BeamWidth								
X-Pol - Cro	X-Pol - Cross Polarization							

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened	Connector Type	Data Type	Data Rate(s)
USB	5m	1	Yes	USB	Digital	Unknown
XLR	>10m	1	Yes	XLR	Audio	-
Audio Plug	>10m	1	Yes	1⁄4" Audio Plug Receptacle	Audio	

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational	- Highest Power		Channel Frequency (MHz)			
Mode(s)	MBit/s	Low Mid Hig				
2400 – 2483.5 MHz						
FSK	1	2402	2442	2478		

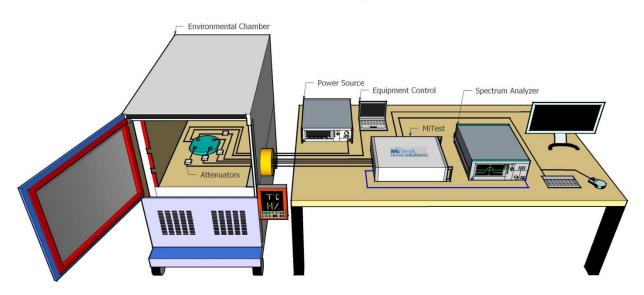
5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

6. TEST SUMMARY


List of Measurements		
Test Header	Result	Data Link
6 dB & 99% Bandwidth	Complies	View Data
Conducted Output Power	Complies	View Data
Power Spectral Density	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(ii) Restricted Edge & Band-Edge Emissions	Complies	View Data

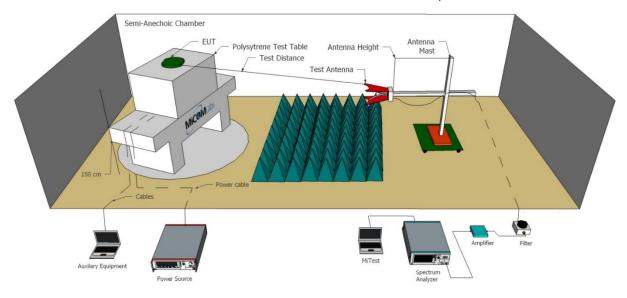
7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted Test Setup

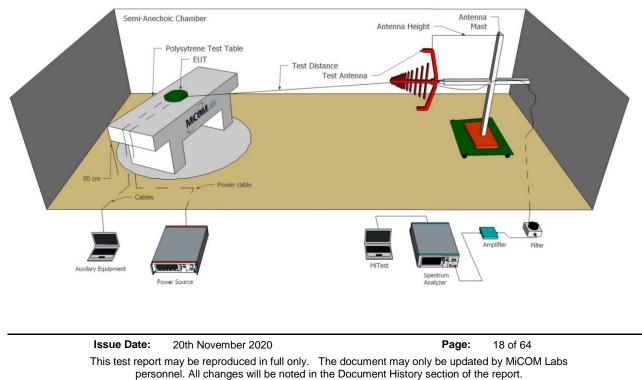
MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	28 Nov 2020
#3P1	EUT to MiTest box port 1	Fairview Microwave	SCA1814- 0101-72	#3P1	28 Nov 2020
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	28 Nov 2020
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	28 Nov 2020
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	28 Nov 2020
249	Thermocouple; Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2021
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2021
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Mar 2021
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when



					used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Mar 2021
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Mar 2021
442	USB Wideband Power Sensor	Boonton	55006	9181	19 Mar 2021
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Mar 2021
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2020
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	28 Dec 2020
534	Power Sensor 50 GHz - 70dBm to +20dBm	R&S	NRP50SN	1419.0093K02- 100888-SB	26 Feb 2021
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	20 Feb 2021


7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.

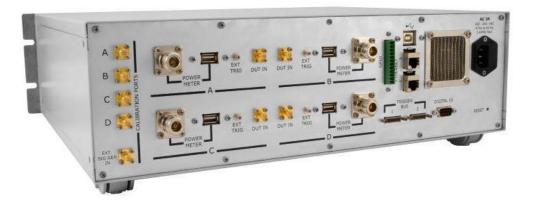
Radiated Emissions Above 1GHz Test Setup

Radiated Emissions Below 1GHz Test Setup

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
145	18–26 GHz Horn Antenna	Millimeter Products	261K	595	12 Dec 2020
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2021
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2021
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	29 Nov 2021
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Mar 2021
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	4 Dec 2020
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	9 Dec 2020
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Dec 2020
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	9 Dec 2020
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	4 Dec 2020
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	4 Dec 2020
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	4 Dec 2020
466	Low Pass Filter DC-1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	4 Dec 2020
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	4 Dec 2020
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	4 Dec 2020
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2020
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	4 Dec 2020
CC05	Confidence Check	MiCOM	CC05	None	4 Dec 2020


8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using stateof-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

9. TEST RESULTS

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth					
Standard:	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5 SED RSS 247 Issue 2 Ambient Temp. (°C): 24.0 - 27.5		24.0 - 27.5		
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%): 32 - 45			
Standard Section(s):	I5.247 (a)(2) Pressure (mBars): 999 - 1001 RSS-247 5.2 a 999 - 1001				
Reference Document(s):	See Normative References				

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

FCC 15.247

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	G10T11	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	M	easured 6 dB I Por	Bandwidth (MH t(s)	łz)	6 dB Bandy	width (MHz)	Limit	Lowest Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2402.0	<u>762.0</u>				762.0	762.0	≥500.0	-0.26
2442.0	<u>762.0</u>				762.0	762.0	≥500.0	-0.26
2478.0	<u>782.0</u>				782.0	782.0	≥500.0	-0.28

Test		Measured 99% E	Bandwidth (MHz))	Maximum	
Frequency	Port(s)			99% Bandwidth		
MHz	а	b	с	d	(MHz)	
2402.0	<u>1.062</u>				1.062	
2442.0	<u>1.082</u>				1.082	
2478.0	<u>1.082</u>				1.082	

Traceability to Industry Recognized Test Methodologic

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

ISED RSS-247

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	G10T11	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured 6 dB Bandwidth (MHz)				6 dB Bandy	width (MHz)	Limit	Lowest
Frequency		Por	ˈt(s)					Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2402.0	<u>0.721</u>				0.721	0.721	≥500.0	-0.22
2442.0	<u>0.501</u>				0.501	0.501	≥500.0	-0.01
2478.0	<u>0.581</u>				0.581	0.581	≥500.0	-0.08

Test		Measured 99% E	Bandwidth (MHz))	Maximum	
Frequency	Port(s)			99% Bandwidth		
MHz	а	b	c	d	(MHz)	
2402.0	<u>1.523</u>				1.523	
2442.0	<u>1.222</u>				1.222	
2478.0	<u>1.142</u>				1.142	

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

9.2. Conducted Output Power

Co	nducted Test Conditions for Fu	ndamental Emission Output Pov	ver			
Standard:	FCC CFR 47:15.247 ISED RSS 247 Issue 2	Ambient Temp. (ºC):	24.0 - 27.5			
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):		Pressure (mBars):	999 - 1001			
	RSS-247 5.4 (d)					
Reference Document(s):	See Normative References					
	Emission Output Power Measurer asurements an average power ser					
For peak power measurements the bandwidth.	ne spectrum analyzer built-in powe	er function was used to integrate p	eak power over the 20 dB			
	bient conditions at nominal voltagesured, summed (Σ) and reported.	e only. Where the device operate	d with multiple antenna ports i.e.			
Test configuration and setup use Supporting Information Calculated Power = A + G + Y+ 1		e Conducted Test Set-up specified	I in this document.			
A = Total Power [10*Log10 (10 ^{a/1} G = Antenna Gain Y = Beamforming Gain x = Duty Cycle (average power m						
Limits for Fundamental Emissi (b) The maximum peak conducte systems:		adiator shall not exceed the follow	ing for non-frequency hopping			
power measurement, comp power. Maximum Conducte elements averaged across level. Power must be summ during which the transmitte	liance with the one Watt limit can d Output Power is defined as the all symbols in the signaling alphab ned across all antennas and anten r is off or is transmitting at a reduc	and 2400-2483.5 MHz bands: 1 W be based on a measurement of the total transmit power delivered to al et when the transmitter is operation na elements. The average must no ed power level. If multiple modes of tput power is the highest total trans	e maximum conducted output I antennas and antenna Ig at its maximum power control of include any time intervals of operation are possible (e.g.,			
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.						
employ transmitting a	ration: in the 2400-2483.5 MHz band tha ntennas with directional gain great	t are used exclusively for fixed, po ter than 6 dBi provided the maximu 3 that the directional gain of the an	um conducted output power of			
multipoint systems, or information. The oper	nnidirectional applications, and me ator of the spread spectrum or dig	ns (c)(1)(i) and (c)(1)(ii) of this sect ultiple co-located intentional radiation itally modulated intentional radiato nsuring that the system is used exit	ors transmitting the same r or, if the equipment is			
Issue Date:	20th November 2020	Page	24 of 64			

operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Equipment Configuration for Peak Output Power

Variant:	G10TII	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	-0.60
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)				Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	octaing
2402.0	9.68				9.68	30.00	-20.32	Max
2442.0	9.71				9.71	30.00	-20.29	Max
2478.0	9.65				9.65	30.00	-20.35	Max

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

9.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density						
Standard:	FCC CFR 47:15.247 ISED RSS 247 Issue 2	Ambient Temp. (ºC):	24.0 - 27.5			
Test Heading:	Power Spectral Density Rel. Humidity (%): 32 - 45					
Standard Section(s):	15.247 (e) RSS-247 5.2 b Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Equipment Configuration for Power Spectral Density - Peak

Variant:	G10TII	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	-0.60
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurem	Test Measurement Results							
Test	N	leasured Power	y	Amplitude	Limit	Margin		
Frequency		Port(s) (d	Bm/3KHz)		Summation	Linin	Wargin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB	
2402.0	<u>-13.842</u>				<u>-13.842</u>	8.0	-21.8	
2442.0	<u>-9.537</u>				<u>-9.537</u>	8.0	-17.5	
2478.0	<u>-12.415</u>				<u>-12.415</u>	8.0	-20.4	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

9.4. Emissions

9.4.1. Conducted Emissions

9.4.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions						
Standard:	FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Max Unwanted Emission Levels	ax Unwanted Emission Levels Rel. Humidity (%): 32 - 45				
Standard Section(s):	15.247 (d) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Equipment Configuration for Conducted Spurious Emissions - Peak

Variant:	G10TII	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Frequency		Conducted Spurious Emissions - Peak (dBm)						
Range	P	ort a	Po	rt b	Po	rt c	Po	rt d
MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
30.0 - 26000.0	<u>-28.176</u>	-20.22						
30.0 - 26000.0	<u>-29.419</u>	-20.27						
30.0 - 26000.0	<u>-30.701</u>	-20.15						
	Range MHz 30.0 - 26000.0 30.0 - 26000.0	Range P MHz SE 30.0 - 26000.0 -28.176 30.0 - 26000.0 -29.419	Range Port a MHz SE Limit 30.0 - 26000.0 -28.176 -20.22 30.0 - 26000.0 -29.419 -20.27	Range Port a Po MHz SE Limit SE 30.0 - 26000.0 -28.176 -20.22 30.0 - 26000.0 -29.419 -20.27	Mage Port a Port b MHz SE Limit SE Limit 30.0 - 26000.0 -28.176 -20.22 30.0 - 26000.0 -29.419 -20.27	Range Port a Port b Po MHz SE Limit SE Limit SE 30.0 - 26000.0 -28.176 -20.22 30.0 - 26000.0 -29.419 -20.27	Mage Port a Port b Port c MHz SE Limit SE Limit SE Limit 30.0 - 26000.0 -28.176 -20.22 30.0 - 26000.0 -29.419 -20.27	Range Port a Port b Port c Port c MHz SE Limit SE Limit SE Limit SE Imit SE SE

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

9.4.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

Variant:	G10TII	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2402.0 MHz						
Band-Edge Frequency:	2400.0 MHz	400.0 MHz					
Test Frequency Range:	2350.0 - 2422.0 N	2350.0 - 2422.0 MHz					
	Band-Ec	lge Markers a	and Limit	Revise	ed Limit	Margin	
Port(s)	M1 Amplitude (dBm)			Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	-44.25	-19.85	2400.90			-0.900	

Traceability to Industry Recognized Test Methodologies

······································	
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	G10TII	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2478.0 MHz						
Band-Edge Frequency:	2483.5 MHz						
Test Frequency Range:	2452.0 - 2524.0	452.0 - 2524.0 MHz					
	Band-E	dge Markers a	and Limit	Revise	ed Limit	Margin	
Port(s)	M3 Amplitude Plot Limit M2 Frequency (dBm) (dBm) (MHz)			Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-45.54</u>	-18.34	2478.50			-5.000	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

9.4.2. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)							
Standard:	FCC CFR 47 Part 15 Subpart C 15.247 ISED RSS 247 Issue 2	Ambient Temp. (ºC):	20.0 - 24.5				
Test Heading:	Radiated Spurious and Band-Edge Emissions	Rel. Humidity (%):	32 - 45				
Standard Section(s):	FCC: 15.205, 15.209 RSS-247 5.5 Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands

Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data. FS = R + AF + CORR - FO

where:

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Example:

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = $20 \times \log (\text{level (mV/m)})$

40 dBmV/m = 100 mV/m

48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Frequency Band							
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				

4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

No emissions were observed from 18GHz to 26GHz

9.4.2.3. TX Spurious & Restricted Band Emissions

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	PCB	Variant:	G10TII
Antenna Gain (dBi):	-0.6	Modulation:	FSK
Beam Forming Gain (Y):	0	Duty Cycle (%):	99
Channel Frequency (MHz):	2402.00	Data Rate:	1.00 MBit/s
Power Setting:	Max	Tested By:	JMH

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	4804.41	61.92	2.85	-12.42	52.35	Max Peak	Vertical	101	143	74.0	-21.7	Pass
#2	4804.41	52.65	2.85	-12.42	43.08	Max Avg	Vertical	101	143	54.0	-10.9	Pass
#3	7205.31	54.32	3.57	-7.92	49.97	Peak (NRB)	Vertical	100	0			Pass
#4	9607.07	54.23	4.21	-7.00	51.44	Peak (NRB)	Horizontal	100	0			Pass
#5	16807.62	49.14	5.11	-8.0	46.25	Peak (NRB)	Vertical	100	0			Pass
#6	17080.16	49.11	5.15	-8.0	46.26	Peak (NRB)	Vertical	100	12			Pass
Test No	tes: EUT in ch	harger. 2.4	4G Notch	in front o	f amp to p	revent overload						

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	PCB	Variant:	G10TII
Antenna Gain (dBi):	-0.6	Modulation:	FSK
Beam Forming Gain (Y):	0	Duty Cycle (%):	99
Channel Frequency (MHz):	2442.00	Data Rate:	1.00 MBit/s
Power Setting:	Max	Tested By:	JMH

Test Measurement Results

1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	4884.12	59.68	2.86	-12.57	49.97	Max Peak	Vertical	103	165	74.0	-24.0	Pass
#2	4884.12	51.52	2.86	-12.57	41.81	Max Avg	Vertical	103	165	54.0	-12.2	Pass
#3	7326.70	59.00	3.56	-7.96	54.60	Max Peak	Vertical	194	20	74.0	-19.4	Pass
#4	7326.70	48.95	3.56	-7.96	44.55	Max Avg	Vertical	194	20	54.0	-9.5	Pass
#5	9768.83	48.27	4.17	-6.41	46.03	Peak (NRB)	Vertical	100	0			Pass
#6	17080.16	48.93	5.15	-8.0	46.079	Peak (NRB)	Vertical	100	33			Pass
Test Notes: EUT in charger. 2.4G Notch in front of amp to prevent overload												

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	PCB	Variant:	G10TII
Antenna Gain (dBi):	-0.6	Modulation:	FSK
Beam Forming Gain (Y):	0	Duty Cycle (%):	99
Channel Frequency (MHz):	2478.00	Data Rate:	1.00 MBit/s
Power Setting:	Max	Tested By:	JMH

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	4955.88	60.70	2.92	-12.44	51.18	Max Peak	Vertical	197	70	74.0	-22.8	Pass
#2	4955.88	51.89	2.92	-12.44	42.37	Max Avg	Vertical	197	70	54.0	-11.6	Pass
#3	7433.19	59.84	3.59	-7.77	55.66	Max Peak	Vertical	196	253	74.0	-18.3	Pass
#4	7433.19	49.75	3.59	-7.77	45.57	Max Avg	Vertical	196	253	54.0	-8.4	Pass
#5	9913.03	48.90	4.24	-6.57	46.57	Peak (NRB)	Vertical	100	100			Pass
#6	17080.16	49.92	5.15	-8.0	47.07	Peak (NRB)	Vertical	100	25			Pass
Test No	est Notes: EUT in charger. 2.4G Notch in front of amp to prevent overload											

Note: click the links in the above matrix to view the graphical image (plot).

9.4.2.4. Restricted Edge & Band-Edge Emissions

2390 & 2483.5 MHz Radiated Band-Edge Emissions

			Limit 74.0dBµV/m	Limit 54.0dBµV/m	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting
Hybrid	2402.00	2390.00	49.65	37.18	Max
Hybrid	2478.00	2483.50	52.45	41.08	Max

Equipment Configuration for 2390 MHz Radiated Band-Edge Emissions

Antenna:	PCB	Variant:	G10TII
Antenna Gain (dBi):	-0.6	Modulation:	FSK
Beam Forming Gain (Y):	0	Duty Cycle (%):	99
Channel Frequency (MHz):	2402.00	Data Rate:	1.00 MBit/s
Power Setting:	Max	Tested By:	JMH

Test Measurement Results

	2310.00 - 2420.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2390.00	3.20	2.02	31.96	37.18	Max Avg	Vertical	192	311	54.0	-16.8	Pass
#2	2390.00	15.67	2.02	31.96	49.65	Max Peak	Vertical	192	311	74.0	-24.4	Pass
#3	2390.00					Restricted- Band						
Test Not	tes: EUT in ch	arger.										

Note: click the links in the above matrix to view the graphical image (plot).

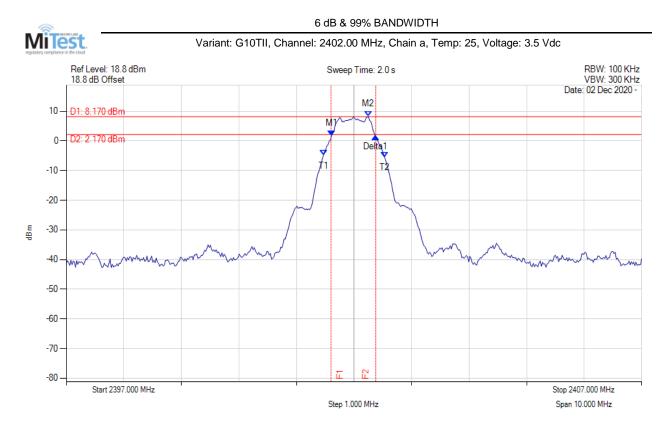
Equipment Configuration for 2483.5 MHz Radiated Band-Edge Emissions

Antenna:	PCB	Variant:	G10TII
Antenna Gain (dBi):	-0.6	Modulation:	FSK
Beam Forming Gain (Y):	0	Duty Cycle (%):	99
Channel Frequency (MHz):	2478.00	Data Rate:	1.00 MBit/s
Power Setting:	Max	Tested By:	JMH

Test Measurement Results

	2450.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2483.50	6.72	2.03	32.33	41.08	Max Avg	Horizontal	152	121	54.0	-12.9	Pass
#2	#2 2483.50 18.09 2.03 32.33 52.45 Max Peak Horizontal 152 121 74.0 -21.6 Pas						Pass					
#3	2483.50					Restricted- Band						
Test Not	tes: EUT in ch	narger.			•	•				•		

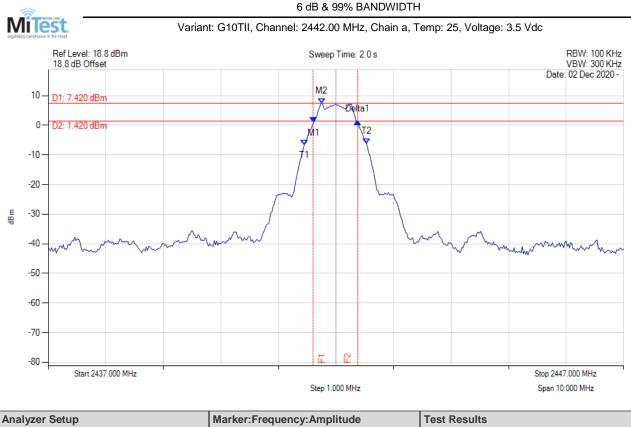
Note: click the links in the above matrix to view the graphical image (plot).



Title:Line 6 Digital Wireless Inc G10TIITo:FCC CFR 47 15.247, RSS-247 Issue 2Serial #:YAMA05-U4 Rev A

A. APPENDIX - GRAPHICAL IMAGES

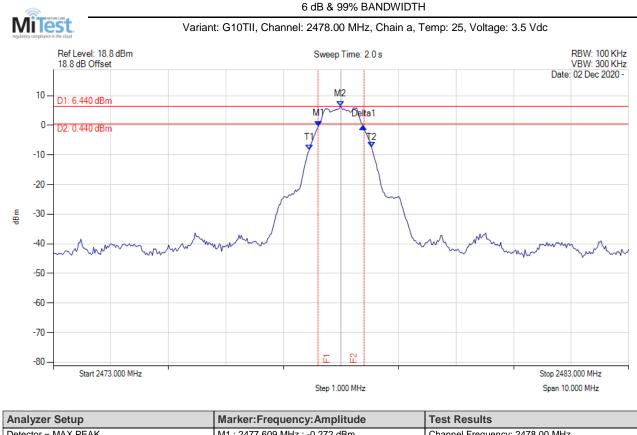
A.1. 6 dB & 99% Bandwidth



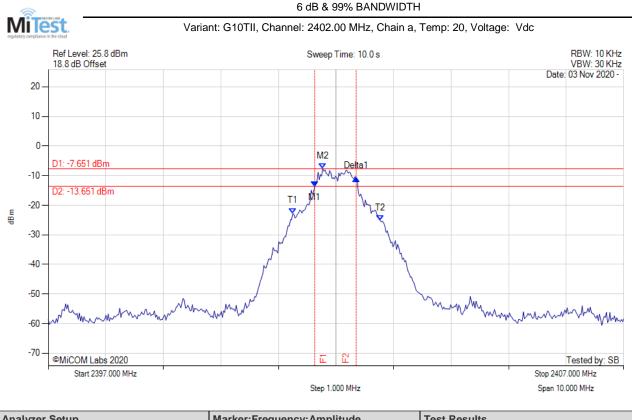
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 2401.609 MHz : 1.672 dBm M2 : 2402.251 MHz : 8.170 dBm Delta1 : 762 KHz : -0.100 dB T1 : 2401.469 MHz : -4.834 dBm T2 : 2402.531 MHz : -5.470 dBm OBW : 1.062 MHz	Channel Frequency: 2402.00 MHz

back to matrix

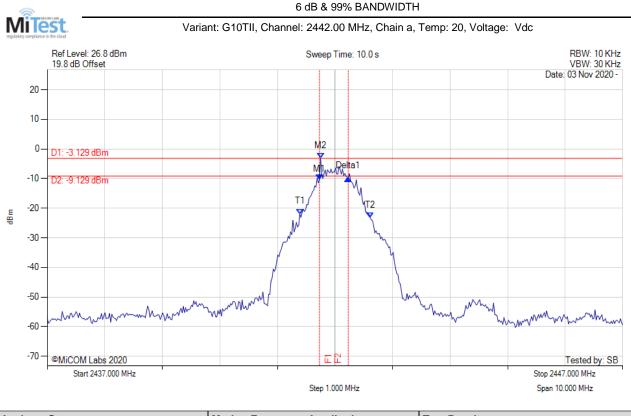
Page:

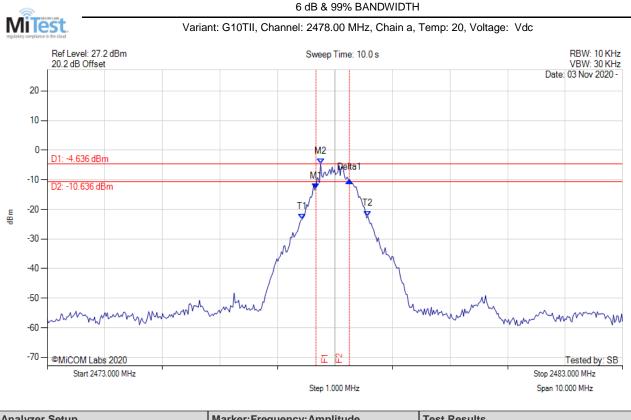


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20	M1 : 2441.609 MHz : 0.944 dBm M2 : 2441.749 MHz : 7.422 dBm Delta1 : 762 KHz : 0.295 dB T1 : 2441.449 MHz : -6.644 dBm T2 : 2442.531 MHz : -6.198 dBm OBW : 1.082 MHz	Channel Frequency: 2442.00 MHz

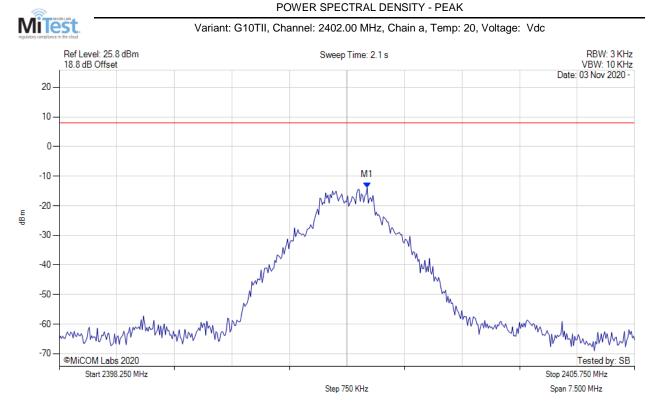


Title:Line 6 Digital Wireless Inc G10TIITo:FCC CFR 47 15.247, RSS-247 Issue 2Serial #:YAMA05-U4 Rev A

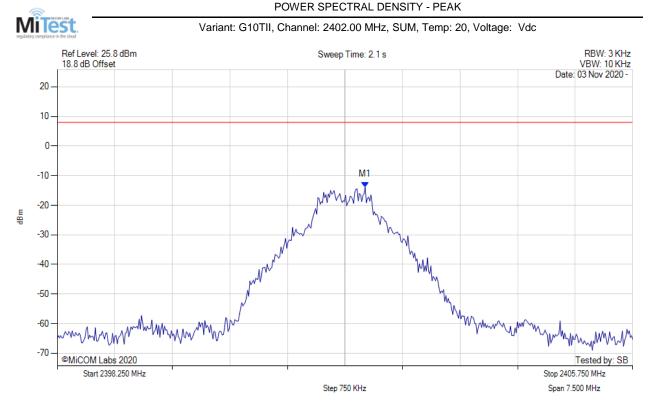

Analyzer Setup	Marker:Frequency:Amplitude	lest Results	
Detector = MAX PEAK	M1 : 2477.609 MHz : -0.272 dBm	Channel Frequency: 2478.00 MHz	
Sweep Count = 0	M2 : 2477.990 MHz : 6.439 dBm		
RF Atten (dB) = 20	Delta1 : 782 KHz : -0.102 dB		
Trace Mode = CLR/WRITE	T1 : 2477.449 MHz : -8.379 dBm		
	T2 : 2478.531 MHz : -7.435 dBm		
	OBW : 1.082 MHz		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
		Measured 6 dB Bandwidth: 0.721 MHz	
	M2 : 2401.770 MHz : -7.651 dBm	Limit: ≥500.0 kHz	
		Margin: -0.22 MHz	
Trace Mode = MAX HOLD	T1 : 2401.248 MHz : -22.719 dBm		
	T2 : 2402.772 MHz : -25.257 dBm		
	OBW : 1.523 MHz		

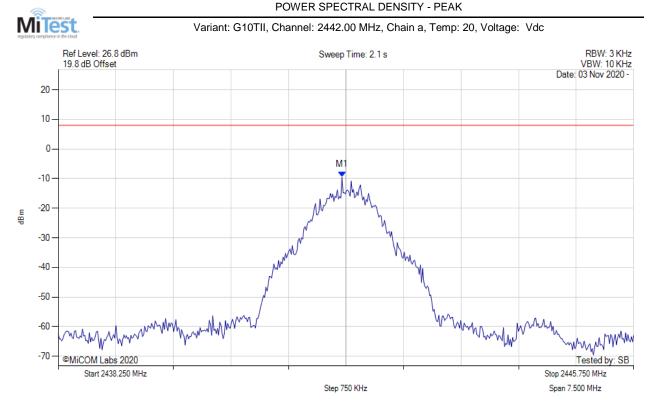
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M2 : 2441.749 MHz : -3.129 dBm	Measured 6 dB Bandwidth: 0.501 MHz Limit: ≥500.0 kHz Margin: 0.00 MHz

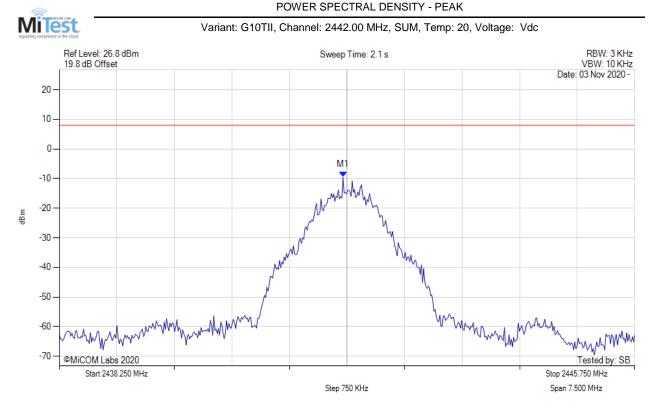


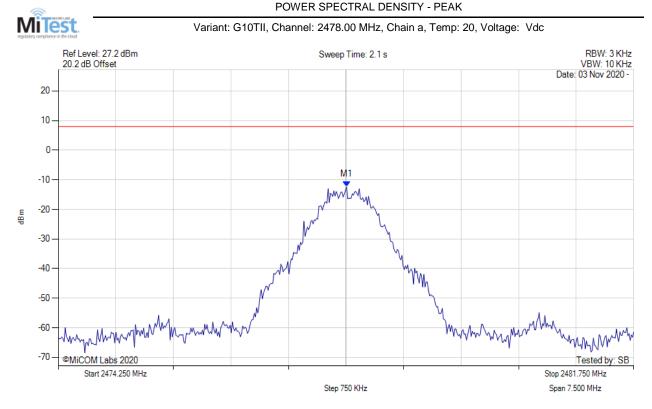
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M2 : 2477.749 MHz : -4.636 dBm	Measured 6 dB Bandwidth: 0.581 MHz Limit: ≥500.0 kHz Margin: -0.08 MHz

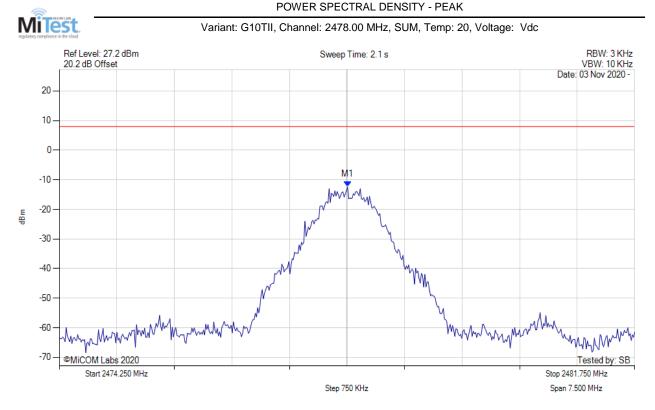


A.2. Power Spectral Density

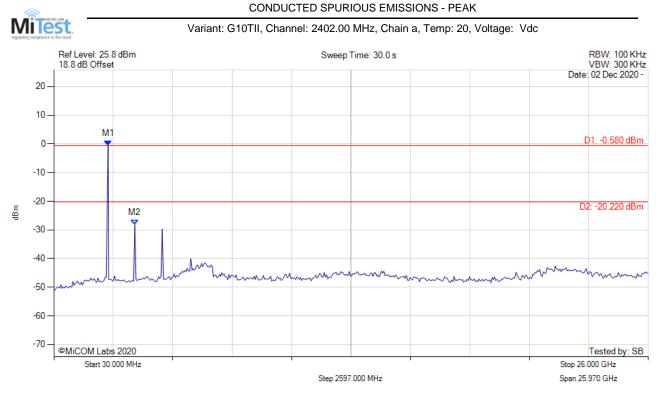

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2402.263 MHz : -13.842 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: 21.84 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Limit: ≤ 8.0 dBm Margin: -21.8 dB


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Limit: ≤ 8.000 dBm Margin: 17.54 dB


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Limit: ≤ 8.0 dBm Margin: -17.5 dB

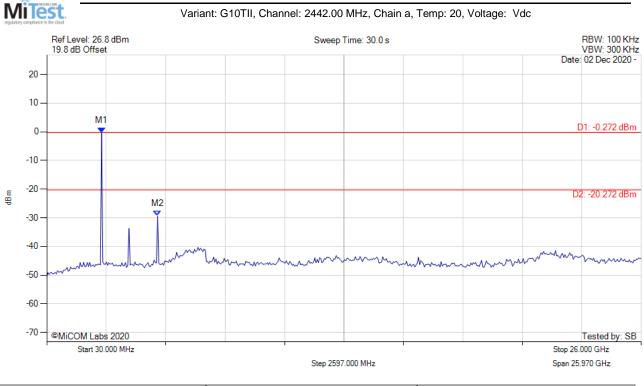
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Limit: ≤ 8.000 dBm Margin: 20.41 dB


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Limit: ≤ 8.0 dBm Margin: -20.4 dB

A.3. Emissions

A.3.1. Conducted Emissions

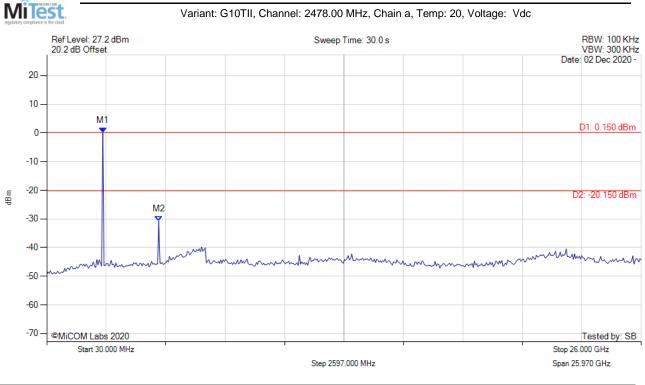
A.3.1.1. Conducted Spurious Emissions



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2401.951 MHz : -0.580 dBm M2 : 3568.998 MHz : -28.176 dBm	Limit: -20.94 dBm Margin: -7.96 dB

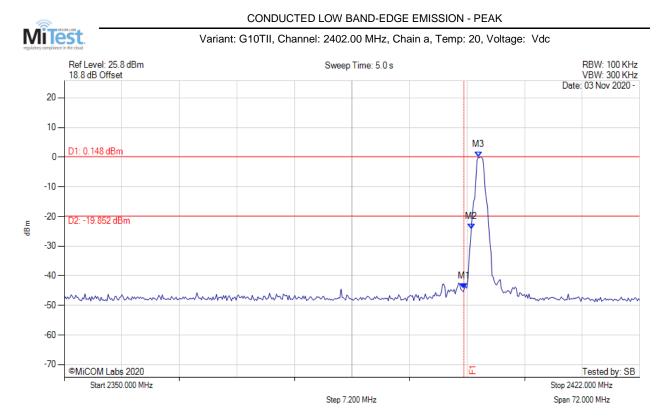
Title:Line 6 Digital Wireless Inc G10TIITo:FCC CFR 47 15.247, RSS-247 Issue 2Serial #:YAMA05-U4 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

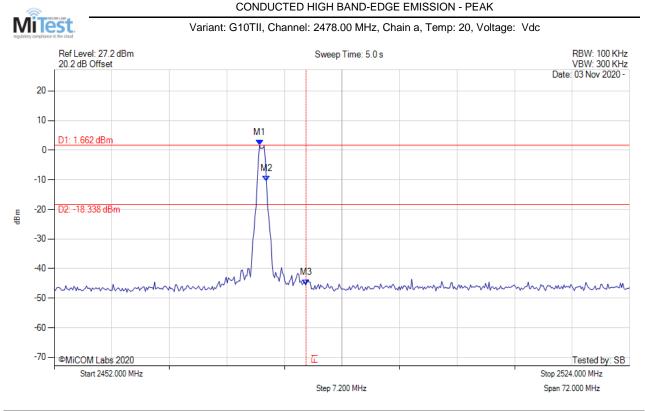


Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2442.028 MHz : -0.272 dBm	Limit: -20.23 dBm	
Sweep Count = 0	M2 : 4870.100 MHz : -29.419 dBm	Margin: -9.15 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

Title:Line 6 Digital Wireless Inc G10TIITo:FCC CFR 47 15.247, RSS-247 Issue 2Serial #:YAMA05-U4 Rev A

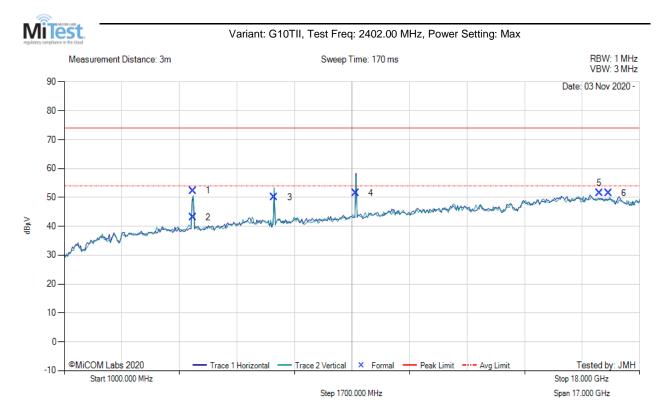

CONDUCTED SPURIOUS EMISSIONS - PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2476.072 MHz : 0.150 dBm	Limit: -19.88 dBm
Sweep Count = 0	M2 : 4922.144 MHz : -30.701 dBm	Margin: -10.55 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		



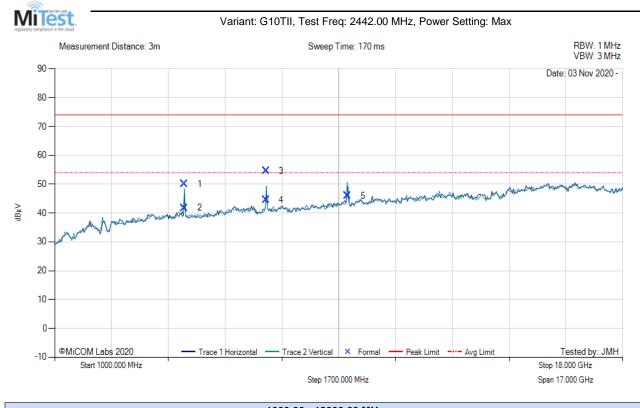
A.3.1.2. Conducted Band-Edge Emissions

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2400.000 MHz : -44.250 dBm	Channel Frequency: 2402.00 MHz
Sweep Count = 0	M2 : 2400.934 MHz : -24.250 dBm	
RF Atten (dB) = 20	M3 : 2401.800 MHz : 0.148 dBm	
Trace Mode = VIEW		



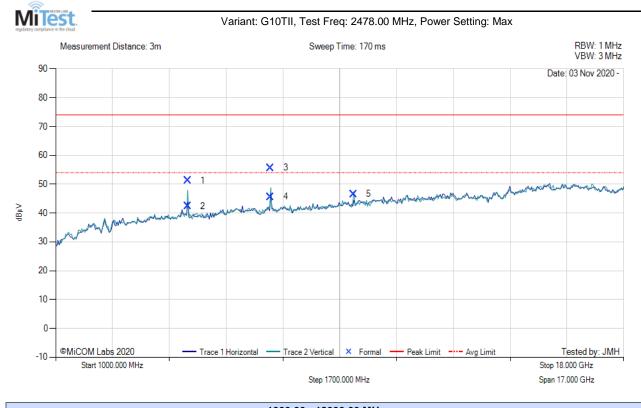
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2477.683 MHz : 1.662 dBm M2 : 2478.549 MHz : -10.556 dBm M3 : 2483.500 MHz : -45.537 dBm	Channel Frequency: 2478.00 MHz

A.3.2. Radiated Emissions


A.3.2.3. TX Spurious & Restricted Band Emissions

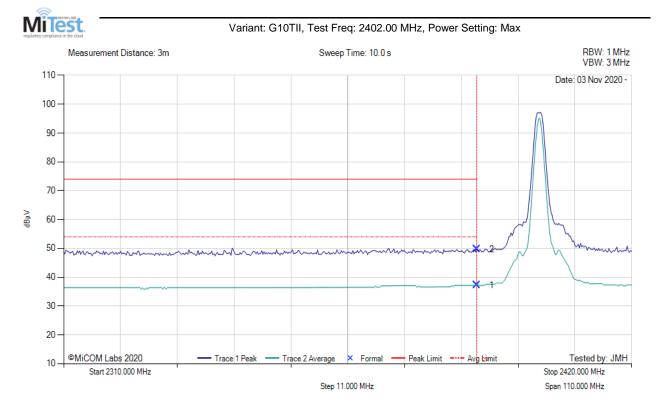
	1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	4804.41	61.92	2.85	-12.42	52.35	Max Peak	Vertical	101	143	74.0	-21.7	Pass	
2	4804.41	52.65	2.85	-12.42	43.08	Max Avg	Vertical	101	143	54.0	-10.9	Pass	
3	7205.31	54.32	3.57	-7.92	49.97	Peak (NRB)	Vertical	100	0			Pass	
4	9607.07	54.23	4.21	-7.00	51.44	Peak (NRB)	Horizontal	100	0			Pass	
5	16807.62	49.14	5.11	-8.0	46.25	Peak (NRB)	Vertical	100	0			Pass	
6	17080.16	49.11	5.15	-8.0	46.26	Peak (NRB)	Vertical	100	0			Pass	

Test Notes: EUT in charger. 2.4G Notch in front of amp to prevent overload



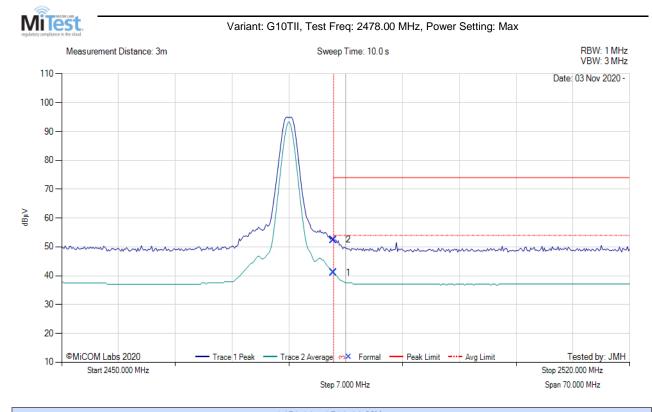
	1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	4884.12	59.68	2.86	-12.57	49.97	Max Peak	Vertical	103	165	74.0	-24.0	Pass	
2	4884.12	51.52	2.86	-12.57	41.81	Max Avg	Vertical	103	165	54.0	-12.2	Pass	
3	7326.70	59.00	3.56	-7.96	54.60	Max Peak	Vertical	194	20	74.0	-19.4	Pass	
4	7326.70	48.95	3.56	-7.96	44.55	Max Avg	Vertical	194	20	54.0	-9.5	Pass	
5	9768.83	48.27	4.17	-6.41	46.03	Peak (NRB)	Vertical	100	0			Pass	
6	17080.16	48.93	5.15	-8.0	46.079	Peak (NRB)	Vertical	100	0			Pass	

Test Notes: EUT in charger. 2.4G Notch in front of amp to prevent overload



1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	4955.88	60.70	2.92	-12.44	51.18	Max Peak	Vertical	197	70	74.0	-22.8	Pass
2	4955.88	51.89	2.92	-12.44	42.37	Max Avg	Vertical	197	70	54.0	-11.6	Pass
3	7433.19	59.84	3.59	-7.77	55.66	Max Peak	Vertical	196	253	74.0	-18.3	Pass
4	7433.19	49.75	3.59	-7.77	45.57	Max Avg	Vertical	196	253	54.0	-8.4	Pass
5	9913.03	48.90	4.24	-6.57	46.57	Peak (NRB)	Vertical	100	100			Pass
6	17080.16	49.92	5.15	-8.0	47.07	Peak (NRB)	Vertical	100	25			Pass

Test Notes: EUT in charger. 2.4G Notch in front of amp to prevent overload


A.3.2.4. Restricted Edge & Band-Edge Emissions

2310.00 - 2420.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2390.00	3.20	2.02	31.96	37.18	Max Avg	Vertical	192	311	54.0	-16.8	Pass
2	2390.00	15.67	2.02	31.96	49.65	Max Peak	Vertical	192	311	74.0	-24.4	Pass
3	2390.00					Restricted- Band						
_												

Test Notes: EUT in charger.

2450.00 - 2520.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	6.72	2.03	32.33	41.08	Max Avg	Horizontal	152	121	54.0	-12.9	Pass
2	2483.50	18.09	2.03	32.33	52.45	Max Peak	Horizontal	152	121	74.0	-21.6	Pass
3	2483.50					Restricted- Band						

Test Notes: EUT in charger.

back to matrix

Page:

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com