

# **MPE Calculations**

Systems operating under the provision of 47 CFR 1.1307(b)(1) shall be operated in a manor that ensures that the public is not exposed to radio frequency energy levels in excess of the FCC guidelines.

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the user or nearby persons and can therefore be considered a mobile transmitter per 47 CFR 2.1091(b). The MPE calculation for this exposure is shown below.

## Using the Antennas with highest output power:

## The peak radiated output power (EIRP) is calculated as follows:

| Antenna                  | Frequency<br>(GHz) | Power input to the<br>antenna (P)<br>(dBm) | Power gain of the<br>antenna (G)<br>(dBi) | EIRP<br>(P+G)<br>(dBm) | EIRP<br>Log <sup>-1(dBm/10)</sup><br>(mW) |
|--------------------------|--------------------|--------------------------------------------|-------------------------------------------|------------------------|-------------------------------------------|
| giga Ant RUFA 2.4GHz SMD | 2.4                | 18.50                                      | 4.40                                      | 22.90                  | 194.98                                    |

EIRP = P + GWhere

P = Power input to the antenna (mW).

G = Power gain of the antenna (dBi)

### The numeric gain (G) of the antenna with a gain specified in dB is determined by:

| Antenna                  | Frequency<br>(GHz) | Antenna Gain<br>(G)<br>(dBi) | Numeric Antenna Gain<br>Log <sup>-1(dBm/10)</sup><br>(dB) |
|--------------------------|--------------------|------------------------------|-----------------------------------------------------------|
| giga Ant RUFA 2.4GHz SMD | 2.4                | 4.40                         | 2.75                                                      |

 $G = Log^{-1}$  (dB antenna gain/10)

### Power density at the specific separation:

|   |                         |           |                 | Numeric Power | Maximum Power                 | Maximum Power    |
|---|-------------------------|-----------|-----------------|---------------|-------------------------------|------------------|
|   |                         |           | Power input to  | Gain of the   | Spectral Density              | Spectral Density |
|   |                         | Frequency | the antenna (P) | Antenna (G)   | $S=PG/(4R^2\pi)$              | Limit            |
|   | Antenna                 | (GHz)     | (mW)            | (dB)          | ( <i>mW/cm</i> <sup>2</sup> ) | $(mW/cm^2)$      |
| g | iga Ant RUFA 2.4GHz SMD | 2.4       | 70.79           | 2.75          | 0.039                         | 1.00             |

 $S = PG/(4R^2\pi)$ 

Where

S = Maximum power density (mW/cm<sup>2</sup>)

P = Power input to the antenna (mW).

G = Numeric power gain of the antenna

R = Distance to the center of the radiation of the antenna (20cm = limit for MPE)

The maximum permissible exposure (MPE) for the general population is 1mW/cm<sup>2</sup>.

The power density at 20cm does not exceed the 1mW/cm<sup>2</sup> limit. Therefore, the exposure condition is compliant with FCC rules.